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A quantitative description of the change in ground-state neutron occupancies between 136Xe and
136Ba, the initial and final state in the neutrinoless double β decay of 136Xe, has been extracted
from precision measurements of the cross sections of single-neutron adding and -removing reactions.
Comparisons are made to recent theoretical calculations of the same properties using various nuclear-
structure models. These are the same calculations used to determine the magnitude of the nuclear
matrix elements for the process, which at present disagree with each other by factors of two or three.
The experimental neutron occupancies show some disagreement with the theoretical calculations.

PACS numbers: 23.40.Hc, 25.40.Hs, 21.10.Jx, 27.60.+j

Introduction. An observation of neutrinoless double β
(0ν2β) decay [1] is one of the most tantalizing prospects
in contemporary physics; it would inform us that lep-
ton number is violated and that neutrinos are Majorana
fermions [2]. In the 0ν2β-decay process, two neutrons
become two protons, thus rearranging the occupancy of
protons and neutrons about the orbitals active in the
ground states of the parent and daughter of the decay.
The rate at which the decay occurs is inversely propor-
tional to the square of the nuclear matrix element, which
in turn is proportional to the effective neutrino mass.
Currently, the discrepancies between calculations of the
nuclear matrix elements using different models are large,
around a factor of 2-3 for any given candidate [2], which
corresponds to up to an order of magnitude in the esti-
mated half life.

While there is no simple experimental probe that con-
nects the same initial and final states seen in 0ν2β decay,
there are other nuclear-structure properties that can pro-
vide important constraints on the calculations used to de-
termine the nuclear matrix elements [3]. One such prop-
erty is the occupancy of valence nucleons in the ground
states of the parent and daughter nuclei, and importantly
how these change when two neutrons decay into two pro-
tons.

Several recent experiments have resulted in descrip-
tions of single-nucleon occupancies for four of the
favorable 0ν2β-decay candidates: 76Ge → 76Se [4, 5],
100Mo → 100Ru [6], 130Te → 130Xe system [7], and
136Xe → 136Ba systems [8]. The current work relates
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to the latter. Specifically, it builds on Ref. [8], which de-
scribes the proton occupancies for the A = 136 system,
by providing a quantitative description of the ground-
state neutron vacancies and their change between 136Xe
and 136Ba.

The 136Xe isotope is the subject of the EXO(-200) and
KamLAND-Zen experiments in search of a 0ν2β decay
signal. These experiments currently set the most strin-
gent limits on the half life for the 0ν2β decay of 136Xe,
being T 0ν

1/2 > 1.1 × 1025 y [9] and > 1.9 × 1025 y [10],

respectively. Just prior to publication of the present
work, KamLAND-Zen published results improving on
this, placing a limit of T 0ν

1/2 > 1.07 × 1026 y [11]. There

are several key properties that make this an attractive
candidate; having the longest T 2ν

1/2 of all practical can-

didates at 2 × 1021 y [12], a moderately high Q value
of 2458 keV [13], and a natural abundance of 8.86%.
The nuclear matrix elements for this candidate currently
vary between approximately 1.55-3.79 (dimensionless),
depending on which nuclear-structure model and other
assumptions are used (see, for example, Ref. [14]). This
degree of variation is similar to that seen with other can-
didates.

To characterize the ground-state neutron occupancies
and vacancies of 136Xe and 136Ba, overlaps from the
neutron-removing and -adding reactions are required.
The active orbitals important for these systems are those
between 50 < N < 82, being 0g7/2, 1d, 2s1/2, and 0h11/2.
These are populated via ` = 4, 2, 0, and 5 transfer,
respectively. In order to extract reliable spectroscopic
factors (reduced cross sections) from the measured cross
sections in transfer reactions, it is important to consider
momentum matching. In this study, both the (d,p) and
(α,3He) reactions were carried out at incident beam ener-
gies of a few MeV/u above the Coulomb barrier to probe
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the neutron vacancy. Similarly, the (p,d) and (3He,α) re-
actions were used to probe the neutron occupancy. The
(d,p) and (p,d) reactions are well matched for ` = 0 and
2 transfer, while the (α,3He) and (3He,α) reactions, with
larger differences between their incoming and outgoing
momenta than the (d,p) and (p,d) reactions, are better
matched for ` = 4 and 5 transfer. This approach has been
used in many studies, but most rigorously discussed in
Refs. [15, 16].

