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The case of gluon bremsstrahlung off a heavy quark in extended nuclear matter is revisited within
the higher twist formalism. In particular, the in-medium modification of “semi-hard” heavy quarks
is studied, where the momentum of the heavy quark is larger but comparable to the mass of the
heavy quark (p & M). In contrast to all prior calculations, where the gluon emission spectrum is
entirely controlled by the transverse momentum diffusion parameter (q̂), both for light and heavy
quarks, in this work, we demonstrate that the gluon emission spectrum for a heavy quark (unlike
that for light flavors) is also sensitive to ê, which so far has been used to quantify the amount
of light-cone drag experienced by a parton. This mass dependent effect, due to the non-light-like

momentum of a semi-hard heavy-quark, leads to an additional energy loss term for heavy-quarks,
while resulting in a negligible modification of light flavor (and high energy heavy flavor) energy loss.
This result can be used to estimate the value of this sub-leading non-perturbative jet transport
parameter (ê) from heavy flavor suppression in ultra-relativistic heavy-ion collisions.

PACS numbers: 12.38.Mh, 12.38.-t, 12.38.Cy, 12.38.Bx

I. INTRODUCTION

The unprecedented centre of mass energies available
at the Large Hadron Collider have opened new windows
for the exploration of extreme nuclear matter through
high energy jets [1–6]. While a large portion of the
available data on leading (and next-to-leading) particle
suppression in the light flavor sector has been theoreti-
cally described using factorized pQCD based calculations
of jet modification [7, 8], heavy quarks have remained
somewhat of a challenge [9]. This is especially true in
the semi-hard sector, where the momentum of the heavy
quark is larger but comparable to its mass p & mQ. We
distinguish this region from that of slow heavy quarks,
where p . mQ, which appear to be thermalized with
the bulk medium, and fast heavy-quarks, with p ≫ mQ

which engender energy loss and suppression similar to
light quarks.

The so called “heavy-quark puzzle” had already be-
gun to manifest itself in measurements of the suppression
of high transverse momentum (high-pT ) non-photonic
electrons at the Relativistic Heavy-Ion Collider (RHIC).
Measurements by both the STAR [10] and PHENIX [11]
detectors showed a slightly higher suppression than ex-
pected, based on a calculation that included both drag
and radiative loss [8, 12, 13]. This trend has continued
at the Large Hadron Collider (LHC) where the ALICE
experiment has measured D and B meson suppression
separately, and finds a larger than expected suppression
in the semi-hard regime of heavy-quark momentum (we
note that the case is not very clear for B-meson suppres-
sion which has so far only been presented as pT integrated
points)[14, 15].

A considerable amount of theoretical work, within
pQCD based formalisms (which we limit ourselves to),
has been devoted to understand this larger than expected
suppression of single electrons or heavy mesons arising
from the fragmentation of a heavy-quark [9, 16]. How-

ever, most of these may be understood as falling in two
categories: Calculations that have extended the base for-
malism of radiated energy loss for light flavors to include
mass dependent terms, as well as a drag term to include
the prominent role played by drag in heavy flavor energy
loss [8, 17–21]. Calculations that have ignored the role
of radiative loss and only focussed on drag loss [22–24].
In all calculations above, radiative loss is stimulated

by transverse momentum diffusion experienced by the
heavy quark or radiated gluon, which, in some cases, is
quantified by the jet transport coefficient q̂ [25, 26]. The
drag loss is quantified using the drag coefficient referred
to as dE/dx (energy loss per unit distance) or ê [27].
To the best of our knowledge, no calculation of heavy

flavor energy loss has explored the possibility that the
drag coefficient ê (or the longitudinal diffusion coeffi-
cient ê2) may lead to an additional source of radiative
loss, beyond that provided by q̂. This possibility is im-
mediately clear in the higher twist framework, where the
drag (and longitudinal diffusion) coefficient ê (ê2) has the
boost invariant definition as the loss of light-cone mo-
mentum (fluctuation in light-cone momentum) per unit
light-cone length, (assuming a parton moving in the neg-
ative light-cone direction)

ê =
d〈∆p−〉
dL−

, ê2 =
d〈∆p−2〉
dL−

. (1)

While such transport coefficients lead to little change in
the off-shellness of a near on-shellmassless quark [27, 28],
they have a considerable impact on the off-shellness of a
near on-shell massive quark, as discussed in next section.
We will demonstrate that, such a term will only have an
effect on the radiative loss of a patron where the momen-
tum p is comparable to the mass M . Thus for light fla-
vors, and for energetic heavy-quarks where, p≫M , this
term will have a minimal effect. This was explicitly ex-
plored for photon radiation from a light quark in Ref. [29].
We point out that such an effect is by no means limited
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to the higher-twist scheme, but effects several other for-
malisms that have considered the radiative loss from a
heavy-quark in a quark gluon plasma [30–32].
In this paper, we will explore the modification to the

calculation of radiative loss, due to the presence of this
additional source within the higher twist formalism. To
delineate the importance of these terms, we will use
power-counting techniques borrowed from Soft-Collinear-
Effective-Theory (SCET) [33–36] to identify the regime
where these mass dependent terms will cause detectable
effects on the gluon bremsstrahlung spectrum. As a first
attempt, we will consider only the case of single scat-
tering and single emission. Arguments presented in sub-
sequent sections will demonstrate this to be the leading
contribution, given the short formation time of the ra-
diated gluons. In this paper, the analytical expressions
for the ê (q̂ and ê2) induced gluon radiation spectrum
will be derived. Numerical calculations for the suppres-
sion of B and D mesons, as well as the suppression and
azimuthal anisotropy of non-photonic leptons from the
decay of these mesons at LHC and RHIC energies, and
comparisons with experimental data will be carried out
in a subsequent effort.
The article is organized as follows: in Sec. II, we will

setup the basic formalism of Deep Inelastic Scattering
(DIS) on a large nucleus, where the hard virtual photon
strikes a heavy-quark, assumed to be produced in a rare
high Q2 fluctuation inside a proton. In Sec. III, we will
carry out diagrammatic studies on the induced gluon ra-
diation off the heavy quark in this system, within the
higher twist formalism. We will present and discuss final
expressions for gluon bremsstrahlung from such a heavy
quark, containing both q̂, ê and ê2 in Sec. IV. We offer
concluding discussions and an outlook in Sec. V. Involved
expressions for a set of diagrams are contained in the ap-
pendix.

