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After identifying the nuclei in the A ' 80 and A ' 160 regions for which β-decay rates have the
greatest effect on weak and main r -process abundance patterns, we apply the finite-amplitude method
(FAM) with Skyrme energy-density functionals (EDFs) to calculate β-decay half-lives of those nuclei
in the quasiparticle random-phase approximation (QRPA). We use the equal filling approximation to
extend our implementation of the charge-changing FAM, which incorporates pairing correlations and
allows axially symmetric deformation, to odd-A and odd-odd nuclei. Repeated calculations with
A ' 160 nuclei and multiple EDFs show a spread of 1.9 to 3.3 in β-decay half-lives, with differences
in calculated Q values playing an important role. We compare our results with those of previous
work and investigate their implications for r -process simulations.

I. INTRODUCTION

The solar abundances of nuclei heavier than iron, on
the neutron-rich side of stability, have traditionally been
attributed to rapid neutron-capture, or r -process, nu-
cleosynthesis [1]. The three largest abundance peaks in
the solar pattern, at A ∼ 80, 130, and 195, are associ-
ated with the closed neutron shells at N = 50, 82, and
126, suggesting that astrophysical conditions of increasing
neutron-richness are responsible for each. A smaller fourth
abundance peak in the rare-earth elements (A ∼ 160) is
also formed in neutron-rich environments. Observational
data from meteorites and metal-poor halo stars confirm
the separate origins for 70 . A . 120 (“weak”) and
A > 120 (“main”) r -process nuclei and provide hints of
the nature of the r -process astrophysical site, though the
exact site (or sites) has not yet been definitively pinned
down [2].

In principle the r -process sites can be identified by com-
paring simulations of prospective astrophysical environ-
ments with observational data from the solar system and
other stars (see, e.g., Ref. [3]). The precision of r -process
abundance predictions, however, is limited by our incom-
plete knowledge of properties—such as masses, reaction
rates, and decay lifetimes—of nuclei on the neutron-rich
side of stability [4]. It is particularly important that we
better determine decay lifetimes, because r -process nu-
clei are built up via a sequence of captures and β decays.
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Thus, β-decay lifetimes determine the relative abundances
of the nuclei along the r -process path [1, 2, 5] and the
overall timescale for neutron capture [6, 7]. At late times,
as nuclei move back from the r -process path toward sta-
bility and the last remaining neutrons are captured, the
lifetimes determine the shape of the final abundance pat-
tern [5, 8]. Finally, for a weak r process β-decay rates
control the amount of material that remains trapped in
the A ∼ 80 peak and the amount that moves to higher
mass numbers [9], i.e. they determine where the weak r
process terminates. For all these reasons, an accurate
picture of the β decay of neutron-rich nuclei is crucial for
the accuracy of r -process simulations.

Although many β-decay lifetimes have been measured
(see, e.g., Refs. [9–13]), most of the nuclei populated dur-
ing the r process remain out of reach. Simulations must
therefore rely on calculated lifetimes. The most widely-
used sets of theoretical rates are from gross theory [14–16]
and from an application of the quasiparticle random-phase
approximation (QRPA) within a macroscopic-microscopic
framework [6, 17] that employs gross theory for first-
forbidden transitions. Here we use a fully microscopic
Skyrme QRPA, implemented through the proton-neutron
finite-amplitude method (pnFAM) [18] and extended to
treat odd-A and odd-odd nuclei (hereafter “odd” nuclei)
in the equal-filling approximation (EFA) [19]. We can now
use arbitrary Skyrme energy-density functionals (EDFs)
to self-consistently compute β-decay rates of both even-
even and odd axially-symmetric nuclei, including contri-
butions of both allowed (Jπ = 1+) and first-forbidden
(Jπ = 0−, 1−, or 2−) transitions.

We evaluate lifetimes for key r -process nuclei in two
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highly populated regions of the abundance pattern: the
large maximum at A ∼ 80 and the smaller rare-earth
peak at A ∼ 160. In a main r -process, the rare earth
peak forms in a different way than do the large peaks at
A ∼ 130 and 195, both of which originate from long-lived
“waiting points” near closed neutron shells at N = 82 and
126. The rare-earth peak, by contrast, forms during the
late stages of the r process, as β decay, neutron capture,
and photo-dissociation all compete with one another and
the r -process path moves toward stability [20, 21]. The
A ∼ 160 abundance peak is thus useful for studying the
main r -process environment [22, 23]. The A ∼ 80 region
is not so clearly related to the main r process. In fact,
nuclei with 70 . A . 120 can be created in a variety of
nucleosynthetic processes, ranging from the neutron-rich
weak r process to the proton-rich νp process [24–26] (see
also Refs. [27, 28]). Untangling the various contributions
to these elements requires rigorous abundance pattern
predictions, which in turn require a better knowledge of
still unmeasured β-decay half-lives.

In this paper, we aim to study and improve r -process
abundance predictions for both weak r -process nuclei and
the rare-earth elements by identifying and recalculating
key β-decay rates. We begin in Sec. II by reviewing
the pnFAM and then discussing our extension to odd
nuclei. In Sec. III, guided by r -process sensitivity studies,
we calculate β-decay rates separately for the important
isotopes in the two mass regions (after optimizing the
Skyrme EDF separately for each region). We also examine
the effect on β-decay half-lives of varying the Skyrme EDF
in rare-earth nuclei. Finally, in Sec. IV we discuss the
impact of our β-decay rates on r -process abundances. Sec.
V is a conclusion.

II. NUCLEAR STRUCTURE

A. The proton-neutron finite-amplitude method

The finite-amplitude method (FAM) is an efficient way
to calculate strength distributions in the random-phase
approximation (RPA) or the QRPA. Nakatsukasa et al.
first introduced the FAM to calculate the RPA response of
deformed nuclei [29] with Skyrme EDFs, and the method
has been rapidly extended to include pairing correlations
in Skyrme QRPA, both for spherical [30] and axially-
deformed nuclei [31], and to include similar correlations
in the relativistic QRPA [32]. Ref. [18] applied the same
ideas to charge-changing transitions, in particular those
involved in β decay; the resulting method is called the
pnFAM. Like the FAM implemented in Ref. [31], the
pnFAM computes strength functions for transitions that
change the K quantum number by arbitrary (integer)
amounts in spherical or deformed superfluid nuclei.

The first work with the pnFAM focused on the impact
of tensor terms in Skyrme EDFs [18]. More recently, the
authors of Ref. [33] used the method to constrain the time-
odd part of the Skyrme EDF and compute a β-decay table

that includes the half-lives of 1387 even-even nuclei. We
leave most details of the pnFAM itself to these references,
but repeat the main points here in anticipation of the
extension to odd nuclei in Sec. II B.

QRPA strength functions are related to the linear
time-dependent response of the Hartree-Fock-Bogoliubov
(HFB) mean field (see, e.g., Refs. [34, 35] for a discussion).
The static HFB equation can be written as[

H0, R0

]
= 0, (1)

where (e.g., for protons or neutrons)

R0 =

(
ρ0 κ0

−κ∗0 1− ρ∗0

)
, H0 =

(
h0 ∆0

−∆∗0 −h∗0

)
. (2)

In Eq. (2), R0 is the generalized static density (the sub-
script 0 indicates a static quantity), built from the single-
particle density ρ0 and the pairing tensor κ0 (see, e.g.,
Ref. [34]), and H0 is the static generalized mean field,
built from the static mean field h0 and the static pairing
field ∆0. The generalized mean field H0 depends on both
ρ0 and κ0 and is usually written H0[R0]. The matrices
R0 and H0 are diagonalized by a unitary Bogoliubov
transformation,

W =

(
U V ∗

V U∗

)
, (3)

which connects the set of single-particle states (created

by c†k) in which the problem is formulated to a set of

quasiparticle states (created by α†µ):(
c
c†

)
=

(
U V ∗

V U∗

)(
α
α†

)
. (4)

Thus, the transformed generalized density and mean field,

R0 ≡W†R0W , H0 ≡W†H0W , (5)

are in the quasiparticle basis and have the diagonal form

R0 =

(
0 0
0 1

)
, H0 =

(
E 0
0 −E

)
. (6)

In the pnFAM we solve the small-amplitude time-
dependent HFB (TDHFB) equation,

iṘ(t) =
[
H[R(t)] + F(t), R(t)

]
, (7)

where F(t) is a time-dependent external field that changes
neutrons into protons or vice versa. Equation (7) deter-
mines the oscillation of the generalized density around
the static solution R0 of Eq. (1); for external fields pro-
portional to a small parameter η, a first-order expansion
R(t) ≈ R0 + ηδR(t) is sufficient to describe the behavior
of the nucleus. It leads to the linear-response equation:

iδṘ(t) =
[
H0, δR(t)

]
+
[
δH(t) + F(t), R0

]
. (8)
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Here δH(t) and δR(t) are the first-order changes in the
generalized mean field and density.