There are data in the literature [17] presenting infor-
mation on single-nucleon overlaps for some of the barium
and xenon isotopes. The principal motivation for the
additional measurements discussed here lies in the fact
no previous studies used reactions that suitably probe
the high-j 0g7/2 and 0h11/2 strength, nor is there a con-
sistent dataset on adding and removing reactions such
that the Macfarlane and French sum rules [18] can be
used to inform the analysis. For a given jπ, this simple
sum relates the strength seen in nucleon-removing reac-
tions, which probes the occupancy of the orbital, and the
strength seen in nucleon-adding reactions, which probes
the vacancy of the orbital, to the total degeneracy of the
orbital. It provides a consistency check when probing
several systems in the same shell-model space, a normal-
ization to allow for comparison to shell-model calcula-
tions (see, for example, Ref. [15]), and a quantitative de-
scription of how the occupancy of orbitals change from
one isotope to another.

An important consideration for the study of the nu-
clear structure of the 136Xe → 136Ba 0ν2β decay is
whether or not N = 82 can be considered a ‘good’ closed
shell. More explicitly, this question might be couched in
terms of the extent to which the neutron g7/2, 1d5/2,3/2,
2s1/2, and 0h11/2 orbitals are full and the neutron 1f7/2,
2p3/2,1/2, 0h9/2, and 0i13/2 orbitals are empty. There are
data that seem to suggest N = 82 is a good shell clo-
sure in this region. From transfer-reaction data this can
be answered, to some degree, by seeing whether there is
strength attributable to the negative-parity orbitals from
above N = 82 in neutron-removal reactions on N = 82
isotones, such as (p,d) and (d,t). The study of Jolly and
Kashy [19], reporting on the (p,d) reaction on 138Ba and
140Ce, comment “we do not see any 7/2−, 3/2−, or 1/2−

states with any measurable intensity.” This is confirmed
in (p,d)-reaction studies on 136Xe [20] and 138Ba [21],
who also conclude N = 82 appears to be a good closed
shell, and in more recent studies using both the (p,d)
and (3He,α) reactions on the stable, even N = 82 iso-
tones [22]. There are also (d,t)-reaction studies that sup-
port this [23, 24].

Similar conclusions can be drawn from neutron-adding
reactions. In this case, one looks for whether or not
there are excitations attributable to the positive-parity
orbitals from below N = 82 seen in neutron-adding re-
actions on N = 82. Measurements on 136Xe are limited
to the (d,p) reactions, done twice in normal kinemat-
ics [23, 24] and twice in inverse kinematics [25, 26]. The
work of Ref. [25] claims there is some 5/2+ strength at

1.87 MeV, though this is not supported in other studies.
For 138Ba, Refs. [27, 28] see no evidence of positive-parity
states (aside from 13/2+, which lies above N = 82) us-
ing the (d,p) reaction. For the heavier N = 83 isotones,
such as Ce, Nd, and so on, there are some indications
of weak fragments of 3/2+ or 5/2+ at several MeV ex-
citation with strengths � 1% of the total strength [29],
though assignments are tentative.

Thus, there is sufficient evidence to support the fact
that for 136Xe and 138Ba, N = 82 is a good closed shell
and that all orbitals below are fully occupied and those
above N = 82 are empty. In the 0ν2β decay of 136Xe, the
rearrangement of the neutrons that occurs in the decay
is wholly described by the occupancy of the valence neu-
trons of 136Ba. A detailed description of these valence
neutron occupancies is not available from the literature.

There have been no neutron-removal reactions carried
out on 136Ba. The (d,p) reaction has been studied pre-
viously at an incident energy of 12 MeV in a systematic
study across all stable even-A Ba isotopes by von Ehren-
stein et al. [27]. In the present paper, we report on mea-
surements of the (d,p), (p,d), (α,3He), and (3He,α) reac-
tions on 136Ba, which are used to extract single-neutron
occupancies and thus quantify the change in the ground-
state valence-nucleon occupancies in the 0ν2β decay of
136Xe. Additional measurements of the same reactions
were carried out on 134Ba to provide important cross
checks in the analysis.

Measurement. Two separate experiments were car-
ried out at the Tandem-Alto facility at the Institut de
Physique Nucléaire d’Orsay. The first measurement was
of the (α,3He) reaction at 40.1 MeV and of the (3He,α)
reaction at 32.0 MeV, both on targets of 134,136Ba. This
exploited the high terminal voltages available with the
IPN Orsay tandem. The second, on the same targets,
was of the (d,p) reaction at 15 MeV and of the (p,d)
reaction at 23 MeV.

In all cases, the beams were delivered by the tandem
accelerator and incident on the targets in the scattering
chamber of an Enge split-pole spectrometer [30]. This
was used to momentum analyze the outgoing ions. Their
position, energy loss, and residual energy were recorded
at the focal plane of the spectrometer using a position-
sensitive gas chamber followed by a ∆E ionization cham-
ber and a plastic scintillator [31]. This allowed for the
outgoing ions of interest to be isolated from other reac-
tion products and for Q-value spectra to be constructed.