II. DEEP INELASTIC SCATTERING AND THE

SEMI-HARD HEAVY QUARK

The set-up is based on the deep-inelastic scattering of
a virtual photon off a heavy quark within a large nucleus
with mass number A. We will study the case where the
hard virtual photon scatters with the hard heavy quark
converting it to slow moving heavy quark (this is defined
below). The propagation of the heavy-quark will be fac-
torized from the hard scattering vertex which produces
the outgoing slow moving heavy-quark. The nucleus has
a momentum P = pA, where p is the average momentum
of a nucleon in this nucleus. In the Breit frame, the ex-
changed virtual photon possesses no transverse momen-
tum,

q ≡ [q+, q−, q⊥] =
[

q+, q−, 0
]

. (2)

The process under consideration is the following:

e(L1) +A(P ) → e(L2) + JQ(LQ) +X. (3)

In the above process, e(L1) and e(L2) represent the in-
coming (outgoing) electron with momentum L1 and L2

respectively. The factor A(P ) represents the incoming
nucleus with momentum P . The factor JQ(LQ) is the
outgoing jet which contains one heavy quark Q. Due to
the absence of valence heavy-quarks within the nucleon,
the photon will have to strike a heavy quark from a QQ̄
fluctuation within the sea of partons. Alternatively one
may consider the case of a J/ψ or Υ state bound within
a large nucleus, being struck by the hard virtual photon.
More detail discussions on the production of heavy quark
can be found in [37]. In this work, we will not discuss
the production of the heavy quark further. For the pur-
poses of this calculation, this is now contained within a
parton distribution function. In essence, by this mech-
anism a semi-hard heavy quark has been produced. In
what follows, we will focus on the power counting of the
momentum components and the modification of the fi-
nal state. Similar to Ref [37], we will consider a quark
massM ≫ ΛQCD and a final outgoing quark momentum
which is larger, but of the order of the quark mass.

A. Production of semi-hard heavy quark

At the outset we assume that quark anti-quark fluctu-
ations possess minimal momentum (they are almost at
rest) in the rest frame of the nucleus. Therefore momen-
tum components of the quark (or the anti-quark) scales as
(

p+
Q
, p−

Q
, pQ⊥

)

∼
(

M/
√
2, M/

√
2, 0

)

in the rest frame of
the nucleus. Now in a frame where the nucleus is boosted
by a large boost factor γ in the “(+)” direction, momen-
tum components of the heavy quark will scale as,

pQ =
[

p+Q, p
−
Q, pQ⊥

]

≡
[

γ
M√
2
,
1

γ

M√
2
, 0

]

. (4)

It is important to note that the boost factor γ carries no
extra information other than the fact that p+Q is very large

compared to p−Q and hence it is moving fast in “(+)” light
cone direction. We select events where the virtual photon
strikes this fast moving on-shell quark or anti-quark and
converts it into a heavy on-shell fermion traveling in the
“(−)” light cone direction. We further stipulate that this
backward propagating heavy fermion be semi-hard, i.e.
the magnitude of its three momentum is of the order of
its mass. This enforces the momentum components of
the virtual photon to be,

q =

[

−γ M√
2
+
M2

2q−
, q− − 1

γ

M√
2
, 0

]

. (5)

This rather cumbersome form arises out of the need to
produce a semi-hard (or slow moving) heavy-fermion, af-
ter a collision with a hard (or fast moving) fermion. Yet
another reason, is to keep the heavy-quark mass as ex-
plicit in as many momentum terms as possible. After
scattering with this photon, the outgoing quark propa-
gates through the nucleus, with a larger momentum in
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the (-)-light cone direction. The momentum components
of the final state quark are,

pf = pQ + q =

[

M2

2q−
, q−, 0

]

. (6)

where we assume q− &M . Given a large boost factor (γ),
one can assume that γM ≫ M ∼ q− ≫ M/γ. Hence,

we define the hard scale Q as Q2 = −q2 ≃ γMq−/
√
2.

We consider M ∼ q− ∼
√
λQ where λ ∼ 1/γ for this

“semi-hard” heavy quark. The term “semi-hard” defines
a quark whose momentum is not an order of magnitude
larger than its mass. It is also important to articulate at
this point that γ is not the boost factor of the semi-hard
quark (moving in “−” light cone direction) but it is that
for the very fast moving initial hard quark (moving in “+
” light cone direction) before the scattering takes place.
Numerically the boost factor could be & 100 (hence λ .
0.1).

B. Power Counting and the small λ parameter

In order to set up the power counting, in this study,
we have introduced the dimensionless small parameter
λ. Power corrections to hard process are generally sup-
pressed by factors of a hard scale, Q2 ≫ ΛQCD. The
introduction of the parameter λ to represent semi-hard
scales as λQ and softer scales as λ2Q, is a concept bor-
rowed from soft collinear effective theory (SCET) [38,
39]. In what follows, we will retain leading and next-to-
leading terms in λ power counting, neglecting all terms
which scale with λ2 or a higher power of λ [40]. We have
chosen the scaling variable λ in such a way that perturba-
tion theory may be applied down to momentum transfer
scales at or above λ3/2Q ∼ ΛQCD. In our study,

λ0 ≫
√
λ≫ λ≫ λ

3
2 . (7)

Based on the power counting set up and the choice of
incoming and outgoing quark momentum, we can outline
several important scales in the problem of a heavy quark
propagating through the nuclear medium, scattering off
constituents in the medium and emitting real gluons. We
remind the reader that given the semi-hard momentum
of the heavy quark, collinear emission is suppressed due
to the mass of the heavy quark, i.e., the dead cone ef-
fect [41]. In the subsequent section, the calculation of
the process of single scattering and single emission from
a heavy quark will be carried out. Here we outline the
power counting (in λ) of the relevant momentum com-
ponents that will arise in the calculation. The virtual-
ity of the hard photon defines the hardest scale in the
problem, Q, similar to the case of light quark produc-
tion in DIS. The incoming or initial heavy quark has
momentum components pi(p

+
i , p

−
i , pi⊥) ∼ (λ−

1
2 , λ

3
2 , 0)Q,

the outgoing heavy quark has momentum components

pf (p
+
f , p

−

f , pf⊥) ∼ (
√
λ,

√
λ, 0)Q. It is customary to men-

tion that above scales signify only the order of magni-
tudes and not the actual value of the momentum compo-
nents. For outgoing heavy quark, the z-component of the
momentum is pf,z = (p+f −p−f )/

√
2 ∼ O(

√
λ)−O(

√
λ) ∼

O(
√
λ) Also the mass of the semi-hard heavy quark scales

as M ∼
√
λQ. This choice of incoming parton and pho-

ton momenta scales (not actual value) ensures that the
momentum of the final outgoing heavy quark is of the
order of its mass, as discussed in the previous subsec-
tion. In what follows, we will demonstrate that the lead-
ing contribution to gluon emission arises from the region
where real emitted gluons have momenta which scale as
l ∼ (λ, λ, λ)Q. This also ensure that both z-component of

the momentum, lz = (l+−l−)/
√
2 ∼ O(λ)−O(λ) ∼ O(λ)

as well as the transverse momentum are ∼ O(λ). The
fraction of light cone momenta carried out by the gluon
is y = l−/p− ∼

√
λ. Also somewhat different from the

case of light flavors is the scaling of the virtual Glauber
gluons : k ∼ (λ

3
2 , λ

3
2 , λ)Q with k2 = 2k+k−−k2⊥ ≃ −k2⊥.