If the perturbing field oscillates at a frequency ω, the
resulting generalized density can be written in the form:

δR(t) = δR(ω)e−iωt + δR†(ω)eiωt , (9)

with

δR(ω) ≡
(

0 X(ω)
−Y (ω) 0

)
, (10)

where the requirement that R(t) remain projective (R2 =
R) forces the diagonal blocks to be zero [32]. The time-
dependent generalized Hamiltonian also oscillates har-
monically, with

δH(ω) =

(
δH11(ω) δH20(ω)

−δH02(ω) −δH11(ω) .

)
, (11)

The block superscripts refer to the number of quasipar-
ticles created and destroyed by the corresponding block
Hamiltonian (cf. Refs. [30, 32]); the 20 and 02 blocks are
made up of terms proportional to α†α† and αα, respec-
tively, and the 11 and 11 blocks of terms proportional to
α†α and αα†.

Putting everything together in Eq. (8) (including the
oscillating external field F(t), which we have not written
out explicitly here), and evaluating the commutators, one
obtains the pnFAM equations [18]:

Xπν(Eπ + Eν − ω) + δH20
πν(ω)=− F 20

πν , (12a)

Yπν(Eπ + Eν + ω) + δH02
πν(ω)=− F 02

πν , (12b)

where π and ν label proton and neutron states, and Eπ
and Eν are single-quasiparticle energies. Eqs. (12) can
be put into matrix-QRPA form [30], but they are more
easily solved directly (through iteration) [18, 29, 30]. The
FAM transition strength is then just given by S(F ;ω) =
trF†δR(pn)(ω) [18, 29, 30].

B. The equal-filling approximation and the linear
response of odd nuclei

Our pnFAM code and hfbtho, the HFB code on which
it is based, require time-reversal-symmetric nuclear states
[36]. To apply the FAM to odd nuclei, the ground states
of which break time-reversal symmetry, we use the EFA,
a “phenomenological” approximation, in the words of Ref.
[19], in which the interaction between the odd nucleon and
the core are captured at least partially without breaking
time-reversal symmetry.

In odd-nucleus density-functional theory, the ground
state is typically represented in leading order by a one-
quasiparticle excitation of an even-even core, |ΦΛ 〉 =

α†Λ|Φ 〉. This state, however, produces the time-reversal-
breaking single-particle and pairing densities [19, 37]

ρkk′ = (V ∗V T )kk′ + UkΛU
∗
k′Λ − V ∗kΛVk′Λ , (13a)

κkk′ = (V ∗UT )kk′ + UkΛV
∗
k′Λ − V ∗kΛUk′Λ . (13b)

The EFA replaces the densities in (13) with new ones

that average contributions from the state α†Λ|Φ 〉 and its

time-reversed partner α†
Λ̄
|Φ 〉:

ρEFA
kk′ = (V ∗V T )kk′ +

1

2

(
UkΛU

∗
k′Λ + UkΛ̄U

∗
k′Λ̄

− V ∗kΛVk′Λ − V ∗kΛ̄Vk′Λ̄

)
,

(14a)

κEFA
kk′ = (V ∗UT )kk′ +

1

2

(
UkΛV

∗
k′Λ + UkΛ̄V

∗
k′Λ̄

− V ∗kΛUk′Λ − V ∗kΛ̄Uk′Λ̄

)
.

(14b)

Here we have assumed that the state of the even-even core
|Φ 〉 is time-reversal even. The odd-A HFB calculation
then proceeds as usual with ρ → ρEFA and κ → κEFA

[19].
The EFA appears to be an excellent approximation to

the full HFB solution for odd-A nuclei. Ref. [37] contains
calculations of odd-proton excitation energies in rare-
earth nuclei, in both the EFA and the less restrictive
blocking approximation. The EFA reproduces the full
one-quasiparticle energies to within a few hundred keV.
The approximation was given a theoretical foundation
in Ref. [19], which showed that ρEFA and κEFA can be
obtained rigorously by abandoning the usual product form
of the HFB solution and instead describing the nucleus as
a mixed state. From this point of view, the nucleus is not
represented by a single state vector |ΦΛ 〉 but rather by a

statistical ensemble with a density operator D̂ ≡ exp K̂
[38]:

D̂ = |Φ 〉〈Φ |+
∑
µ

α†µ|Φ 〉pµ〈Φ |αµ

+
1

2!

∑
µν

α†µα
†
ν |Φ 〉pµpν〈Φ |αναµ + . . . .

(15)

In Eq. (15), pµ is the probability that the excitation
α†µ|Φ 〉 is contained in the ensemble. Expectation values

are traces with D̂ in Fock space (we use ‘Tr’ for these
traces and ‘tr’ for the usual trace of a matrix),

〈A〉 = Tr[D̂Â]/Tr[D̂], (16)

so that, e.g., the particle density is

ρkk′ = Tr[D̂c†k′ck]/Tr[D̂]. (17)

An ensemble like the above is familiar from finite-
temperature HFB [39], where the quasiparticle occupa-
tions are statistical and determined during the HFB min-
imization. Ref. [19] shows that the EFA emerges from a
specific non-thermal choice of the ensemble probabilities:

pµ =

{
1, µ ∈ [Λ, Λ̄]

0, otherwise .
(18)

With these values of pµ, one finds that for an arbitrary

one-body operator Ô,

〈Ô〉o-e =
1

2
(〈Φ |αΛÔα

†
Λ |Φ〉+ 〈Φ |α

Λ̄
Ôα†

Λ̄
|Φ〉), (19)
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and the trace in Eq. (17) produces ρEFA (14a). The
formalism may also be applied in a straightforward way
to odd-odd nuclei as well by constructing an ensemble
from the proton (π) and neutron (ν) orbitals Λπ, Λ̄π, Λν ,
and Λ̄ν . Then one finds that

〈Ô〉o-o =
1

2
(〈Φ |αΛν

αΛπ
Ôα†Λπα

†
Λν
|Φ〉

+ 〈Φ |α
Λ̄ν
α

Λ̄π
Ôα†

Λ̄π
α†

Λ̄ν
|Φ〉) .

(20)

The statistical interpretation of the EFA allows us to ex-
tend the pnFAM, which is an approximate time-dependent
HFB, to odd nuclei. The thermal QRPA, described in
Refs. [40–44], generalizes Eq. (8) to a statistical density

operator D̂ = exp K̂ and a thermal ensemble; here we do
the same with the non-thermal ensemble in Eq. (18).

Of the matrices that enter the TDHFB equations (7),
only the generalized density R is fundamentally altered in
the EFA; the external field is unaffected and the ground-
state Hamiltonian matrix H0 assumes its usual form [19].

But the replacement 〈Φ | Â |Φ〉 by Tr[D̂Â]/Tr[D̂] has im-
plications for both the static density R0 and the time-
dependent perturbation δR(t). In the usual HFB, the
definition of the generalized density in the quasiparticle
basis [34, 35],

R =

(
〈α†α〉 〈αα〉
〈α†α†〉 〈αα†〉

)
, (21)

leads to the form of R0 in Eq. (6). In the EFA ensemble,
however, the expectation values 〈α†α〉 and 〈αα†〉 are [19]:

〈α†ναµ〉 = δµνfµ , (22a)

〈ανα†µ〉 = δµν(1− fµ) , (22b)

leading to an R0 with the more general form

REFA
0 =

(
f 0
0 1− f

)
. (23)

The matrix f is diagonal, with factors fµ related to the
pµ (18) and taking on the values

fµ =

{
1
2 , µ ∈ [Λ, Λ̄],

0, otherwise.
(24)

The use of an ensemble also changes the way we calcu-
late the response δR(t). Following Ref. [40], we consider

the evolution of the density operator under a unitary
transformation U(t) = exp[iηŜ(t)]. The operator Ŝ(t) is
undetermined, but Hermitian. To first order in η, the
ensemble evolves as

D̂(t) ' [1 + iηŜ(t)]D̂(0)[1− iηŜ(t)]

≡ D̂(0) + ηδD̂(t),
(25)

with δD̂(t) = −i[D̂, Ŝ(t)]. The cyclic invariance of the

trace [19] guarantees that Tr[δD̂(t)] = 0. The time evo-

lution of D̂(t) determines the evolution of δR(t), e.g.,
via

〈α†α〉 → Tr[D̂(t)α†α]/Tr[D̂(0)]

= 〈α†α〉 − iη〈
[
Ŝ(t), α†α

]
〉 ,

(26)

so that δR is no longer block anti-diagonal as in Eq. (10).
Instead it has the form

