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A striking shape was recently observed for the cellular organelle endoplasmic reticulum consisting
of stacked sheets connected by helical ramps [1]. This shape is interesting both for its biological
function, to synthesize proteins using an increased surface area for ribosome factories, and its geo-
metric properties that may be insensitive to details of the microscopic interactions. In the present
work, we find very similar shapes in our molecular dynamics simulations of the nuclear pasta phases
of dense nuclear matter that are expected deep in the crust of neutron stars. There are dramatic
differences between nuclear pasta and terrestrial cell biology. Nuclear pasta is 14 orders of magni-
tude denser than the aqueous environs of the cell nucleus and involves strong interactions between
protons and neutrons, while cellular scale biology is dominated by the entropy of water and com-
plex assemblies of biomolecules. Nonetheless the very similar geometry suggests both systems may
have similar coarse-grained dynamics and that the shapes are indeed determined by geometrical
considerations, independent of microscopic details. Many of our simulations self-assemble into flat
sheets connected by helical ramps. These ramps may impact the thermal and electrical conductiv-
ities, viscosity, shear modulus, and breaking strain of neutron star crust. The interaction we use,
with Coulomb frustration, may provide a simple model system that reproduces many biologically
important shapes.

PACS numbers: 26.60.-c,02.70.Ns, 87.10.Tf, 87.15.ap, 87.16.D-,87.16.Tb

Nuclear pasta, with nucleons arranged into rods, plates
or other non-spherical shapes, is expected in neutron-
star crusts and in core-collapse supernovae [2, 3]. At just
below nuclear density, these shapes arise from compe-
tition between short-range nuclear attraction and long-
range Coulomb repulsion. Recently we found topological
defects consisting of spiral ramps in molecular dynam-
ics (MD) simulations of nuclear pasta [4, 5]. Electrons
scattering from these spiral ramps could reduce both the
thermal and electrical conductivity. This may impact
X-ray observations of crust cooling in transiently accret-
ing neutron stars [4], and may also lead to the decay of
neutron-star magnetic fields after about a million years
[6].

To explore the energy of these spiral ramp shapes, we
start with the semi empirical mass formula that predicts
the binding energy BE of a nucleus with A nucleons and
Z protons [7, 8],

BE = avA− asA
2/3 − acZ

2/A1/3... (1)

Here av, as, ac are constants describing volume, surface,
and Coulomb energies. In addition there are other con-
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tributions from the symmetry energy and pairing that
will not be important here. Competition between sur-
face and Coulomb energy contributions can lead to com-
plex shapes. In this paper, we study the self assembly
of spiral ramps at a baryon density of n = 0.05 fm−3.
This corresponds to a packing fraction of 5/16 of nuclear
saturation density, n0 = 0.16 nucleons per fm3. Here
the system may form flat sheets (lasagne) that are con-
siderably thicker than the size of a single nucleon. This
thickness is determined from a balance of surface and
Coulomb energies. Note that there are a variety of differ-
ent shapes with almost the same energy. For example, if
the density is decreased somewhat, the system may form
rods (spaghetti) instead of flat sheets and at still lower
densities the system forms spheres representing isolated
nuclei.

Fluctuations about these simple shapes could have low
excitation energies that may depend on subdominant
terms in Eq. 1. Reinhard et al. [9], see also [10], use a
leptodermous (thin-skinned) expansion and density func-
tionals in order to calculate a curvature energy term for
Eq. 1 that goes like acurveA

1/3. The impact of such an
A1/3 term on nuclear pasta shapes was considered in ref.
[11]. The curvature energy could be important for nu-
clear fission where a nucleus dramatically changes shape.
However, Reinhard et al. find they need to calculate the
energy of very large nuclei with A in the thousands in
order to extract acurve theoretically. Therefore, this co-
efficient may not be reliably determined from measured
nuclear binding energies that are known only for a limited
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range of A.
Instead, we discuss a very different approach that

has been employed previously in biophysics, but not
(to our knowledge) in nuclear physics. We consider a
Helfrich-Canham Hamiltonian H0 [12, 13] that involves
a quadratic form in the surface principal curvatures C1

and C2 including both the mean curvature (C1 + C2)/2
and Gaussian curvature C1C2,

H0 =
1

2
B

∫
dS(C1 + C2)2 + B̄

∫
dSC1C2 . (2)

Here
∫
dS is an integral over the surface area and B and

B̄ are positave constants representing effective rigidity
moduli. This energy functional was applied in refs. [1, 14]
to biological systems. Our justification for also discussing
nuclear pasta shapes with the help of Eq. 2 is determined
only after the fact. This equation predicts spiral ramp
shapes, and their arrangements, very similar to what we
find in our MD simulations, see below.