As we will demonstrate below, these choices of momen-
tum scales tend to enhance the gluon emission rate.

There is another consequence of this choice of scales
which relates to how the single gluon emission kernel
may be iterated. Unlike the case for light flavors, the
formation length of a gluon with momentum components
l ∼ (λ, λ, λ)Q is

τQ =
2l−

l2
⊥

∼ 1

λQ
, (8)

is rather short compared to the formation length of
τq ∼ 1/λ2Q for gluon radiation from near on-shell light
flavors. This indicates that there cannot be many scat-
terings per emission. As a result, in what follows, we
derive the single scattering per gluon emission rate. This
single gluon emission kernel, induced by single scattering
will have to be iterated to obtain the full energy loss of
a semi-hard heavy quark.

Many readers may find the presence of factors of
√
λ

somewhat disconcerting. We could have simply replaced
this with a new λ. We refrain from defining a new dimen-
sionless parameter λ, so as to make contact with prior
definitions of λ used in the case of light quarks, where
λQ represented the transverse momentum of the radiated
gluons from a hard parton, or the transverse momentum
from scattering of a gluon in the medium. Thus, to con-
tinue to draw a parallel with the prior results from light
flavor energy loss, we require λQ ∼ 1 GeV.

To get a physical feel of these scaling relations, one may
typically assume Q ∼ 100 GeV,

√
λQ ∼ 10 GeV, λQ ∼

1 GeV, λ
3
2Q ∼ ΛQCD. We will retain terms that are

O(
√
λ) suppressed compared to the leading terms, but

ignore all terms that are suppressed by O(λ) and higher.
Thus, terms with M2/Q2 ∼ λ will eventually be ignored.
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(1) (2)

(3)

pf

pf − l

l

k

pf − l + k pf pf − l + k

l

k

pf + k

pf pf

ll − k

k

FIG. 1. Gluon bremsstrahlung by heavy quark. External
legs with green blobs are onshell while offshell internal legs
either have red blob or blue blob. Lines with blue blobs are
in-medium Glauber gluons. Red/blue blobs with (without)
additional dark ring indicates spacelike (timelike) offshell re-
spectively.

C. Effects on offshell internal legs

A schematic diagram for single gluon (of momentum l)
bremsstrahlung by an onshell heavy quark (of momentum
pf ) is given in Fig.[1]. Any external legs with a green blob
are onshell while offshell internal legs either have red blob
or blue blob. Line with blue blob are in-medium Glauber
gluon which has momentum k. In order to see the effect
of non-negligible k− of the medium gluons one may want
to calculate the offshellness or virtuality of the internal
lines (with a red blob). In terms of the variables defined
in Eq. (18) virtuality of the the offshell internal lines are
as follows,

D1 = (pf − l)2 −M2 = 2P+q−(1− y)

[

−xB + x0 − xL − xM
1− y

]

(9)

D2 = (pf + k)2 −M2 = 2P+q−(1 + yη)

[

−xB + x0 + x1 −
xM

(1 + yη)
− xK

(1 + yη)

]

(10)

D3 = (l − k)2 = 2P+q−y (1− η)

[

−x1 −
1− y

y (1− η)
xD − η(1− y)

(1− η)
xL

]

(11)

If one imposes the condition that final outgoing quark is also onshell i.e. (pf − l + k)2 −M2 = 0, one is left with,

D1 = (pf − l)2 −M2 = −1

y

[

l2⊥ + y2M2
]

(12)

D2 = (pf + k)2 −M2 = +
1

y

(

1− y +
k−

q−

)−1
[

{(

1 +
k−

q−

)

l⊥ − yk⊥

}2

+ y2M2

]

(13)

D3 = (l − k)2 = −
(

1− y +
k−

q−

)−1
[

(l⊥ − k⊥)
2
+ y2M2

(

1− k−

l−

)2
]

(14)

In the above expressions k− appears either as k−/q− ∼
O(λ) or as k−/l− ∼ O(

√
λ). While the former can be

neglected one needs to retain k−/l− as it is O(
√
λ). We

also notice that this term appears only in D3 i.e. in the
three gluon vertex diagram, that too with the mass term.
It clearly shows that leading mass effect due to non-
negligible k− appears for heavy quarks and not for light
quarks. Hence transport coefficient associated with k−

leads to little change in the off-shellness of a near on-shell
massless quark, it has a considerable impact on the off-
shellness of a near on-shell massive quark, as mentioned
in the introduction.

III. INDUCED GLUON RADIATION OFF THE

HEAVY QUARK

In this section we will discuss some contributions to the
next-to-leading order correction to semi-inclusive DIS on
a large nucleus with a quark and gluon in the final state.
By next-to-leading order, we simply mean including one
interaction term in the amplitude and complex conjugate,
which converts a single quark to a quark and a gluon.
The diagrams we will consider will also contain two scat-
terings for the full cross section, with both scatterings
in the amplitude, both in the complex conjugate, or one
in amplitude and one in complex conjugate. The double
differential cross section for the semi inclusive process of
an electron with in-coming momentum L1 and out-going
momentum of L2, undergoing DIS off a nucleus (with mo-
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mentum pA), leading to the production of a final state
heavy quark with transverse momentum lQ⊥

and a final
state gluon with transverse momentum l⊥ ≫ ΛQCD, may
be expressed as

EL2
dσ

d3L2d2lQ⊥
d2l⊥dy

=
α2
em

2πsQ4
Lµν

dWµν

d2lQ⊥
d2l⊥dy

. (15)

In the equation above, s = (p+L1)
2 is the total invariant

mass of the lepton nucleon system. In the single photon
exchange approximation, the leptonic part of the cross
section is easily expressed in terms of the leptonic tensor
denoted as Lµν , given as,

Lµν =
1

2
Tr[ 6L1γµ 6L2γν ]. (16)

pi p′i

q q

P P

lQ

k k′

l

y0 y′0y1 y′1

pf p′f

FIG. 2. A representative single gluon emission diagram,
where gluon emission is induced by single scattering.This rep-
resents a symmetric diagram with scattering off the final pro-
duced quark. Three separate cuts, denoted as central, left
and right are indicated by the dashed lines.

In what follows, the focus will lie entirely on the
hadronic tensor Wµν . We will carryout calculations
of a set of contributions to Wµν at next-to-leading or-
der (NLO) as described above, and next-to-leading twist
(NLT), meaning double scattering in the cross-section.

Already, at NLO and NLT, there are several interfer-
ing diagrams to consider. In this section, the calculation
of one of the diagrams that contribute to single scatter-
ing induced single gluon emission will be carried out in
some detail to familiarize the reader to the approxima-
tions carried out in this article. Figure (2) represents
the diagram that will be evaluated. This diagram cor-
responds to the process where a semi-hard heavy quark
produced after DIS radiates a gluon followed by a scat-
tering in the medium, and finally exits the nucleus.