δR(t) ≡
(
Pπν(t) Xπν(t)
−X∗πν(t) −P ∗πν(t)

)
, (27)

with P (t) and X(t) proportional to matrix elements of

Ŝ(t):

Pπν(t) ≡ i(fν − fπ)S11
πν(t), (28a)

Xπν(t) ≡ i(1− fν − fπ)S20
πν(t). (28b)

(The matrices S11 and S20 arise from the quasiparticle

representation of the one-body operator Ŝ(t); see, e.g.,
the Appendix of Ref. [34].) When the external field is
sinusoidal, we have

Pπν(t) = Pπν(ω)e−iωt +Q∗πν(ω)eiωt, (29a)

Xπν(t) = Xπν(ω)e−iωt + Y ∗πν(ω)eiωt, (29b)

and, finally, the frequency-dependent perturbed density
for an odd nucleus in the EFA is

δR(ω) =

(
Pπν(ω) Xπν(ω)
−Yπν(ω) −Qπν(ω)

)
. (30)

The use of the EFA ensemble doubles the number of
pnFAM equations, from two to four:

Xπν(ω)[(Eπ + Eν)− ω] = −(1− fν − fπ)[δH20
πν(ω) + F 20

πν ], (31a)

Yπν(ω)[(Eπ + Eν) + ω] = −(1− fν − fπ)[δH02
πν(ω) + F 02

πν ], (31b)

Pπν(ω)[(Eπ − Eν)− ω] = −(fν − fπ)[δH11
πν(ω) + F 11

πν ], (31c)

Qπν(ω)[(Eπ − Eν) + ω] = −(fν − fπ)[δH11
πν(ω) + F 11

πν ]. (31d)
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Equations (31) are coupled through the dependence of
the Hamiltonian matrix δH(ω) on the perturbed density
δR(ω). Besides the two ‘core’ equations for X and Y ,
which are modified from Eqs. (12), the EFA pnFAM
includes equations for the matrices P (31c) and Q (31d),
which describe transitions of the odd quasiparticle(s).

The EFA pnFAM equations are actually no more dif-
ficult to solve than the usual ones. Eqs. (31) contain
the additional matrices labeled 11 and 11, but, because
we solve for H iteratively in the single-particle basis and
then transform to the quasiparticle basis [18], we multiply
by the Bogoliubov matrix W in Eq. (3) to obtain these
additional matrices. A few more iterations may be needed
to solve the linear response equations, but that does not
significantly increase computation time.

We compute the strength function in odd nuclei in
the same way as in even ones, but because δR(ω) is not
block anti-diagonal, the valence nucleon(s) affects S(F ;ω)
explicitly through P and Q, as well as implicitly through
X and Y :

S(F ;ω) =
∑
πν

[
F 20∗
πν Xπν(ω) + F 02∗

πν Yπν(ω)

+ F 11∗
πν Pπν(ω) + F 11∗

πν Qπν(ω)
]
.

(32)

Equation (32) can be obtained directly from the EFA

expectation value Tr[F̂ †D̂(t)]/Tr[D̂(0)] (cf. Refs. [18, 29,

30]) by requiring that δD̂(t) vary sinusoidally. With the
EFA ensemble, S(F ;ω) is simply the average transition
strength from the equally occupied odd-A ground states

α†Λ|Φ 〉 and α†
Λ̄
|Φ 〉:

S(F ;ω) =
1

2
[SΛ(F ;ω) + SΛ̄(F ;ω)] . (33)

(See Eq. (19).) The two EFA states include the polar-
ization of the core due to the valence nucleon, at least
partially [19].

In Fig. 1, we plot the total Gamow-Teller strength
function for the proton-odd nucleus 71Ga. (In our EFA
calculation, 71Ga has a slight deformation β2 = −0.007;
our methods for extracting lab-frame transition strength
from a deformed intrinsic nuclear ensemble are presented
in the appendix). The top panel compares the strength
functions obtained with the EFA-pnFAM and the even-
even pnFAM, artificially constrained to obtain the correct
odd particle number as suggested in Ref. [45]. The two
calculations apply the same Skyrme energy-density func-
tional (SV-min) without proton-neutron isoscalar pairing,
but begin with distinct HFB calculations. The EFA cal-
culation clearly includes important one-quasiparticle tran-
sition strength near EQRPA = 1 MeV that is not present
in the other calculation. The bottom panel compares the
EFA-pnFAM strength, this time as a function of excita-
tion energy in the daughter nucleus (shifted downward
in energy by E0(pn) ' 749 keV—see Eq. (38) and the
discussion around Eq. (34)) with a finite Fermi system
calculation from Ref. [46]. Although the two calculations
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(b)Borzov et al. (1995)

Figure 1. (Color online) Top panel: Gamow-Teller transition
strength for 71Ga, computed with the EFA-pnFAM (red, solid
lines) and the even-even pnFAM with the underlying HFB
state constrained to have the correct odd average particle
number, as in Ref. [45] (green, dashed lines) . Bottom panel:
The same EFA pnFAM strength function as in the top panel,
plotted vs. excitation energy Eex = EQRPA −E0(pn) (see Eqs.
(34) and (38)), alongside the strength function from Ref. [46]
(blue, dotted line).

do not yield identical strength functions, they clearly
mirror one another, and both include low-energy one-
quasiparticle strength.

Finally, the odd-A formalism of Ref. [47], used by the
authors of Ref. [17], is an approximate version of ours. We
would recover similar expressions to those in Ref. [47] by
substituting a separable Gamow-Teller interaction for the
Skyrme interaction and dropping terms beyond leading
order in Pπν and Qπν .

C. Application to β decay in deformed nuclei

Ref. [18] discusses the calculation of β-decay rates from
pnFAM strength functions at length, so we make only a
few important points here. First, we treat the quenching
of Gamow-Teller strength by using an effective value
gA = −1.0 for the axial-vector coupling constant, in both
allowed and first-forbidden β-decay transitions. This
renormalization is slightly different from the that in Ref.
[33], where only Gamow-Teller transitions were quenched.
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Second, we apply the Q-value approximation of Ref. [7]:

Qβ = ∆Mn−H + λn − λp − E0(pn) . (34)

Here ∆Mn−H is the neutron-Hydrogen mass difference,
the λq are Fermi energies, and E0(pn) is the energy of
the lowest two-quasiparticle state for even-even nuclei, or
the smallest one-quasiparticle transition energy for odd
nuclei. We approximate E0(pn) with one-quasiparticle
energies from the HFB solution; this choice affects only
Qβ , not the size of the QRPA energy window, which is
determined as in Ref. [18]:

Emax
QRPA = Qβ + E0(pn) = λn − λp + ∆Mn−H . (35)

Our procedure for going from the intrinsic frame to the
lab frame, generalized to include the odd-A EFA ensemble,
is described in the appendix.

III. HALF-LIFE CALCULATIONS

A. Identification of important nuclei

To identify the most important β-decay rates for weak
and rare-earth r -process nucleosynthesis, we turn to two
sets of nucleosynthesis sensitivity studies. Ref. [4] reviews
sensitivity studies for main r processes; our studies here
proceed as described in Refs. [5, 48, 49] and Section 5.2
of the review, Ref. [4].

The rare-earth peak is formed in a main r process, so
for our first set of studies we begin with several choices
of astrophysical conditions that produce a good match
to the solar r -process pattern for A & 120. These condi-
tions include hot and cold parameterized winds, similar
to those that may occur in core-collapse supernovae or
accretion disk outflows, along with mildly heated neu-
tron star merger ejecta. We run a baseline simulation for
each astrophysical trajectory (i.e. condition) chosen, and
then repeat it with individual β-decay rates changed by
a small factor, K. Individual β-decay half-lives in the
rare-earth region tend to produce local changes to the
final abundance pattern that influence the size, shape,
and location of the rare-earth peak. Thus we compare
the final abundances with those of the baseline simulation
by using a local metric, flocal, defined as:

flocal(Z,N) = 100×
180∑

A=150

|YK(A)− Yb(A)| , (36)

where Yb is the final baseline isotopic abundance, and YK
is the final abundance in a simulation in which the β-
decay rate of the nucleus with Z protons and N neutrons
is multiplied by a factor K. Results for six studies, in
which individual β-decay rates were changed by a factor of
K = 5, with hot, cold and neutron star merger r -process
conditions appear in Fig. 2. The largest impacts on the
final abundances occur near the peak (A ∼ 160), although

50

55

60

65

70

P
ro

to
n
s

hot inc hot dec

50

55

60

65

70

P
ro

to
n
s

cold inc cold dec

90 95 100 105 110 115 120
Neutrons

50

55

60

65

70

P
ro

to
n
s

nsm inc

90 95 100 105 110 115 120
Neutrons

nsm dec

Figure 2. (Color online) Influential β-decay rates in the rare-
earth region for hot, cold, and merger r -process conditions.
The hot conditions are parameterized as in Ref. [50] with
entropy s/k = 200, dynamical timescale τdyn = 80 ms, and
initial electron fraction Ye = 0.3; the cold conditions are
parameterized as in Ref. [51] with s/k = 150, τdyn = 20 ms,
and Ye = 0.3; and the merger conditions are from a simulation
of A. Bauswain and H.-Th. Janka, similar to that of Ref.
[52]. We performed two sensitivity studies for each trajectory,
looking at the results of increases and decreases to the rates
by a factor of K = 5. In order of lightest to darkest, the
shades are: white (flocal = 0), light blue (0.1 < flocal ≤ 0.5),
medium blue (0.5 < flocal ≤ 1.0), dark blue (1 < flocal ≤ 5),
and darkest blue (flocal > 5).

which nuclei are most sensitive depends a little on the
astrophysical conditions chosen.