One relatively low energy solution for Eq. 2 is lasagne
with flat surfaces where C1 = C2 = 0. This gives H0 = 0.
Another solution involves spiral ramps with C1 = −C2.
Here the mean curvature is still zero, but the Gaussian
curvature is negative so that H0 < 0. Thus the Gaussian
curvature term may stabilize spiral ramp configurations
in both biological membranes, see below, and nuclear
pasta. This term may also stabilize configurations that
have additional holes such as the “nuclear waffle” shapes
found in ref. [15]. These shapes consist of flat sheets with
a two dimensional array of holes. Alternatively there may
be torus or donut-shaped superheavy nuclei [16] where
the donut shape both reduces the large Coulomb energy
and is further stabilized by the Gaussian-curvature term.

In this paper we study the self-assembly of these spi-
ral ramp configurations with molecular dynamics simula-
tions of a simple (semi)classical model of nuclear matter.
Our simulations are for nuclear pasta but they may also
have implications for phospholipid bilayer membranes.

Our MD formalism is the same as that used by
Horowitz et al. in previous works [4, 17–21] and is briefly
reviewed here. It is very similar to a model used by others
[22, 23]. Our simulation volume is a cubic box with peri-
odic boundary conditions which contains point-like pro-
tons and neutrons with mass M = 939 MeV. Electrons
are assumed to form a degenerate relativistic Fermi gas
and are not explicitly included in the simulations. Pro-
tons and neutrons interact via the two-body potentials:

Vnp(r) = a e−r
2/Λ + b e−r

2/2Λ (3a)

Vnn(r) = a e−r
2/Λ + c e−r

2/2Λ (3b)

Vpp(r) = a e−r
2/Λ + c e−r

2/2Λ +
α

r
e−r/λ. (3c)

The n and p indices indicate whether the potential de-
scribes a neutron-proton, a neutron-neutron, or a proton-
proton interaction. Meanwhile, r is the separation be-
tween each pair of interacting nucleons, α is the fine

structure constant, and quantities a = 110 MeV, b = −50
MeV, c = −2 MeV, and Λ = 1.25 fm2 are parameters
of the model. Their values were chosen in ref. [17] to
approximately reproduce some bulk properties of pure
neutron matter and symmetric nuclear matter, as well
as the binding energies of selected nuclei. The screening
length λ is chosen to be 10 fm. Equation 3 describes
an intermediate range attraction between p and n which
binds nuclei and then a short range repulsion that causes
nuclear matter to saturate at a density n0 = 0.16 fm−3.
Finally there is a long range (screened) Coulomb repul-
sion between protons.

Our MD model, Eq. 3, predicts a variety of nuclear
pasta shapes such as spheres, rods, or sheets, depend-
ing on for example the density or proton fraction, see
Fig. 3 of [24]. These shapes are also seen for biological
membranes. All of the simulations in this paper are at a
density of n = 0.05 fm−3, a composition of 40% protons,
60% neutrons, a fixed temperature kT = 1 MeV, and
use a time step of 2 fm/c. Under these conditions the
model tends to form flat sheets, but these sheets may be
connected by ramps.

Note that similar spiral shaped ramps appear in bio-
physics. Membrane-bound cellular organelles have char-
acteristic shapes, with the endoplasmic reticulum (ER)
being particularly striking. The ER is an extensive or-
ganelle displaying three distinct, yet connected, mor-
phologies: tubes, sheets and the spherical envelope
around the cell nucleus. Recent advances in serial
sectioning and electron microscopy have revealed the
stacked ER sheets to be connected by helical structures
[1]. Just as spiral ramps connect the levels of a mul-
tilevel parking garage, these so-called “Terasaki ramps”
allow sheets to connect yet remain parallel over scales
large relative to the membrane thickness. This parking-
garage shape is interesting for both its biological func-
tion, to synthesize proteins using an increased surface
area for ribosome factories, and its mathematical prop-
erty as the minimizer of a geometrical Hamiltonian, see
Eq. 2, largely insensitive to details of the microscopic
interactions [14]. In these models of membrane mechan-
ics, the Terasaki ramps are stable, topological structures,
akin to screw dislocations, that affect the entire morphol-
ogy of an organelle critical to the metabolism of eukary-
otic cells.

There are, to be sure, dramatic differences between
nuclear pasta and terrestrial cell biology. Nuclear pasta
has a density near 1014 g/cm3, fully fourteen orders of
magnitude more dense than the aqueous environs of the
cell nucleus. Furthermore, nuclear pasta involves strong
interactions between neutrons and protons in addition
to electromagnetic interactions, while cellular-scale bi-
ology is highly-screened, highly-overdamped and domi-
nated by the entropy of water and complex assemblies
of biomolecules. Nonetheless the strikingly similar ge-
ometry suggests both systems may have similar coarse-
grained dynamics.