In this study, calculations will be carried out in axial
gauge, n · A = 0, with n ≡ (1, 0, 0⊥) and A− = 0. In
A− = 0 gauge, the double scattering of a quark radiat-
ing a gluon contains a total of nine central cut diagrams
where the cut line lies between the two scatterings. It also
contains seven left cut diagrams and seven right cut dia-
grams. In this section, the central cut diagram of Fig.[2]
will be analyzed in detail. In this section and what fol-
lows, only the real contribution where the radiated gluon
line has been cut will be considered. The entire contribu-
tion from virtual diagrams, which contain a quark gluon
fluctuation either in the amplitude or complex conjugate,
could be obtained using unitary conservation methods as
outlined in Ref.[42].

This NLO-NLT contribution to the hadronic tensor
may be expressed as,

Wµν = g4(−gµν
⊥

)

∫

d4y′0d
4p′i

(2π)4
d4y′1d

4k′

(2π)4
d4y1d

4k

(2π)4
d4y0d

4pi
(2π)4

d4l

(2π)4
d4lQ
(2π)4

eip
′

iy
′

0eik
′y′

1e−iky1e−ipiy0

×Tr

[

1

2
γ−

−i(p/f +M)

p2f −M2 − iǫ
γα

−i(p/f − l/+M)

(pf − l)2 −M2 − iǫ
l/qG

αβ
i(p/f − l/+M)

(pf − l)2 −M2 + iǫ
γβ

i(p/f − l/+M)

(pf − l)2 −M2 + iǫ

]

×2πδ(l2)2πδ(l2Q −M2)(−iT a)(iT a)〈A|ψ̄(y′0)γ+A+(y′1)A
+(y1)ψ(y0)|A〉. (17)

We have defined the following momentum fractions for convenience,

y =
l−

q−
, η =

k−

l−
, xB =

Q2

2P+q−
(18)

x0 =
p+i
P+

, x1 =
k+

P+
, χ =

y2M2

l2
⊥

, ζ =
1− y

1− y + ηy
,

xL =
l2⊥

2P+q−y(1− y)
, xD =

k2⊥ − 2l⊥k⊥
2P+q−

,

xK =
k2⊥

2P+q−
, κ =

1

1 + (1− y)2
, xM =

M2

2P+q−
.
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In what follows, we will simplify both numerator and
denominator by retaining only leading terms in the λ
power counting highlighted above. This is followed by
taking the trace in the numerator and contour integra-
tions to simplify the denominator.
The factor Gαβ is the polarization tensor, and in

A− = 0 gauge, it has the form,

Gαβ = −gαβ +
nαlβ + nβlα

nl
. (19)

The structure of n ≡ (1, 0, 0⊥) implies n · l = l−. Within
this kinematic set up, in A− = 0 gauge, the leading com-
ponent of the gluon field is A+.

The spin sum in the numerator, containing the entire
set of γ matrices from the quark propagators, together
with those from the interaction with the gauge field may
be partially simplified and expressed as,

N c
11 = Tr

[

1

2
γ−

{

γ+q−γµ
nµ(l⊥)

ν

l−
γ+

(

q− − l−
)

+ γα⊥pf⊥α
γ⊥µ (−gµν⊥ ) γ+

(

q− − l−
)

+γ+q−γ⊥µ (−gµν⊥ ) γα⊥
(

pf⊥ − l⊥
)

α

}

γ−γ+(q− − l− + k−)γ−
{

γ+(q− − l−)γρ
nρ(l⊥)ν
l−

γ+q−

+γ+(q− − l−)γρ
⊥
(−g⊥)ρνγβ⊥pf⊥β

+ γβ
⊥

(

pf⊥ − l⊥
)

β
γρ
⊥
(−g⊥)ρνγ+q−

}]

+Tr

[

1

2
γ−

{

Mγ⊥µ (−gµν⊥ ) γ+
(

q− − l−
)

+ γ+q−γ⊥µ (−gµν⊥ )M
}

× γ−γ+(q− − l− + k−)γ−
{

γ+(q− − l−)γρ
⊥
(−g⊥)ρνM +Mγρ

⊥
(−g⊥)ρνγ+q−

}]

. (20)

Note that terms containing γ−p+f never contribute to the

trace because there is always an adjacent factor of γ−,
and γ−γ− = γ+γ+ = 0. One may evaluate the trace,
using the relation γ+γ− = 2 − γ−γ+ Eq.(20) simplifies
to,

N c
11 =

2(2q−)3

y
(1− y + yη)

[

P (y)l2⊥ + y4M2
]

. (21)

Note that the mass independent portion contains the
standard vacuum splitting function P (y) while the mass
dependent part has a separate dependence on the mo-
mentum fraction of the radiated gluon (y). In the soft
emission kinematic limit where y ≪ 1, one may neglect
the mass term. However, in this work we will retain it
throughout.
The set of denominators can now be evaluated us-

ing contour integration. For the central cut diagram of
Fig.(2), this yields the phase factor,

Īc11 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

× θ
(

y−1 − y−0
)

θ
(

y′
−

1 − y′
−

0

)

×
[

1− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

1− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

.

This single diagram contains four contributions depend-
ing on the one propagator that remains off shell after
contour integration.

Multiplying through we find four terms similar to the
work of Ref. [42](Equations 51-54). The first term where
the same propagator is off-shell in both amplitude and
complex conjugate corresponds to the so called “hard-
soft” process (this is a terminology used and described by
the authors of Ref. [42] in Sec. III of that paper.) where
the gluon radiation is induced by the initial hard scatter-
ing. The heavy quark is knocked off-shell by the initial

hard scattering and becomes on-shell after radiating the
on-shell gluon. Afterwards, the on-shell quark or gluon
will have a scattering with another soft medium gluon
from the nucleus. The second term is the case where the
quark is on-shell immediately after the first hard scatter-
ing. Gluon radiation is induced by subsequent scattering
of the heavy quark off a in-medium gluon which carries a
specific finite momentum fraction. This is often referred
to as “hard-hard” scattering (terminology used and de-
scribed by the authors of Ref. [37] in Sec. 3 of that
paper). The two cross terms where different propaga-
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tors are off-shell in the amplitude and complex conjugate
represent interference between soft-hard and hard-hard
scatterings.
The equations derived above contain both longitudinal

and transverse momentum exchanges with the medium.
The portion due to transverse exchange may be isolated
by imposing that k− → 0 (η → 0, ζ → 1) limit, and then
comparing with expressions from similar diagrams in Ref
[21]. One will immediately note that factors contain-
ing xM which contribute to the Landau-Pomeranchuck-
Migdal (LPM) [43, 44] effect are not modified by factors
of k−, while factors containing xD are modified by the
presence of k−. Factors of xD will eventually be absorbed
in the definition of the transport coefficients including q̂.
Such factors introduce a non-trivial dependence of in-
medium transport coefficients on the mass of the probe.
In this section, we have demonstrated how a certain

diagram for heavy quark production and energy loss via
gluon radiation can be simplified. Similar rules will be
applied to all other real diagrams which include a cut of
the radiated gluon line. In the subsequent section, all
real diagrams will be combined to obtain the real gluon
emission spectrum from a heavy quark that undergoes
one scattering and one emission after production.