In the second set of studies, focused on the A ∼ 80
peak, we start with a baseline weak r -process simulation
that produces an abundance pattern with a good match
to the solar pattern for 70 < A < 110, as identified
in Ref. [49]. Here we choose conditions qualitatively
similar to those found in the outflows of neutron star or
neutron star-black hole accretion disks [53, 54], which are
attractive candidate sites for the weak r process. We run a
sensitivity study as described above, varying each β-decay
lifetime in turn by a factor of K = 10 and comparing
the result to the baseline pattern. Unlike in the rare-
earth region, where the influence of an individual β-decay
rate is primarily confined to the surrounding nuclei, rates
in the peak regions can produce global changes to the
pattern [5] and can influence how far the process proceeds
in A. Thus, in this study we compare each pattern to the
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Figure 3. (Color online) Influential β-decay rates in the A ∼ 80
region for weak r -process conditions, parameterized as in Ref.
[50] with entropy per baryon s/k = 10, dynamic timescale
τ = 200 ms, and starting electron fraction Ye = 0.3. The
shaded boxes show the global sensitivity measures Fglobal

resulting from β-decay rate increases of a factor of K = 10.
Stability is indicated by crosses; the β-decay rates of nuclei to
the right of stability and to the left of the solid gray line have
all been measured and so are not included in the sensitivity
analysis.

baseline with a global sensitivity measure Fglobal:

Fglobal = 100×
∑
A

|XK(A)−Xb(A)| , (37)

whereXb(A) andXK(A) are the final mass fractions of the
baseline simulation and the simulation with the β-decay
rate changed, respectively. Figure 3 shows representative
results. The pattern of most influential β-decay lifetimes
is similar to that identified for a main r process [5]: the
important nuclei tend to be even-N isotopes along either
the r -process path or the decay pathways of the most
abundant nuclei.

We select isotopic chains with the highest sensitivity
measures, according to Figs. 2 and 3, and carefully re-
calculate their β-decay half-lives. The selected chains
encompass 70 nuclei in the rare-earth region and 45 nuclei
in the A ∼ 80 region 1.

B. Selection and adjustment of Skyrme EDFs

Our density-dependent nucleon-nucleon interactions are
derived from Skyrme EDFs. Refs. [56–58] contain compre-
hensive reviews of the properties of Skyrme functionals;
Refs. [18, 33] contain discussions of the most important

1 Measured half-lives of 76,77Co and 80,81Cu were recently reported
in Ref. [55]. We still include these nuclei in our calculations.

terms of the EDF for β decay. In our calculations, we
largely apply the Skyrme EDF “as is,” but adjust a few
important parameters that affect ground-state proper-
ties and β-decay rates. Among these are the proton
and neutron like-particle pairing strengths, Vp and Vn;
the spin-isospin coupling constant, Cs10; and the proton-
neutron isoscalar pairing strength, V0. We tune these
parameters separately for each mass region; the coupling
constants that multiply the remaining ‘time-odd’ terms
of the Skyrme EDF are set either to values determined
by local gauge invariance [58] or to zero. Though our
pnFAM code is able to handle tensor interactions [18],
none of the EDFs we use here have them nonzero tensor
couplings CFt or C∇st (in the notation of Refs. [18] and
[59]).

1. Multiple Skyrme EDFs for the rare-earth elements

The pnFAM’s efficiency significantly reduces the com-
putational effort in β-decay calculations. The smaller
computational cost makes repeated calculations feasible
and allows us to examine the extent to which β-decay
predictions depend on the choice of Skyrme EDF. Here
we use four very different Skyrme functionals: SkO′ [60],
SV-min [61], unedf1-hfb [62], and SLy5 [63]. SkO′, has
already been applied to the β decay of spherical nuclei
[7]; it was also chosen for the recent global calculations
of Ref. [33]. SV-min, and unedf1-hfb are more recent;
the latter is a re-fit of the unedf1 parameterization [64],
without Lipkin-Nogami pairing. SLy5 tends to yield less-
collective Gamow-Teller strength than some other Skyrme
parameterizations [65].

We do most of our calculations in a 16-shell harmonic os-
cillator basis, a choice that further reduces computational
time from that associated with the 20-shell basis applied
in the unedf parameterizations of Refs. [64, 66, 67]. Be-
cause unedf1-hfb was constructed with hfbtho in a
20-shell basis, however, we use this larger basis for that
particular functional. We determine the nuclear deforma-
tion by starting from three trial shapes (spherical, prolate,
and oblate) and selecting the most bound result after the
HFB energy and deformation have been determined self-
consistently. We obtain the mean-field ground states of
odd nuclei within the EFA, beginning from a reference
even-even solution and then computing odd-A solutions
for a list of blocking candidates reported by hfbtho. For
odd-odd nuclei, we try all Np ×Nn proton-neutron con-
figurations to take into account as many odd-odd trial
states as are practical. Again, we select the most-bound
quasiparticle vacuum from among these candidates.

Returning to the functionals themselves: to adjust the
pairing strengths and coupling constant Cs10, we start
from the published parameterizations.2 Then we fix the

2 With a few exceptions: We use the same nucleon mass for proton
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Table I. OES indicators ∆̃(3) for the even-even nuclei used to
fit the pairing strengths Vp and Vn.

Z N ∆̃
(3)
p (MeV) ∆̃

(3)
n (MeV)

52 84 0.79096± 0.00464 0.75491± 0.0024
54 86 0.90975± 0.01527 0.87276± 0.0022
56 90 0.92059± 0.01093 0.92025± 0.0204
58 90 0.99503± 0.00975 0.97777± 0.0092
60 92 0.68605± 0.01176 0.77895± 0.0298
62 94 0.57543± 0.02887 0.67368± 0.0042
62 96 0.55867± 0.05021 0.58183± 0.0049
64 96 0.57608± 0.00276 0.67969± 0.0018
66 98 0.53795± 0.00277 0.67866± 0.0016
68 100 0.55392± 0.00312 0.64734± 0.0017
68 102 0.50391± 0.03646 0.60222± 0.0021
70 104 0.52725± 0.00300 0.53483± 0.0017
72 106 0.62796± 0.00168 0.63470± 0.0016
72 108 0.62486± 0.00388 0.57799± 0.0022
74 110 0.55784± 0.00199 0.66483± 0.0008
74 112 0.60795± 0.01224 0.70165± 0.0013
74 114 0.67773± 0.03607 0.79595± 0.0227
76 116 0.78248± 0.01110 0.83218± 0.0020
78 118 0.75364± 0.00128 0.88139± 0.0009

like-particle pairing strengths Vp and Vn by comparing
the average HFB pairing gap to the experimental odd-
even staggering (OES) of nuclear binding energies for
the small set of test nuclei listed in Table I.3 Following
the procedure in Refs. [64, 66, 67], we adjust the HFB
pairing gap to match the indicator (e.g., for neutrons)

∆̃
(3)
n (Z,N) = 1

2 [∆
(3)
n (Z,N + 1) + ∆

(3)
n (Z,N −1)] for even-

even nuclei. We obtain the usual three-point indicators
∆(3) [69, 70] from mass excesses in the 2012 Atomic Mass
Evaluation [71, 72]—after using the prescription of Ref.
[72] to remove the electron binding [66] from the atomic
binding energies [73]. After finding pairing strengths

that correspond to one-σ uncertainties in ∆̃(3)(treating
asymmetric uncertainties as in Ref. [74]), we find best-fit
values Vp and Vn for our sample set of nuclei. For all EDFs
except SV-min, we choose mixed volume-surface pairing,
with α = 0.5 as in Ref. [18]. SV-min’s pairing piece was
originally fixed along with the rest of the functional, but in
the HF+BCS framework. We therefore re-fit the pairing
strengths to better represent ground state properties with
htbtho, keeping the coefficient that specifies density
dependence at its value of α = 0.75618 from Ref. [61].