To study self-assembly of these ramps in our MD model
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FIG. 1: (Color online) Self-assembly of a parking garage struc-
ture in a MD simulation with 40,000 nucleons that started
from uniform random initial positions. Shown in panels (a)
through (f) are the configuration after simulation times of
40,000, 400,000, 800,000, 1,200,000, 1,600,000 and 2,000,000
fm/c respectively. The color map at right is discussed in the
text.

of nuclear pasta, we start from initial conditions where
the particle positions are uniformly randomly distributed
in the simulation volume with a Boltzmann velocity dis-
tribution. Figure 1 shows the configuration of a 40,000
particle simulation at times from 40,000 to 2,000,000
fm/c. The proton density np is shown where the opacity
of the colorscale is 0 for np = 0.00 to 0.02 fm−3 and then
increases linearly to 1 at np = 0.04 fm−3. A light cream
color corresponds to high density sheets, while lower den-
sity surfaces are shown in brown. This system undergoes
the following self-assembly steps: (1) the low density sys-
tem collapses locally to form higher density filaments that
meet in junctions, see Fig. 1 (a). This includes the for-
mation of a number of topological holes. (2) Next, the
filaments start to grow to form curved sheets, Fig. 1
(b-c), (3) these sheets then start to straighten out over
longer length scales, Fig. 1 (d). (4) Boundaries between
“domains” of sheets with different orientation form four
left-handed and four right handed helical ramps, see Ta-
ble I. The sheets straighten out over the full simulation
volume, see Fig. 1 (e-f), and the ramps move together
to form the dipole pattern shown in Fig. 2 (a). This
pattern has four left-handed ramps to the left and four
right-handed ramps to the right. For this dipole pattern,
the ramps are seen in Fig. 2 (c) to make about a 45
degree angle with the flat sheets. We find this final con-
figuration to be stable for times of at least 10,000,000
fm/c.

To study the dependence on boundary conditions, we
perform simulations with different numbers of particles
and correspondingly different sized simulation volumes,
see Table I. The smallest simulation, with only 20,000
particles, forms uniform flat sheets without any spiral
ramps (not shown). A 50,000 particle simulation forms
four left handed and four right handed ramps as shown
in Fig. 2 (e). This is also a dipole pattern with the left-

FIG. 2: (Color online) Three axis views, X (left), Y(center),
and Z (right), of the final configuration of three MD simula-
tions. Panels (a)-(c) at top are for the 40,000 nucleon sim-
ulation shown in Fig. 1. Panels (d)-(f) at center are for a
simulation with 50,000 nucleons and panels (g)-(i) at bottom
are for a simulation with 75,000 nucleons. The handedness of
the helical holes in panels (a), (e), and (h) are indicated with
L for left-handed and R for right-handed.

handed ramps to the left and the right-handed ramps to
the right. As a result the ramps make a 45 degree angle
with the sheets, see Fig. 2 (f). Finally a 75,000 parti-
cle simulation forms four ramps in a quadrupole pattern
where one left-handed and one right-handed ramp are to
the left as shown in Fig. 2 (h). For a quadruple pattern
the ramps are observed to make a 90 degree angle with
the sheets, see Fig. 2 (i) and Table I.

The arrangement of the helical ramps shown in Fig.
2 panels (a), (e) and (h) agrees very well with theoreti-
cal predictions in refs. [1, 14] that are based on Eq. 2.
Guven et al. argue that tension in the sheets leads to
an effective long range attraction between two ramps of
opposite chirality that draws them together until a short
range repulsive bending force stabilizes the pair of ramps
at a characteristic distance. Some features of our simula-
tions that are in agreement with Guven et al. are: (1) we
find an equal number of left-handed (L) and right-handed
(R) ramps, (2) the ramps are all relatively close together
with a similar characteristic spacing, and (3) ramps in a
quadrupole pattern make a 90 degree angle with respect
to the sheets while ramps in a dipole pattern make an
approximately 45 degree angle with the sheets. These
common features suggest, after the fact, that Eq. 2 may
also apply to our nuclear pasta model system.

Most of our simulations form flat sheets connected by
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TABLE I: Number of ramps Nr in MD simulations with
different numbers of particles N .

N Nr Pattern of ramps Angle of ramps (deg)
20,000 0
40,000 8 Dipole 45
50,000 8 Dipole 45
75,000 4 Quadrupole 90

helical ramps. However we are able to obtain only flat
sheets, without any ramps, if we add a small one-body
potential to the system for early times that biases the
formation of only flat sheets, or start a simulation in a
smaller box at high densities where the system is nearly
uniform and then very slowly expand the box during the
simulation until the system reaches the same final density
of n = 0.05 fm−3.