IV. GLUON EMISSION SPECTRUM

In the preceding section we evaluated the diagram in
Fig. 2, in some detail, to highlight the approximations
that will be made in the course of the full calculation.
In this section, the result of the sum of all real diagrams
(with an emitted gluon in the final state), will be pre-
sented. This will be followed by a gradient expansion in
the exchanged transverse momentum (k⊥ → 0). While
the leading term in the limit of k⊥ → 0, will correspond
to a gauge correction to the vacuum process of gluon
radiation from a heavy quark, the focus in this section
will be on first correction in the k⊥ → 0 limit, usually
denoted as the next-to-leading twist contribution.
In total, there are 11 separate topologically distinct di-

agrams similar to that in Fig. 2. We denote these with
two subscripts: m,n = 1-3, where, m denotes the loca-
tion of the scattering in the amplitude, and n denotes
the location in the complex conjugate, for the case of a
central cut, where one gluon scattering is on either side
of the cut line. In either case of m or n, 1 signifies that
the scattering occurs on the quark line beyond emission,
2 signifies scattering on the quark line between the hard
production and the emission, and 3 signifies scattering of
the emitted gluon. Each one of these diagrams will also
generate a left and right cut component, where the cut
line will be moved to the left or right of the scatterings,
with the topology of the diagram held fixed. There are
also the two special configurations, where both scatter-
ings occur between the hard production and the gluon
emission in the amplitude or complex-conjugate. These
are denoted as C0,1 and C1,0. The next-to-leading twist

portion, of the sum over all possible cuts, for each of these
contributions is outlined in the appendix.
Adding all the contributions from all the diagrams,

categorized in the Appendix, we obtain the entire con-
tribution to the hadronic tensor. In what follows, we
decompose the hadronic tensor as,

Wµν = g42π(−gµν
⊥

)Hc,l,r. (22)

The entire contribution from all real diagrams is con-
tained in the factor Hc,l,r. This, includes the initial hard
scattering, the final state scattering of the quark or gluon,
and the emission vertex. Virtual contributions, where the
final state radiated gluon is not cut, will not be consid-
ered in this effort. Some part of the spin sum in the
numerator has already been factorized out in the term
−gµν

⊥
above. In what follows, we will simplify Hc,l,r by

factoring different contributions within it and then apply-
ing approximations to them separately. In the interest of
readability, the exact details of the calculation for each
diagram separately is included in the appendix.
This entire factor Hc,l,r is obtained as,

Hc,l,r =
3

∑

m,n=1

Cc,l,r
m,n + C0,1 + C1,0 =

2παs

Nc

∫

dl2⊥H
c,l,r

× exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

+ i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

× P+
(

y′
−

1 − y−1

)]

× 〈A|ψ̄(y′0)γ+A+(y′1)A
+(y1)ψ(y0)|A〉 (23)

In the equation above, cut specific phase factors and
the hard part for each cut are entirely contained within
Hc,l,r. The overall phase factor represents the generic
portion of the phase factor.
In order to calculate the next-to-leading power contri-

bution to the semi-inclusive hard partonic cross-section,
one needs to expand the cross-section in k⊥ and in k−.
In each case, we will extract the corresponding trans-
port coefficients inside the gluon emission spectrum ker-
nel for the semi-hard heavy quark [45]. Factors of k⊥ and
k− are absorbed as derivatives within the definition of
the transport coefficients [e.g. k⊥A

+(~y⊥) exp(i~k⊥ ·~y⊥) =
−i∇⊥A

+(~y⊥) exp(i~k⊥ · ~y⊥) ≃ iF+⊥(~y⊥) exp(i~k⊥ · ~y⊥)].
We will also factor the four point non-perturbative op-

erator using the usual phenomenological factorization,
which for the case of transverse scattering may be ex-
pressed as,

〈A|ψ̄(y′0)γ+F+
⊥
(y′1)F

+
⊥
(y1)ψ(y0)|A〉 ≃ CA

p

× 〈p|ψ̄(y′0)γ+ψ(y0)|p〉
ρ

2p+
〈p|F+

⊥
(y′1)F

+
⊥
(y1)|p〉. (24)

The first operator product on the right hand side of the
equation above will yield the incoming quark distribu-
tion function within one nucleon. The second operator
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product will yield the transport coefficient due to the
scattering of the final state, off a gluon within a nucleon
in the nucleus. We have assumed the average condition
that both nucleons have a momentum p = P/A. The fac-
tor ρ represents the nucleon density within the nucleus,
and CA

p represents an overall normalization constant that

contains the nucleon density. The factor of ρ/(2p+) is
written separately as that will be absorbed within the
definition of the transport coefficient.
These transport coefficients, defined below, are non-

perturbative objects, which are factorized from the hard
part that describes the propagation of the heavy quark.
While the exact value of each of these coefficients de-
pends on the non-perturbative dynamics of the medium,
the relative contributions of the different hard parts that
appear as a multiplicative factor along with these coeffi-
cients will be calculated below. Terms for the transverse
diffusion q̂, the drag (and longitudinal diffusion) coeffi-
cient ê (ê2) can be obtained through derivatives of the
kernel with respect to the transverse and (−)-light-cone

component of the exchange momentum,

[

∇2
k⊥
,∇k− ,∇2

k−

]

Hc,l,r
∣

∣

k⊥,k−=0

= 4CA

(

1 + (1− y)2

y

)

l4⊥
[l2
⊥
+ y2M2]4

H̃ q̂,ê,ê2
c,l,r . (25)

In the equation above, the factor H̃ q̂,ê,ê2
c,l,r represents

several terms, depending on the cut taken i.e., central
c, left l, or right r, and the momentum component with
respect to which the Taylor expansion is carried out, i.e.,
q̂ for the second derivative in terms of k⊥, ê for the
first derivative with respect to k− and ê2 for the sec-
ond derivative with respect to k−. One should note that
for each case, once the derivatives have been taken, both
factors of the momentum k⊥, k

− are set to zero. The

complete expressions for H̃ q̂,ê,ê2
c,l,r can be expressed as a

sum of products of a phase factor and a non-phase factor
coefficient, expressed as cq̂,ê,ê2n :

H̃ q̂,ê,ê2
c = cq̂,ê,ê21

[

1− e−i(xL+
y

1−y
xM)P+(y−

1
−y−

0 )
] [

1− ei(xL+
y

1−y
xM)P+(y′−

1 −y′−

0 )
]

+ cq̂,ê,ê22

{

e−i(xL+
y

1−y
xM)P+(y−

1
−y−

0 )

×
[

1− ei(xL+ y
1−y

xM)P+(y′−

1
−y′−

0 )
]