Next, we determine an appropriate value for Cs10 by

and neutrons, unlike Ref. [61], which originally determined SV-
min, and we employ the SLy5 parameterization written into
hfbtho, which differs from that published in Ref. [63]. The
hfbtho values are the same as those of Ref. [68], but t0 =
−2483.45 MeV fm3 instead of −2488.345 MeV fm3.

3 The unedf1-hfb pairing strengths were originally fit simultane-
ously with the rest of the functional (with hfbtho), so we do not
re-adjust the unedf1-hfb pairing strengths.
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Figure 4. (Color online) Gamow-Teller strength functions in
150Pm for SkO′ (red dashed line, with Cs

10 fit to the GTR
energy in 208Pb) and SkO′-Nd (purple solid line, with Cs

10 fit
to the GTR energy in 150Nd). The vertical line marks the
measured GTR energy in 150Pm.

comparing the excitation energy,

Eex = EQRPA − E0(pn) , (38)

of the Gamow-Teller giant resonance (GTR) to an
experimentally-measured value in a nearby nucleus. This
constant Cs10 is the same one we adjusted to GTR data
in the past [18], following the work of Ref. [59]; Ref. [33]
recently showed that it is the only particle-hole constant
that is truly important for β decay. In these A ' 160
nuclei, we use the resonance associated with the doubly-
magic nucleus 208Pb, with Eex = 15.6± 0.2 MeV in the
odd-odd daughter 208Bi [75], to fix it. We also use the
deformed rare-earth nucleus 150Nd (Eex ' 15.25 MeV
in 150Pm [76]), to fix an alternative value Cs10 in SkO′,
calling the resulting functional SkO′-Nd. The two fits
result in values of Cs10 that differ by nearly 20%. Figure 4
compares the Gamow-Teller strength functions produced
by the two values in 150Pm. Not only are the resonances
at different places, but there is also a big difference in the
strength functions at the low energies that are important
for β decay.

To adjust the T = 0 pairing, we select short-lived
even-even isotopes with Z = 54, 56, 58, 60, 62, and 64
with β-decay rates that have been measured reasonably
precisely, according to Ref. [77]; the 18 nuclei we use are
listed in Table II. For each nucleus, we attempt to find a
pairing strength V0 that reproduces the measured half-life.
If a calculated half-life is too short, even when V0 = 0,
we remove the nucleus from consideration; this prevents
our fit from being influenced by especially long-lived or
sensitive isotopes. After determining an approximate
V0 6= 0 for each nucleus (where possible), we compute the
average of these values, weighing fast decays more than
slow ones (since the very neutron-rich r -process nuclei
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Table II. Isotopes used to fit the proton-neutron isoscalar
pairing to experimental half-lives from Ref. [77]. Labels a–e in
the “Excluded?” column note which isotopes were excluded
from the fits for the functionals (a) SkO′, (b) SkO′-Nd, (c)
SV-min, (d) SLy5, and (e) unedf1-hfb, as discussed in the
text.

Z N Element T1/2(expt) Excluded?
54 88 142Xe 1.23 b d e
54 90 144Xe 0.388 b d e
54 92 146Xe 0.146 d e
56 88 144Ba 11.5 a b d e
56 90 146Ba 2.22 b d e
56 92 148Ba 0.612 e
58 90 148Ce 56 b c d e
58 92 150Ce 4 d e
58 94 152Ce 1.4 d e
60 92 152Nd 684 a b c d e
60 94 154Nd 25.9 b c d e
60 96 156Nd 5.06 b d e
62 96 158Sm 318 a b c d e
62 98 160Sm 9.6 e
62 100 162Sm 2.4 e
64 98 162Gd 504 b e
64 100 164Gd 45 e
64 102 166Gd 4.8 e

are short-lived), with weight factors

wi =
1

log10

[
T expt

1/2 (i)/35 ms
] . (39)

The fit is fairly insensitive to the weighting half-life T0 =
35 ms; with T0 = 25 ms the fit values of V0 change by
' 2%.

Table III lists the values for V0 that we end up with
and the number of nuclei incorporated into the fit for each
EDF. We find that none of the EDFs predict long-enough
half-lives to fix V0 6= 0 for the entire set of test nuclei; SkO′

(15 of 18) and SV-min (14) come the closest, while SLy5
(only 6) and unedf1-hfb (zero) come less close and are
thus poorly constrained by β decay. (We discuss SkO′-Nd
momentarily.) One cannot really have confidence in fits
(SLy5, unedf1-hfb) that take into account less than half
of the available data, but Fig. 5 provides at least a partial
explanation. It compares our calculated Q values (34) to
measured values [72] and those of the finite-range droplet
model in Ref. [6]. Our Q values are almost uniformly
larger than experiment (those of Ref. [6] are generally
smaller), and those of SLy5 and unedf1-hfb are much
larger. Because the β-decay rate is roughly proportional
to Q5 [78], a Q value that is too large will lead to an
artificially short half-life. The T = 0 pairing only makes
the half-lives shorter.

The Q-value fitting difficulties, however, do not mani-
fest themselves in actual half-life predictions as much as
they might, even with SLy5 and unedf1-hfb. Figure 6
compares our calculations to experimental measurements
in the 18 test nuclei used to fit V0 (listed in Table II)

Table III. Summary of proton-neutron T = 0 pairing fit, includ-
ing the amount of test data in each fit (N) and the resulting
pairing strength (V0).

EDF N V0

SkO′ 15/18 −320.0
SV-min 14/18 −370.0
SkO′-Nd 9/18 −300.0
SLy5 6/18 −240.0
unedf1-hfb 0/18 −0.0
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Figure 5. (Color online) The difference between calculated and
experimental β-decay Q values, with SkO′ (circles), SV-min
(diamonds), SLy5 (squares), and unedf1-hfb (triangles). Q
values of Ref. [6] (crosses) also appear.

and an additional 18 rare-earth nuclei (listed in Table
IV). Our results display the same pattern as many others
(e.g., Refs. [17, 45, 79]), reproducing half-lives of short-
lived nuclei better than those of longer-lived ones. The
Q-value errors discussed previously show up as systematic
biases in our half-life predictions (particularly with SLy5
and unedf1-hfb, for which half-lives of long-lived nuclei
are artificially reduced). The shortest-lived nuclei, how-
ever, are not so poorly represented even with SLy5 and
unedf1-hfb; these half-lives are still systematically short
but by less than a factor of about two (the shaded region
in Fig. 6 covers a factor of 5 relative to measured values).
The systematic problems in the two functionals based on
SkO′ are barely noticeable. SV-min, which performs the
best overall, is somewhere in the middle. Because all the
functionals do well with the short-lived isotopes, we use
them all for our rare-earth calculations. The lifetimes
we get with unedf1-hfb serve as lower bounds on our
predictions.

Finally, although SkO′-Nd, the SkO′ variant that re-
produces the GTR in 150Nd, fails in 9 of the 18 nuclei
used for fitting, its predictions do not differ significantly
from those of SkO′. Figure 4 shows increased low-energy
Gamow-Teller transition strength as Cs10 is reduced to
reproduce the rare-earth GTR. This increased low-lying
strength reduces β-decay half-lives so that a smaller pair-
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Table IV. The 18 even-even rare-earth nuclei in Fig. 6 that
are not included in the EDF fitting. Experimental half-lives
are from Ref. [77].

Z N Element T1/2(expt)
50 84 134Sn 1.05
50 86 136Sn 0.25
52 82 134Te 2508
52 84 136Te 17.63
52 86 138Te 1.4
54 84 138Xe 844.8
54 86 140Xe 13.6
56 86 142Ba 636
56 94 150Ba 0.3
58 90 146Ce 811.2
62 90 156Sm 33840
66 102 168Dy 522
68 106 174Er 192
70 108 178Yb 4440
70 110 180Yb 144
72 112 184Hf 14832
72 114 186Hf 156
74 116 190W 1800
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Figure 6. (Color online) Performance of fit functionals in
even-even rare-earth nuclei. Filled symbols mark nuclei used
to fit the T = 0 pairing. The experimental data are from Ref.
[77].

ing strength is required (see Table III), with no loss of
quality.

2. Weak r-process elements

To calculate the half-lives of A ' 80 nuclei, we elect
to apply the functional from the previous section that

Table V. A ' 80 nuclei used to fit the like-particle pairing
strengths. We again use data from Ref. [72] to compute the

experimental indicators ∆̃(3). We set ∆̃(3) = 0 for nuclei with
Z = 28 or N = 50.