The targets were prepared from enriched barium oxides
and mounted on a carbon backing. The targets were of
thickness ∼50-75 µg/cm2 and the backings ∼40 µg/cm2.
To calibrate the product of the target thickness and the
spectrometer aperture (nominally 1.6 msr), the 4He elas-
tic scattering yield was measured at an incident beam
energy of 15 MeV and at a laboratory angle of 20.9◦.
The angle was set by markers on the track of the spec-
trograph to the nearest degree, e.g., 20◦ in this case. An
additional 0.9◦ is added due to a well-defined offset of the
aperture. In this regime, optical-model calculations show
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that the elastic scattering cross section is within one per-
cent of Rutherford scattering, and an uncertainty in the
angle of 0.1◦ corresponds to a ∼1% uncertainty in cross
section. The beam current was measured using a Faraday
cup downstream of the target and integrated throughout
each run. This, along with the calibration of the target
thickness and aperture product, allowed for the extrac-
tion of absolute cross sections from the transfer-reaction
yields. To minimize systematic uncertainties the spec-
trometer aperture was fixed throughout each experiment,
being the same for the elastic-scattering and the transfer-
reaction measurements, the same targets were used, and
the same settings on the beam-current integrator were
used. Example spectra are shown in Fig. 1, which high-
light the effects of momentum matching. The Q-value
resolution was ∼50 keV full width at half-maximum for
protons from the (d,p) reaction, ∼40 keV for deuterons
from the (p,d) reaction, ∼100 keV for α particles from
the (3He,α) reaction, and ∼70 keV for 3He ions from the
(α,3He) reaction.

In the first experiment, the neutron-adding (α,3He)
reaction was carried out at 40.1 MeV at laboratory an-
gles of 5.9◦ for 134Ba, and 5.9◦ and 10.9◦ for 136Ba.
The forward-most angle of 5.9◦ was a compromise be-
tween the high rate in the focal-plane detector and be-
ing close to the maximum in the ` = 4 and 5 angular
distributions—where the spectroscopic factors are most
reliably extracted. A second angle was chosen for 136Ba
to reveal peaks that were otherwise obscured by contam-
inants. This was not necessary in the case of 134Ba.

The spins and parities of the states of interest in this
study are generally well known with robust assignments.

For example, a detailed high-resolution study of the (~d,p)
reaction on 132Ba [32] has been carried out. While this
does not provide the required information for this work,
it does provide confirmation of spin and parity assign-
ments for many of the same states probed in the present
study of 133Ba. Similar is true of (p,d)-reaction studies
on 138Ba [19] for states in 137Ba. In both cases, they rein-
force the assignments made in other measurements, such
as β decay. The only case where new assignments may be
made in the present work is for the high-j states, which
would have been weakly populated in previous studies.

The neutron-adding reaction probes the vacancy be-
low N = 82, and the targets are only two and four neu-
trons short of this. This means that for a given percent-
age accuracy the adding reactions, determining a smaller
quantity, provide a more sensitive measure of the short-
fall from N = 82. Given that the spins and parities
are known, we opted to run only at the angle(s) close
to the peak of the angular distribution in the neutron-
adding measurements. The inverse is true of the neutron-
removing (3He,α) reaction, whose yields are proportional
to the occupancy, which being 28 and 30 neutrons above
N = 50 results in significant yields for this reaction. This
measurement was again at angles corresponding to the
cross-section maxima for the high-j states, but also at
additional angles of 15.9◦ and 20.9◦ to help discriminate
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FIG. 1. (a) Outgoing deuteron spectrum measured at θlab =
5.9◦ following the 136Ba(p,d)135Ba reaction at an incident pro-
ton energy of 23 MeV and (b) the outgoing 4He spectrum
measured at the same angle following the 136Ba(3He,α)135Ba
reaction at 32 MeV. Some relevant states are labeled by their
energies in keV and spin-parity assignments.

between the similar ` = 4 and 5 shapes. An example of
this is shown in Fig. 2.