+
[

1− e−i(xL+ y
1−y

xM)P+(y−

1
−y−

0 )
]

ei(xL+ y
1−y

xM)P+(y′−

1
−y′−

0 )
}

+ cq̂,ê,ê23

[

e−i(xL+
y

1−y
xM)P+(y−

1
−y−

0 )
] [

ei(xL+
y

1−y
xM)P+(y′−

1 −y′−

0 )
]

,

H̃ q̂,ê,ê2
l = cq̂,ê,ê24

[

e−i(xL+
y

1−y
xM)P+(y′−

0 −y′−

1 ) − e−i(xL+
y

1−y
xM)P+(y′−

0 −y−

1 )
]

+ cq̂,ê,ê25

[

1− e−i(xL+
y

1−y
xM)P+(y′−

0 −y′−

1 )
]

,

H̃ q̂,ê,ê2
r = cq̂,ê,ê24

[

e−i(xL+
y

1−y
xM)P+(y−

0
−y−

1 ) − e−i(xL+
y

1−y
xM)P+(y−

0
−y′−

1 )
]

+ cq̂,ê,ê25

[

1− e−i(xL+
y

1−y
xM)P+(y−

0
−y−

1 )
]

.

In each case above, the coefficients cq̂,ê,ê2n depend on the
momentum component being considered. The subscript
nmerely denotes the order in which the coefficient occurs:
c1, c2 and c3 appear in the expression for the central
cut, where c4 and c5 appear in both the left and right
cuts. We list them in the following for each different
case, starting from the case of transverse diffusion, i.e.,
q̂. The coefficients are,

cq̂1 = 1− (2 − 3κy2)χ+ (1− κy2)χ2 ,

cq̂2 = −y
2
+

[(

1− 1

2
κy2 − κy3

)

+ y2
CF

CA

(

2− κy2
)

]

χ

−
[

1

2

(

y − κy2
)

− y2
CF

CA

(

κy2
)

]

χ2 ,

cq̂3 = y2
CF

CA

[

1− 4(1− κy2)χ+ (1− 2κy2)χ2
]

,

cq̂4 =

[

1 +
y2

1 + (1− y)2
χ

] [

CF

CA
y2 + 1− 2y

]

χ ,

cq̂5 =

[

1 +
y2

1 + (1− y)2
χ

]

χ . (26)

The momentum fractions y, κ and χ are defined in

Eq. (18). For the longitudinal drag coefficient ê, the c-
factors are,

cê1 =
y2M2

l−

[

1

2
+

1

2
(1 + κy2)χ+

1

2
χ2

]

,

cê2 =
y2M2

l−

[

−1

4
− 1

4
(1 + κy2) y2χ− 1

4
χ2

]

,

cê3 = 0 , cê4 = 0 , cê5 = 0.

For longitudinal diffusion coefficient ê2, the c-factors are,

cê21 =
y2M2

(l−)2

[

−1

2
+

(

7

2
− 1

2
κy2

)

χ+
7

2
y2χ2

]

,

cê22 =
y2M2

(l−)2

[

1

4
−
(

3

4
− 1

4
κy2

)

χ− 3

4
κy2 χ2

]

,

cê23 = 0 , cê24 = 0 , cê25 = 0 .

All the terms presented above can be combined to ob-
tain the real single gluon emission spectrum. In the sec-
ond line of the equation below [Eq. (27)], we have re-

tained terms only up to O(
√
λ), the approximation that

has been justified in this study. All terms which scale
as O(λ) or greater, have been neglected. We express the
gluon spectrum per unit light-cone length as,
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dNg

dydl2
⊥
dτ

= 2
α

π
P (y)

1

l4
⊥

(

1

1 + χ

)4

sin2
(

l2⊥
4l−(1− y)

(1 + χ) τ

)

[{

cq̂1 + cq̂2

}

q̂ + 4
{

cê1 + cê2
}

ê+ 2
{

cê21 + cê22

}

ê2

]

= 2
α

π
P (y)

1

l4
⊥

(

1

1 + χ

)4

sin2
(

l2⊥
4l−(1− y)

(1 + χ) τ

)

×
[

{(

1− y

2

)

− χ+
(

1− y

2

)

χ2
}

q̂ +
l2⊥
l−
χ (1 + χ)

2
ê+

l2⊥
(l−)2

χ

(

1

2
− 11

4
χ

)

ê2

]

. (27)

In the equation above, we have defined a mean light-cone
location of the first scattering (between the amplitude
and complex conjugate) as

τ =
y−1 + y′

−

1

2
. (28)

We also define the off-set between the light cone locations
in the amplitude and complex-conjugate as,

y− = y−1 − y′
−

1 . (29)

This variable enters the definitions of all transport co-
efficients that will be discussed in this paper. There
are three transport coefficients, which contain the non-
perturbative expection of the gluon field strength oper-
ators: the transverse diffusion coefficient, q̂ which repre-
sents the transverse momentum squared per unit light-
cone length, exchanged between the hard quark and the
medium, the longitudinal drag per unit light-cone length,
ê caused due to the exchange of light-cone components
of momentum, and ê2 the diffusion in light-cone momen-
tum, per unit light-cone length :

q̂ =
4π2CRαs

N2
C − 1

∫

dy−

π

ρ

2p+

× 〈A|F +
⊥

(y−)F⊥+(0)|A〉 e−i∆̄P+y−

,

ê =
4π2CRαs

N2
C − 1

∫

dy−

π

ρ

2p+

× 〈A|i∂−A+(y−)A+(0)|A〉 e−i∆̄P+y−

,

ê2 =
4π2CRαs

N2
C − 1

∫

dy−

π

ρ

2p+

× 〈A|F−+(y−)F−+(0)|A〉 e−i∆̄P+y−

. (30)

In the equations above, we observe the appearance of
another momentum fraction:

∆̄ = ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL . (31)

The presence of such a momentum fraction, indicates
that the range of momentum fractions in the definition
of q̂ ê and ê2 for heavy quark scattering is different from
that for light flavor energy loss. This indicates that the
actual value of q̂ (or even ê or ê2) for heavy quarks may
be different from that for light quarks. Thus, careful
analysis of heavy-quark energy loss may lead to an un-
derstanding of the x-dependence of the in-medium gluon

distribution function that sources transport coefficients,
and may, in the end, lead to an understanding of the de-
grees of freedom within dense media, where heavy quark
energy loss is carried out.