Z N ∆̃
(3)
p (MeV) ∆̃

(3)
n (MeV)

24 32 1.26354 1.01634
26 38 1.17387 1.29269
30 44 1.01199 1.41433
32 46 1.13235 1.24835
32 48 0.99635 1.17779
34 52 1.17100 0.78968
36 54 1.15773 0.83990
36 56 1.18243 0.90644
38 58 1.11437 0.93063
38 60 0.99089 0.85591
42 62 0.99786 0.95077
28 38 0.00000 1.20975
32 50 0.95788 0.00000
28 50 0.00000 0.00000

best reproduces measured half-lives. Both Fig. 6 and the
metrics in Ref. [17] point to SV-min as the best EDF.
We adjust SV-min for these lighter nuclei in much the
same way as discussed in the previous section. We fit the
like-particle pairing to calculated OES values (see Table
V), this time employing the fitting software pounders [80]
to search for the best values of Vp and Vn. We provide
pounders with the weighted residuals

Xi = wi

[
∆̄i(Vp, Vn)− ∆̃

(3)
i

]
, (40)

where ∆̄i is the average HFB pairing gap for the ith
nucleus and the weight factor wi is 1 for non-magic nuclei
and 10 for magic ones. The search yields Vp = −361.0
MeV fm3 and Vn = −320.9 MeV fm3. We adjust the
coupling constant Cs10 to the GTR in a lighter doubly-
magic nucleus, 48Ca (Eex = 10.6 MeV in 48Sc [81]).

Finally, as before, we adjust the T = 0 pairing strength
to reproduce measured half-lives of even-even nuclei, now
with A ' 80 (see Table VI). In this region of the isotopic
chart the fit is complicated by the presence of both proton
and neutron closed shells (see Fig. 3), so we include Z = 28
and N = 50 semi-magic nuclei in the fit. Figure 7 shows
the impact of the T = 0 pairing on half-lives and in
particular in the difference in the effect between non-
magic nuclei (solid lines) and semi-magic nuclei (dashed
lines). We search for distinct values of V0 for these two
cases, finding V0(nm) = −353.0 MeV fm3 for non-magic
nuclei and V0(sm) = −549.0 MeV fm3 is for our set of
semi-magic nuclei.

The top panel of Fig. 8 shows the results of these
adjustments, comparing calculated β-decay half-lives of
even-even (left panel) and singly-odd (right) nuclei with
measured values [82], for nuclei with 22 < Z < 36 and
T1/2 < 1 day. The bottom panel shows the same compari-
son for the finite-range droplet model (FRDM) calculation
of Ref. [17]. The two sets of results are comparable, but
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Table VI. Open-shell (top) and semimagic (bottom) even-even
A ' 80 nuclei whose half-lives are used to adjust the proton-
neutron isoscalar pairing. Experimental half-lives are from the
ENSDF [82].

Z N Isotope T1/2 (s)
22 38 60Ti 0.022
24 40 64Cr 0.043
26 44 70Fe 0.094
30 52 82Zn 0.228
32 52 84Ge 0.954
34 54 88Se 1.530
36 60 96Kr 0.080
28 46 74Ni 0.680
28 48 76Ni 0.238
30 50 80Zn 0.540
32 50 82Ge 4.560
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Figure 7. (Color online) Impact of T = 0 pairing on β-decay
half-lives, both for non-magic (solid lines) and semi-magic
(dashed lines) nuclei. The shaded region marks agreement
between our calculation and measured half-lives [82] to within
a factor of two.

those of Ref. [17] have a clear bias in even-even nuclei. A
metric defined in Ref. [17],

ri = log10

[
T calc

1/2 (i)

T expt
1/2 (i)

]
. (41)

captures the bias. The mean and RMS deviation of
the tenth power of ri, called M10

r and Σ10
r , quantify the

deviation between calculation and experiment: A value
M10
r = 2 would signify that calculations produce half-

lives that are too long by a factor of two, on average.
Our calculated rates yield M10

r = 1.32 in even-even nuclei
while those of Ref. [17] give M10

r = 3.55. For the standard
deviation, our rates yield Σ10

r = 5.14, vs. 7.50 for those
of Ref. [17]. Thus, we indeed do measurably better in
even-even nuclei. Our results in odd-A nuclei are worse
than those of Ref. [17], however; we obtain M10

r = 2.71
(vs. 0.95) and Σ10

r = 11.61 vs. (6.46). The two sets of
calculations are comparable for short-lived odd-A nuclei,
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Figure 8. (Color online) Performance of our SV-min calcu-
lations (top panels) and the FRDM calculations of Ref. [17]
(bottom panels) for nuclei with 22 < Z < 36 and T1/2 ≤ 1 day.
Left panels show the ratio of calculated to measured half-lives
in even-even nuclei; right panels show the ratio in odd-A nuclei.
Filled circles in the upper-left panel denote even-even nuclei
used to fit the T = 0 proton-neutron pairing. The shaded
horizontal band marks agreement to within a factor of five,
and the white background on the left side marks nuclei with
measured half-lives that are shorter than one second.

however: we get M10
r = 1.11 vs. 0.96 and Σ10

r = 2.48 vs.
2.21 for isotopes with T1/2 ≤ 1 s.

C. Results near A = 160

Guided by the sensitivity studies in Fig. 2, we iden-
tify 70 rare-earth nuclei, all even-even or proton-odd,
with rates that strongly affect r -process abundances near
A = 160. (Neutron-odd nuclei do not significantly af-
fect the r process since they quickly capture neutrons to
form even-N isotopes [1].) Figures 9 and 10 present new
calculated half-lives in four isotopic chains, with even-Z
isotopes in Fig. 9 and odd-Z isotopes in Fig. 10. The top
panels of these figures include predictions with all five
adjusted Skyrme EDFs, and the bottom panels compare
our calculations to measured values [82] and the results
of previous QRPA calculations [17, 33, 83] where they
are available. Our calculations span the (narrow) range
of predicted half-lives in these isotopic chains, with SLy5
and unedf1-hfb predicting the shortest half-lives for the
most neutron-rich isotopes, as one could expect from the
analysis of Sec. III B 1. While the unedf1-hfb half-lives
are uniformly short, however, those of SLy5 actually are
actually the longest predictions (and the closest to mea-
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Figure 9. (Color online) Top panels: Half-lives for nuclei
in the Ce (Z = 58, left) and Nd (Z = 60, right) isotopic
chains, calculated with the Skyrme EDFs described in the
text. Symbols correspond to the same EDFs as in Fig. 6.
Bottom panels: Calculated half-lives of Refs. [17] (×), [33] (+),
and [83] (?), measured half-lives [82] (circles), and the range
of half-lives reported in this paper (shaded region).

sured values) for nuclei nearer to stability. The variability
of our half-life predictions in Figs. 9 and 10 is typical of
all 70 nuclei in the calculation. The longest and shortest
calculated half-lives for any nucleus in our set differ by
a factor ranging from about 1.9 to 3.3, and this interval
does not depend strongly on whether a nucleus has an
even or odd number of protons.

The results of Refs. [17, 33, 83] are actually fairly similar
to ours, spanning roughly the full range range of our
predicted values in Fig. 9. (Neither Ref. [33] nor [83])
report half-lives for odd-Z nuclei and so cannot be a part
of Fig. 10.) The half-lives of Ref. [33] are close to our
own SkO′ half-lives, a result that is unsurprising given
that the EDF in that paper is a modified version of SkO′

(and that we use the same pnFAM code). The half-lives
of Ref. [17] lie, for the most part, right in the middle of
our predictions and follow those of SV-min fairly closely.
Finally, Fang’s recent calculations [83] yield relatively
short half-lives, shorter than even those of unedf1-hfb
most of the time. Still, the band of predicted half-lives
is relatively narrow among these three calculations even
in the most neutron-rich nuclei. Ref. [33] points out that
despite their differences, most global QRPA calculations
produce comparable half-lives. Our results in both A ' 80
and A ' 160 nuclei support this observation.

Figures 9 and 10 (as well as Fig. 11, discussed mo-
mentarily) show that the overall pattern of β decays in
the A ' 160 region does not depend much on whether
an element has an even or odd number of protons. As
mentioned above, the variability in predictions is approxi-
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Figure 10. (Color online) Top panels: Half-lives for nuclei
in the Cs (Z = 55, left) and La (Z = 57, right) isotopic
chains, calculated with the Skyrme EDFs described in the
text. Symbols correspond to the same EDFs as in Figs. 6
and 9. Bottom panels: Calculated half-lives from Ref. [17]
(×) superimposed upon the range of half-lives reported in this
paper (shaded region).

mately equal for these two classes of nuclei, and we see
in Fig. 10 that the calculations of Ref. [17] continue to
lie toward the middle of our predictions. We also find
that our calculations for both even-even and odd-Z nuclei
predict smoothly-decreasing in half-lives (on a logarithmic
scale) with increasing neutron number. In this respect
our calculations differ slightly from those of Ref. [17], the
results of which are more variable (a fact most easily seen
in Fig. 10).