FIG. 3: (A) Scanning electron micrograph of a thin slice of
sheet-like ER from a mouse salivary gland. Serial section-
ing allows three-dimensional reconstruction from large num-
bers of cross-sections (scale bar = 200 nm). (B) 3D recon-
struction of a left-handed Terasaki ramp that appears in the
black-outlined region in (A). (C) 3D reconstruction of a right-
handed Terasaki ramp that appears in the white-outlined re-
gion in (A). (Figure adapted from Terasaki et al. [1])

We compare our results to biological observations.
Reconstructing the three-dimensional geometry of ER
sheets from two-dimensional serial sections reveal that
the continuity of parallel sheets comes about through
the helical winding of the “exposed” sheet edge through
space, i.e. the Terasaki ramp, see Fig. 3 . The core of
the ramp (cytosolic side of the membrane) has a highly
negative Gaussian curvature, but potentially small mean
curvature, given the opposite signs of the two principal
radii of curvature. No considerations seem to set a pre-
ferred handedness to the ramps, and the observations
at hand, though statistically small, are consistent with
right- and left-handed ramps in equal numbers through-
out the organelle. If the sheet edges are treated as ef-
fectively one-dimensional defects (thought to be stabi-
lized by membrane proteins on the cytosolic side), then
it is sufficient to treat the rest of the membrane by the
Helfrich-Canham Hamiltonian. A class of solutions min-
imizing that functional are minimal surfaces, which have
zero mean curvature and locally minimize area. One con-
sequence of the analysis in [14] is that whereas a single
Terasaki ramp has a logarithmically diverging energy, a
left-right dipole pair has a finite energy, and a double
pair of left-right-left-right ramps (a quadrupole) mini-

mizes it further. The existence of ramp dipoles is natural
in the biological context, though convincing evidence for
tightly correlated left-right pairs, or for pairs of pairs, is
currently lacking. As previously discussed, we find both
left-right pairs and pairs of pairs in our MD simulations
of nuclear pasta.

In conclusion, we have performed molecular dynam-
ics simulations using a simple classical model of nuclear
pasta. Many of our systems spontaneously self-assemble
to form flat sheets connected by helical ramps. This
geometry is very similar to that observed in the three-
dimensional structure of the sheet-like endoplasmic retic-
ulum. Seeing the same helical shapes in the extraordi-
narily different systems of nuclear pasta in neutron stars,
and in the membranes of eukaryotic cells strongly sug-
gests that these shapes follow from common geometric
considerations and may be independent of details of the
microscopic interactions.

The curvature energy could help stabilize these heli-
cal ramps, suggesting that they may be common in nu-
clear pasta. If true, electron scattering from the ramps
could reduce the electrical and thermal conductivity of
neutron-star crust. This may impact crust cooling [4]
and possibly lead to the decay of magnetic fields [6]. Al-
ternatively the helical ramps, that connect flat sheets,
may allow paired protons to percolate throughout the
system and make it superconducting. In addition, the
ramps may restrict how the sheets can move past each
other. This could lead to complex viscoelastic behavior
for nuclear pasta that could dampen r-mode oscillations
in rapidly rotating neutron stars, see for example [25].
Furthermore, the helical ramps likely will increase the
shear modulus of neutron-star crust and the frequencies
of crust oscillation modes. These modes may have been
observed as quasi periodic oscillations during magnetar
giant flares [26]. Finally, the ramps likely increase the
breaking strain, or mechanical strength, of neutron star
crust. As a result the crust can support larger moun-
tains that, on a rapidly rotating neutron star, efficiently
radiate gravitational waves [27].

One can study soft condensed-matter analogs of nu-
clear pasta in the laboratory even if direct experiments
on nuclear pasta are not feasible. This could provide
unique insights. For example, it may be very difficult
to predict the actual density of ramps in nuclear pasta
using only first principle simulations. Instead one can ob-
serve the actual density and pattern of Terasaki ramps
in analog laboratory systems.

Our simple interaction has Coulomb frustration with
short-ranged attraction and long-ranged repulsion. This
seems to provide a simple model system that reproduces
many biologically important shapes. One reason is the
fluid nature of bilayer membranes: interactions between
phospholipid molecules are determined to a large extent
by the repulsive term.

Computational advances have made and will make very
large-scale MD simulations for such systems “easy” and
these simulations will likely exhibit very rich varieties of
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shapes and phases. Uncovering similarities between dis-
parate physical systems allows connections to be made
at the deeper level of symmetry, excitations and the ge-
ometry of topological defects.
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