V. CONCLUSION AND OUTLOOK

In this work, the gluon bremsstrahlung from a “semi-
hard” heavy quark in a dense nuclear medium has been
studied in greater detail than in several earlier efforts.
In this work, we have considered a hard virtual photon
scattering off a hard heavy quark (within a proton), that
converts it to a slowly moving heavy quark that moves
through the remainder of the nucleus before escaping and
fragmenting into a jet containing a heavy meson.
In this work both transverse broadening as well as the

longitudinal drag and longitudinal diffusion, have been
studied on an equal footing. We have categorically fo-
cussed our study on “semi-hard” quarks where the mass
and momentum scale as M,p ∼

√
λQ, as these are the

quarks for which mass modifications is most prominent.
We have used power counting arguments loosely based on
Soft Collinear Effective Theory (SCET) at various stage
to isolate the leading contributions. It was shown in our
earlier studies that both longitudinal and transverse mo-
mentum transfers have a comparable effect on the off-
shellness of the heavy-quark [37]. This earlier work im-
plied that longitudinal transfers, not only lead to the
drag and diffusion, similar to light flavors, but will also
noticeably affect the radiative energy loss and left strong
indications that for heavy quarks, the drag induced ra-
diation may be as significant as transverse momentum
diffusion (q̂) induced radiation.
In this paper we have explicitly demonstrated that the

gluon bremsstrahlung spectrum from a semi-hard heavy
quark is indeed strongly modified by drag induced radia-
tion. We have shown that due to the presence of the (−)-
light-cone momentum exchange from the medium (k−),
in our calculations, the definition of all the transport co-
efficients for heavy quark is different from that for light
quark. Thus transport coefficients may indeed depend on
properties of the probe i.e. mass or on the l2⊥. Whether
this is phenomenologically significant cannot be ascer-
tained at this point, and is left for a future investigation.
This explicit dependence on the (−)-light cone momen-
tum was absent in the limit of k− → 0, assumed in several
prior calculations.
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The implications of the present study on the phe-
nomenology of HIC is under way. In this work we have
shown that the gluon bremsstrahlung spectrum of heavy
quark (unlike light quark) is parametrically sensitive to ê
which quantifies the amount of drag the moving quark ex-
periences. This result can be used to estimate the value of
this sub-leading non-perturbative jet transport parame-
ter (ê) from heavy flavor data of HIC experiments. These
extra additive contributions may lead to an eventual so-
lution of the heavy quark puzzle. We leave these for a
future effort.
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VII. APPENDIX

pi p′i

q q

P P

lQ

k k′

l

y0 y′0y1 y′1

pf p′f

FIG. 3.

There are three different cuts (central, left and right) in Fig.[3] and their contributions are,

Cc,l,r
11 =

α2
s

Nc
[CF ]

∫

dl2⊥

(

1 + (1− y)2

y

)

[l2⊥ + κy4M2]

(l2
⊥
+ y2M2)2

Īc,l,r11 (32)

Īc11 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

1− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

1− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(33)

Ī l11 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

× θ
(

y′
−

1 − y−1

)

θ
(

y′
−

0 − y′
−

1

)

(−1)

[

1− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(34)

Īr11 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y−1 − y′
−

1

)

[

1− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]]

(−1) (35)

In Fig.[4] there are only central cut, with the contribution,
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p0 p′
0

q q

P P

lQ

k k′

l

y′0y1 y′1y0

FIG. 4.

Cc
22 =

α2
s

Nc
[CF ]

∫

dl2⊥

(

1 + ηy + (1 − y + ηy)2

y

)

[[(1 + ηy)l⊥ − yk⊥]
2
+ κy4M2]

[

(l⊥ − yk⊥)
2 + y2M2 + 2yη (l2

⊥
− l⊥k⊥) + y2η2l2

⊥

]2
Īc,l,r22 (36)

Īc22 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(37)

p0 p′
0

q q

P P

lQ

k

l

y0 y′0
y1 y′1

k′

FIG. 5.

In Fig.[5] there are two different cuts for induced gluon radition, central and left.

Cc,l
12 =

α2
s

Nc

[

−
(

CF − CA

2

)]
∫

dl2⊥

(

1 + (1− y)2 + ηy(2− y)

y

)

× [l⊥ [(1 + ηy)l⊥ − yk⊥] + κy4M2]

[l2
⊥
+ y2M2]

[

(l⊥ − yk⊥)
2
+ y2M2 + 2yη (l2

⊥
− l⊥k⊥) + y2η2l2

⊥

] Īc,l12 (38)

Īc12 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

1− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(39)



12

Ī l12 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

× θ
(

y′
−

1 − y−1

)

θ
(

y′
−

0 − y′
−

1

)

[

exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y−1 − y′
−

0

)

+ i (xK − xD)P+
(

y′
−

1 − y−1

)

]

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(40)

p0 p′
0

q q

P P

lQ

k

l

y′0y1y0

k′

y′1

FIG. 6.

In Fig.[6] there are two different cuts for induced gluon radition, central and right.

Cc,r
21 =

α2
s

Nc

[

−
(

CF − CA

2

)]
∫

dl2⊥

(

1 + (1− y)2 + ηy(2− y)

y

)

× [[(1 + ηy)l⊥ − yk⊥] l⊥ + κy4M2]
[

(l⊥ − yk⊥)
2
+ y2M2 + 2yη (l2

⊥
− l⊥k⊥) + y2η2l2

⊥

]

[l2
⊥
+ y2M2]

Īc,r21

Īc21 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

1− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(41)

Īr21 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

× θ
(

y−1 − y′
−

1

)

θ
(

y−0 − y−1
)

[

exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y−0

)

− i (xK − xD)P+
(

y−1 − y′
−

1

)

]

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]]

(42)

In Fig.[7] there are again all three possible cuts for induced gluon radition,

Cc
33 =

α2
s

Nc
[CA]

∫

dl2⊥P (y)
[(l⊥ − k⊥)

2
+ κy4M2]

[(l⊥ − k⊥)
2 + (1− η)2 y2M2]2

Īc33

Īc33 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

exp

{

i

(

ζ

y(1− η)
xD +

η(1 − y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y−1 − y−0
)

}

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

exp

{

−i
(

ζ

y(1− η)
xD +

η(1 − y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

× P+
(

y′
−

1 − y′
−

0

)}

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(43)
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p0 p′
0

q q

P P

lQ

k k′

l

y0 y′0y1 y′1

FIG. 7.

Cl,r
33 =

α2
s

Nc
[CA]

∫

dl2⊥P (y)
l2⊥ + κy4M2

[l2
⊥
+ y2M2]2

Ī l,r33

Ī l33 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y′
−

1 − y−1

)

× θ
(

y′
−

0 − y′
−

1

)

[

− exp

{

i

(−ζ(1− 2y(1− η))

y(1− η)
xD − η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y−1 − y′
−

1

)

}]

[

1− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(44)

Īr33 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y−1 − y′
−

1

)

[

1− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]]

[

− exp

{

−i
(−ζ(1− 2y(1− η))

y(1− η)
xD − η(1 − y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

}]

(45)

There are also three cuts in Fig.[8], and the contributions are,

p0 p′
0

q q

P P

lQ

k k′

l

y0 y′0y1 y′1

FIG. 8.