Finally, we have examined the impact of first-forbidden
β decay on half-lives of rare-earth nuclei. Figure 11 shows
that in heavier nuclei forbidden decay makes up between
10 and 40 percent of the total decay rate. The percentage
generally increases with A.

D. Results near A = 80

Following the weak r -process sensitivity study in Fig.
3, we present new half-lives for 45 A ' 80 nuclei in Fig.
12, comparing our results to those of Refs. [17, 33]. Not
surprisingly, in light of Fig. 8, our calculated half-lives
(circles) are often slightly shorter than those of Ref. [17]
(crosses). They are also similar to those of Ref. [33], which
used the same pnFAM code for even-even nuclei. We have
also compared our A ' 80 half-lives to those of the QRPA
calculations in Ref. [79], finding very similar results for
the few isotopic chains discussed both here and there.

One interesting feature of our calculation is that the
half-lives of 85,86Zn, 89Ge, and (to a lesser extent) 90As are
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Figure 11. (Color online) Impact of first-forbidden β transi-
tions in rare-earth nuclei that are important for the r -process
nuclei, with the Skyrme EDF SV-min.

long compared to those of Ref. [17]. The top panel of Fig.
13, which plots our calculated quadrupole deformation β2

for A ' 80 nuclei, suggests these longer half-lives are at
least partially due to changes in ground-state deformation.
The Zn isotopes switch from being slightly prolate to
oblate near 86Zn (N = 56), while Ge and As isotopes
do the same near N = 57. Our calculations find 89Ge
to be spherical and situated between two isotopes with
β2 ∼ ±0.17. The authors of Ref. [17] appear to force
83−90Ge to be spherical.

The bottom panel of Fig. 13 shows the impact of first-
forbidden β decay in this mass region; together with the
top panel it connects negative-parity transitions with
ground-state deformation. As discussed in Ref. [84], first-
forbidden contributions to β-decay rates are small, except
in the oblate transitional nuclei discussed above. These
results largely agree with those of the recent global calcu-
lation in Ref. [33].

We also find that while the most deformed nuclei decay
almost entirely via allowed transitions, spherical isotopes
show a large scatter in the contribution of forbidden decay.
More than 80 percent of the 89Ge decay rate is driven
by first-forbidden transitions. This analysis may bear on
the large first-forbidden contributions near N = 50 and
Z = 28 reported by Ref. [45], which restricted nuclei to
spherical shapes. Ref. [79], which considers the effect of
deformation on Gamow-Teller strength functions, suggests
that it is important near this mass region.

Our calculations near A = 80 include even-even, odd-
even, even-odd, and odd-odd nuclei. Though odd pnFAM
calculations are no more computationally difficult than
even ones, a few odd half-lives are probably a little less reli-
able than their even counterparts for two (related) reasons.
First, we have found that our calculations produce nega-
tive contributions to decay rates in some first-forbidden
channels of a few nuclei. We simply remove these negative
contributions, with the following results: the total β-decay
rate of 77Co changes by only 0.1%, 80Cu by 160%, 81Cu
by 17%, and 97Se by 6%. Second, we have found that

the lowest-energy (unperturbed) charge-changing single-
quasiparticle transition lies at an energy E < 0 for a few
odd nuclei. In other words, there are a few odd-proton
nuclei for which Eν − Eπ < 0 and a few odd-neutron
nuclei for which Eπ −Eν < 0. The situation occasionally
allows negative QRPA energies. Our technique for calcu-
lating the decay rate then fails because of the form of the
pnFAM strength function [18]: for every state at E = ~ω
that has β− strength, the pnFAM generates a state with
β+ strength equal to the negative of the β− strength at
E = −~ω. As a result, if there are states with negative
energy and nonzero β− strength, then when we apply
the residue theorem to obtain integrated strength [85] we
include (the negative of) spurious β+ contributions. Be-
cause that strength is at low energy, it is strongly weighted
by β-decay phase space. The strongly weighted spurious
strength might help to explain some of our negative for-
bidden decay contributions. While we feel it important
to note these issues, Fig. 13 suggests that their impact is
limited. Indeed, first-forbidden decay contributes about
14% of the total decay rate on average in this mass region.
If we remove the four largest contributions (89Ge and the
three Zn isotopes—notable outliers), first-forbidden de-
cays contribute less than 10% to the total rate on average.
The spurious contributions in a few nuclei are interesting,
then, but not critical.

IV. CONSEQUENCES FOR THE R PROCESS

In rare-earth nuclei, our calculation produces rates that
are either consistently larger than or smaller than (de-
pending on the functional) those of, e.g., Ref. [17]. We
now use these new rates in simulations of the r process.
The resulting rare-earth abundances are shown in Fig.
14. Generally, calculations that predict low rates build
up the rare-earth peak in both hot and cold r -process
trajectories, and calculations that predict higher rates
(SLy5 and unedf1-hfb) reduce the peak. Our neutron
star merger calculation (bottom panel of Fig. 14) demon-
strates a different effect: longer-lived nuclei broaden the
rare-earth peak, and shorter-lived nuclei narrow it. For
all three trajectories the change in abundances is fairly
localized, with the effects caused by our most reliable pa-
rameterizations (SkO′, SkO′-Nd, and SV-min) modifying
abundances by factors, roughly, of two to four.

Near A = 80, our calculations produce small changes
in weak r -process abundances from those obtained with
the β-decay rates of Ref. [17] and larger changes from
those with compilations. Fig. 15 shows the baseline weak
r -process calculation from the sensitivity study of Fig. 3
(blue line), where the β-decay lifetimes are taken from the
REACLIB database [86]4 everywhere. We compare this
abundance pattern to those produced when the β-decay

4 https://groups.nscl.msu.edu/jina/reaclib/db/

https://groups.nscl.msu.edu/jina/reaclib/db/
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Figure 12. (Color online) Computed half-lives in A ' 80 β-decay (red circles), along with those of Refs. [33] (orange squares)
and [17] (blue crosses).

rates for the set of 45 nuclei calculated in this work are
replaced with our rates (red), those of Ref. [17] (purple),
and those from Ref. [45] (teal). Although the differences
in abundance produced by our rates and those of Ref.
[17] are fairly small, differences produced by ours and
those of Ref. [45] or REACLIB are noticeable, with the
widely-used REACLIB rates producing the most divergent
results. It appears that many β-decay rates near A = 80
in the REACLIB database come from a much older QRPA
calculation [87] that differs significantly from the more
modern calculations, especially in lighter nuclei. In some
instances, our rates differ from those listed in REACLIB
by a factor of seven.

Even though many of our calculated rates are higher
than those of Ref. [17] (Fig. 12), their impact on a weak
r -process abundance pattern is not a uniform speeding-up
of the passage of material through this region, as appears
to be the case for for a main r process (see, e.g., Ref. [7]).
β-decay rates can influence how much neutron capture
occurs in the A ∼ 80 peak region and, consequently, how
many neutrons remain for capture elsewhere [9]. Higher
rates do not necessarily lead to a more robust weak r
process; in fact, the opposite is more usually the case, since
more capture in the peak region generally leads to fewer
neutrons available for capture above the peak. This effect
is illustrated in Fig. 16, which compares the abundance
pattern for the baseline weak r -process simulation from
Sec. III A with those obtained by using subsets of our
newly calculated rates in the same simulation. Consider
first the influence of the rates of the iron isotopes (green

line in Fig. 16), particularly 76Fe. This N = 50 closed
shell nucleus lies on the r -process path, below the N = 50
nucleus closest to stability along the path, 78Ni. Thus
an increase to the β-decay rate of 76Fe over the baseline
causes more material to move through the iron isotopic
chain and reach the long waiting point at 78Ni. The
abundances near the A ∼ 80 peak increase and those
above the peak region decrease because the neutrons used
to shift material from the very abundant 76Fe to 78Ni are
no longer available for capture elsewhere. Changes to the
β-decay rates of nuclei just above the N = 50 closed shell,
however, can have a quite different effect on the pattern.
The germanium isotopes, particularly 86Ge and 88Ge, are
just above the N = 50 closed shell, so increases to their
β-decay rates from the baseline will move material out of
those isotopes to higher A (orange line in Fig. 16). Thus,
abundances above the peak increase and more material
makes it to the next closed shell, N = 82. In the end,
the two very different effects partly cancel one another
so that our rates do not change abundances significantly
compared to those obtained with the rates of Ref. [17].