Cc,l,r
13 =

α2
s

Nc

[

−CA

2

]
∫

dl2⊥P (y)
[l⊥ (l⊥ − k⊥) + κy4M2]

[l2
⊥
+ y2M2][(l⊥ − k⊥)

2
+ y2(1− η)2M2]

Īc,l,r33 (46)
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Īc13 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

1− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]]

[

exp

{

−i
(

ζ

y(1− η)
xD +

η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y′
−

0

)

}

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(47)

Ī l13 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y′
−

1 − y−1

)

× θ
(

y′
−

0 − y′
−

1

)

(−1)

[

exp

{

−i
(

ζ

y(1− η)
xD +

η(1 − y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y′
−

0

)

}

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(48)

Īr13 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

1 − y−1

)

[

exp

{

i

(

ζ

y(1− η)
xD +

η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y−1 − y−0
)

}

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

− exp

{

−i
(−ζ(1 − 2y(1− η))

y(1− η)
xD − η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

−ζ ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

}]

(49)

The contributions from the three cuts in Fig.[9] are,

p0 p′
0

q q

P P

lQ

k k′

l

y0 y′0y1 y′1

FIG. 9.

Cc,l,r
31 =

α2
s

Nc

[

−CA

2

]
∫

dl2⊥P (y)
[(l⊥ − k⊥) l⊥ + κy4M2]

[(l⊥ − k⊥)
2 + y2(1− η)2M2][l2

⊥
+ y2M2]

Īc,l,r31

Īc31 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

exp

{

i

(

ζ

y(1− η)
xD +

η(1 − y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y−1 − y−0
)

}

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

1− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(50)
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Ī l31 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y′
−

0 − y′
−

1

)

× θ
(

y′
−

1 − y−1

)

[

− exp

{

−i
(−ζ(1 − 2y(1− η))

y(1− η)
xD − η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

}]

[

exp

{

−i
(

ζ

y(1− η)
xD +

η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y′
−

0

)

}

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(51)

Īr31 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−1 − y′
−

1

)

× θ
(

y−0 − y−1
)

(−1)

[

exp

{

i

(

ζ

y(1− η)
xD +

η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y−1 − y−0
)

}

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]]

(52)

p0 p′
0

q q

P P

lQ

k′

l

y′0y′1y0 y1

k

FIG. 10.

Contributions from two cuts from Fig.[10] are as follows,

Cc
23 =

α2
s

Nc

[

−CA

2

]
∫

dl2⊥

(

1 + (1 − y)2

y

)

[(l⊥ − yk⊥) (l⊥ − k⊥) + κy4M2]
[

(l⊥ − yk⊥)
2
+ y2M2 + 2y

(

k−

l−

)

l2
⊥

]

[(l⊥ − k⊥)
2
+ y2(1− η)2M2]

Īc23

Īc23 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

θ
(

y′
−

0 − y′
−

1

)

[

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]]

[

exp

{

−i
(

ζ

y(1− η)
xD +

η(1− y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

× P+
(

y′
−

1 − y′
−

0

)}

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(53)

Cr
23 =

α2
s

Nc

[

−CA

2

]
∫

dl2⊥

(

1 + (1− y)2

y

)

[l⊥ (l⊥ − (1− y)k⊥) + κy4M2]

[l2
⊥
+ y2M2] [(l⊥ − (1− y)k⊥)

2
+ y2(1− η)2M2]

Īr23 (54)

Īr23 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

× θ
(

y−1 − y′
−

1

)

θ
(

y−0 − y−1
)

[

exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y−0

)

− i (xK − xD)P+
(

y−1 − y′
−

1

)

]

− exp

[

−i
(−ζ(1 − 2y(1− η))

y(1− η)
xD − η(1− y)

(1− η)
xL

)

P+
(

y′
−

1 − y−1

)

− i

(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]]

(55)
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FIG. 11.

Contributions of Fig.[11] are,

Cc
32 =

α2
s

Nc

[

CA

2

]
∫

dl2⊥

(

1 + (1 − y)2

y

)

[(l⊥ − k⊥) (l⊥ − yk⊥) + κy4M2]

[(l⊥ − k⊥)
2
+ y2(1− k−/l−)2M2]

[

(l⊥ − yk⊥)
2
+ y2M2 + 2y

(

k−

l−

)

l2
⊥

] Īc32

(56)

Īc32 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y−0 − y−1
)

× θ
(

y′
−

0 − y′
−

1

)

[

exp

{

i

(

ζ

y(1− η)
xD +

η(1 − y)

(1− η)
xL + (ζ − 1)

xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y−1 − y−0
)

}

− exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y−1 − y−0
)

]] [

− exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(57)

Cl
32 =

α2
s

Nc

[

CA

2

]
∫

dl2⊥

(

1 + (1 − y)2

y

)

[(l⊥ − (1− y)k⊥) l⊥ + κy4M2]

[(l⊥ − k⊥)
2
+ y2(1− η)2M2]

[

(l⊥ − yk⊥)
2
+ y2M2 + 2yηl2

⊥

] Ī l32

(58)

Ī l32 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

× θ
(

y′
−

1 − y−1

)

θ
(

y′
−

0 − y′
−

1

)

(−1)

[

exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y−1 − y′
−

0

)

+ i (xK − xD)P+
(

y′
−

1 − y−1

)

]

− exp

[

i

(−ζ(1− 2y(1− η))

y(1− η)
xD − η(1 − y)

(1− η)
xL

)

P+
(

y−1 − y′
−

1

)

+ i

(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y′
−

0

)

]]

(59)
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l
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FIG. 12.
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Fig.[12] has one possible cut,

Cl
10 =

α2
s

Nc
[CF ]

∫

dl2⊥P (y)
[l2⊥ + κy4M2]

(l2
⊥
+ y2M2)2

Ī l10 (60)

Ī l10 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y′
−

1 − y−1

)

× θ
(

y′
−

0 − y′
−

1

)

[

− exp
[

−i (xK − xD)P+
(

y′
−

1 − y−1

)]

exp

[

i

(

xL +
y

1− y
xM

)

P+
(

y−1 − y′
−

0

)

]]

(61)

p0 p′
0

q q

P P

k

y′0y1y0

k′

y′1

l

lQ

FIG. 13.

Fig.[13] also has single possible cut,

Cr
01 =

α2
s

Nc
[CF ]

∫

dl2⊥P (y)
[l2⊥ + κy4M2]

(l2
⊥
+ y2M2)2

Īr10 (62)

Īr01 = exp

[

i

(

xB + xL +
xM
1− y

)

P+
(

y′
−

0 − y−0

)

]

exp

[

i

(

ζxD + (ζ − 1)
xM
1− y

− ζ
ηy2

1− y
xL

)

P+
(

y′
−

1 − y−1

)

]

θ
(

y′
−

1 − y−1

)

× θ
(

y′
−

0 − y′
−

1

)

[

− exp
[

i (xK − xD)P+
(

y′
−

1 − y−1

)]

exp

[

−i
(

xL +
y

1− y
xM

)

P+
(

y′
−

1 − y−0

)

]]

(63)
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