Given that modern QRPA calculations appear to have
converged to roughly a factor of two or so, we use Monte
Carlo variations to investigate the influence of this amount
of uncertainty in all the β-decay rates required for r -
process simulations. We start with astrophysical trajecto-
ries that seem typical for three types of main r -process
environments (hot wind, cold wind, and merger). Then,
for each Monte Carlo step, we vary all of the β-decay
rates by factors sampled from a log-normal probability
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Figure 13. (Color online) Top panel: Quadrupole deformation
β2 of the 45 A ' 80 nuclei whose half-lives we calculate
and display in Fig. 12. Bottom panel: Contribution of first-
forbidden β decay (0, 1, 2− transitions) to the decay rate of
the same 45 nuclei, plotted as a percentage.
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Figure 14. (Color online) The effect of our new β-decay rates
on final r -process abundances. The same trajectories are used
as in Fig. 2: (a) hot, (b) cold, and (c) nsm. Black circles mark
solar abundances.

Figure 15. (Color online) Impact of our β-decay rates near
A = 80 on weak r -process abundances. The top panel shows
abundances using rates from this work (red solid line), Ref. [17]
(purple short dashes), Ref. [45] (light blue dot dashes), and
the REACLIB database [86] (dark blue long dashes). Black
crosses mark solar abundances.

distribution

p(x) =
1

x
√

2πσ
exp

[
− (µ− ln(x))2

2σ2

]
(42)

where µ is the mean, and σ is the standard deviation of the
underlying normal distribution and x is a random variable.
We take µ = 0 and σ = ln(1.4) which yields a spread in
random rate factors corresponding roughly to the factor
of two uncertainty in modern QRPA calculations (see e.g.
Ref. [33]). For each set of rate factors generated with
the log-normal distribution the r-process simulation is
then re-run. Fig. 17 shows the resulting final r -process
abundance pattern variances for 10,000 such steps. In
each case, though some abundance pattern features stand
out as clear matches or mismatches to the solar pattern,
the widths of the main peaks and the size and shape
of the rare-earth peak are not clearly defined. The real
uncertainty in β-decay rates is larger than a factor of
two because all QRPA calculations miss what could be
important low-lying correlations. Thus, more work is
needed, whether it be theoretical refinement or advances
in experimental reach.

V. CONCLUSIONS

We have adapted the proton-neutron finite-amplitude
method (pnFAM) to calculate the linear response of odd-
A and odd-odd nuclei, as well as the even-even nuclei
for which it was originally developed, by extending the
method to the equal-filling approximation (EFA). The fast
pnFAM can now be used to compute strength functions
and β decay rates in all nuclei.

After optimizing the nuclear interaction to best rep-
resent half-lives in each mass region separately, we have
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Figure 16. (Color online) Top panel: Final abundance pattern
for the baseline trajectory described in the text, using the
rates of Ref. [17] rates for all of the key nuclei identified in
Sec. 2 (black dashed line), compared to results of simulations
with the same astrophysical trajectory and with new rates
for 68−72Cr only (light green line), new rates for 72−76Fe only
(green line), new rates for 86−92Ge only (yellow line), and new
rates for 89−95As only (orange line). Bottom panel: Percent
difference between the abundances produced by the baseline
simulation (black line) and the simulations with the new rates
(colored lines).

calculated new half-lives for 70 rare-earth nuclei and 45
nuclei near A = 80. Our calculated half-lives are broadly
similar to those obtained in the global calculations of
Möller et al. [17] as well as to those of more recent work.
As a result, r -process abundances derived from our cal-
culated half-lives are similar to those computed with the
standard rates of Ref. [17]. Our calculations support the
conclusions of Ref. [33], which compared multiple QRPA
β-decay calculations and found that they all had similar
predictions. Still, the comparison of r -process predictions
with much older ones in the REACLIB database and the
discussion of uncertainty in Sec. IV demonstrate the need
for continued work on nuclear β-decay.
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Appendix: Restoring Angular Momentum Symmetry

Deformed intrinsic states like those we generate in hf-
btho require angular-momentum projection. Here we use
the rotor model [90, 91], which is equivalent to projection
in the limit of many nucleons or rigid deformation [34].
Even-even nuclei, with K = 0 ground states (K is the
intrinsic z-component of the angular momentum) are par-
ticularly simple rotors. Their “laboratory-frame” reduced
matrix elements are just proportional to full intrinsic ones

http://www.tacc.utexas.edu
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[91],

〈J K || ÔJ || 0 0〉 = ΘK〈K | ÔJK | 0〉intr, (A.1)

where ΘK = 1 for K = 0 and ΘK =
√

2 for K > 0.
The corresponding transition strength to an excited state
| J K 〉 is

B(ÔJ ; 0 0→ J K) = Θ2
K

∣∣∣〈K | ÔJK | 0〉intr

∣∣∣2 . (A.2)

FAM strength functions are essentially composed of
squared matrix elements [29, 85], so we simply multiply
K > 0 strength functions by Θ2

K = 2.

The situation is more complicated in odd nuclei, which
K 6= 0 ground-state angular momenta. The transfor-
mation between lab and intrinsic frames, corresponding
to Eq. (A.1), includes an additional term involving the
time-reversed intrinsic state |Ki 〉 [91]:

〈Jf Kf || Ôλ || JiKi〉 =
√

2Ji + 1
[
( JiKi; λKi −Kf | Jf Kf )〈Kf | Ôλ,Kf−Ki |Ki〉intr

+ ( Ji−Ki; λKi +Kf | Jf Kf )〈Kf | Ôλ,Kf+Ki |Ki〉intr

]
.

(A.3)

If we neglect rotational energies in comparison with in- trinsic energies, we can sum over Ji that appear in Eq.
(A.3) to obtain [90]

B(Ôλ; JiKi → Kf ) =
1

2Ji + 1

Ji+λ∑
Jf=|Ji−λ|

∣∣∣〈Jf Kf || Ôλ || JiKi〉
∣∣∣2

=
∣∣∣〈Kf | Ôλ,Ki−Kf |Ki〉intr

∣∣∣2 +
∣∣∣〈Kf | Ôλ,Ki+Kf |Ki〉intr

∣∣∣2 .
(A.4)

The EFA-pnFAM, by preserving time-reversal symme-
try and providing the combined transition strength from

auxiliary states α†Λ|Φ 〉 and α†
Λ̄
|Φ 〉, directly yields the

terms in Eq. (A.4). For example, the Gamow-Teller decay
of a nucleus with Ji = Ki = 3/2 involves, according to
Eq. (A.4), three intrinsic transitions:

〈 32 | ÔK=0 | 3
2 〉, 〈 52 | ÔK=1 | 3

2 〉, 〈 12 | ÔK=−1 | 3
2 〉.

The third matrix element is equivalent because of time-
reversal symmetry to 〈− 1

2 | ÔK=1 | − 3
2 〉. Thus, a half-life

calculation to each band requires a K = 0 transition and

a pair of K = 1 transitions from states | 3
2 〉 and | − 3

2 〉.
These are the auxiliary states that make up the EFA-
pnFAM strength function. As a result, we obtain the total
strength to a band in an odd nucleus the same way as in an
even one: Stotal(F ;ω) = SK=0(F ;ω) + 2SK=1(F ;ω) for
Gamow-Teller transitions. The calculation of forbidden
strength is similar. The factor of two for K > 0 strength
cancels the factors of 1/2 that appear in the EFA strength
function in (33). K = 0 transitions do not need this
factor since, e.g., K = 3/2→ K = 3/2 and K = −3/2→
K = −3/2 transitions are equivalent and come together
in the strength function.
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ters, and A. Wöhr, Phys. Rev. C 82, 025806 (2010),
arXiv:1011.5255 [nucl-ex].

[12] C. Mazzocchi, R. Surman, R. Grzywacz, J. C. Batchelder,
C. R. Bingham, D. Fong, J. H. Hamilton, J. K. Hwang,
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S. Nakayama, H. Sakai, Y. Sakemi, M. Tanaka, and
M. Yosoi, Phys. Rev. C 52, 604 (1995).

[76] C. J. Guess, T. Adachi, H. Akimune, A. Algora, S. M.
Austin, D. Bazin, B. A. Brown, C. Caesar, J. M. Deaven,
H. Ejiri, E. Estevez, D. Fang, A. Faessler, D. Frek-
ers, H. Fujita, Y. Fujita, M. Fujiwara, G. F. Grinyer,
M. N. Harakeh, K. Hatanaka, C. Herlitzius, K. Hirota,
G. W. Hitt, D. Ishikawa, H. Matsubara, R. Meharc-
hand, F. Molina, H. Okamura, H. J. Ong, G. Perdikakis,
V. Rodin, B. Rubio, Y. Shimbara, G. Süsoy, T. Suzuki,
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