In the second experiment, a similar approach was taken
with the (d,p) and (p,d) reactions. The experimental con-
ditions, such as the spectrometer aperture and beam cur-
rent integrator, were set to the same values as the previ-
ous experiment. The neutron-adding (d,p) reaction was
carried out at θlab = 5.9◦ and 18.9◦ on both 134,136Ba.
These angles correspond to the maxima of the ` = 0 and
2 angular distributions (` = 0 is peaked at 0◦; however,
5.9◦ was the most forward angle at which we could prac-
tically run). For the neutron-removing (p,d) reaction, the
same angles were used, again corresponding to maxima in
the ` = 0 and 2 angular distributions. Mechanical failure
of the target prohibited a measurement of the (p,d) reac-
tion on 134Ba. During the (d,p) measurements, a gradual
degradation of the targets was noted when the data were
analyzed; the counting rate per integrated beam current
for a given region of excitation changed as a function of
time. The rate of loss of target material for a measure-
ment at a given angle was about 10-20% per hour. This
means that for each target, only the relative yields for the
different states at a given angle are meaningful for this
part of the experiment and an absolute normalization
was not acquired. The implications of this are discussed
below.
Analysis and results. In all of the nuclei studied here,

the spectra are characterized by a low-lying sequence of



4

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0 5 10 15 20 25
1

2

3

4

136Ba(3He,α)135Ba
848 keV, ℓ= 4

dσ
/d
Ω

 (m
b/

sr
)

(a) (b)

θlab (deg)

136Ba(3He,α)135Ba
268 keV, ℓ= 5

ℓ= 4 
ℓ= 5

ℓ= 5
ℓ= 4

FIG. 2. Example angular distributions demonstrating (a)
` = 4 and (b) 5 discrimination in the (3He,α) reaction on
136Ba. The solid black lines show DWBA calculations for the
assigned ` value, while the dashed lines show the distribution
associated with the alternative ` value.

3/2+, 1/2+ and 11/2− states, which to a large degree
define the vacancies in the ν1d3/2, ν2s1/2, and ν0h11/2
orbitals below N = 82. Both the 134,136Ba(α,3He) and
(3He,α) reactions suggest that the 0h11/2 strength is car-
ried by one state a few hundred keV from the ground
state in all residual nuclei—similar to what was seen in
Ref. [7] for the 128,130Te isotopes at N = 76 and 78.
The same work saw no evidence for the vacancy of the
ν0g7/2 orbital, which would be seen as 7/2+ strength in

the neutron-adding (α,3He) reaction. Some of the ν0g7/2
strength was seen in the neutron-removing (3He,α) reac-
tion over the excitation-energy range studied, but given
that this orbital starts filling at N = 50, some 26–28 neu-
trons below the isotopes being studied, it is essentially
filled and deeply bound. The work of Ref. [7] reported
it would have been sensitive to a vacancy in the ν0g7/2
orbital of about 0.15 nucleons or greater. In the present
work, there is some tentative evidence for a small vacancy
in the ν0g7/2 orbital seen in weakly populated states at

2.52 MeV excitation energy in 136Ba(α,3He).
In the data reduction, for each final state the

cross section was divided by that calculated with the
distorted-wave Born approximation (DWBA) using the
code Ptolemy [33]. For the scattering potentials, the
global optical-model parameters of An and Cai [34]
for deuterons and Koning and Delaroche [35] for pro-
tons were used for the (d,p) and (p,d) reactions. Oth-
ers [36, 37] were explored and yielded similar results.
For both reactions the deuteron wave function was de-
scribed by the Argonne ν18 potential [38]. The target
bound-state form factors were taken as a Woods-Saxon
plus a spin-orbit derivative term, with r0 = 1.28 fm, a =
0.65 fm, Vso = 6 MeV, rso0 = 1.1 fm, and aso = 0.65 fm.
These radial parameters are consistent with those de-
termined in (e, e′p) studies [39]. For the (α,3He) and

(3He,α) reactions, a fixed alpha-particle scattering po-
tential was used with parameters from Ref. [40], and for
the 3He ions, global optical-model parameters of Pang et
al. [41]. There are fewer available global optical-model
parameter sets for alpha particles. Recent values from
Ref. [42] did not reproduce the angular distributions
shown in Fig. 2 and so were not used. Several parameter
sets of 3He ions were explored [43, 44], with only small
variations between them. Potentials used in analyses of
similar studies in the region were also explored, including
those used for Sn(α,t) [45] and 144Sm(α,3He) [46], both
done with incident beam energies of 40 MeV. For the
3He and 4He, the projectile wave function was described
using the parameterizations of Brida et al. [47] and for
the target bound state, the same prescription as for the
proton and deuteron-induced reactions.

The experimental cross sections are divided by the
DWBA-calculated cross sections to provide the spectro-
scopic factor, Sj . This has to be normalized as the cross
sections probed in nucleon-adding and -removing reac-
tions are quenched such that only about 45-65% of the
single-particle strength is seen at low excitation energy
and momentum [39, 48]. This is usually done such that
the normalization, Nj , for a given orbital is given by

(2j + 1)Nj = Σ(2j + 1)C2S+
j + ΣC2S−j , (1)

where the spectroscopic factor S+
j is from the adding

reaction, S−j is from the removing reaction, and C2 is

the isospin-coupling Clebsch-Gordan coefficient [49].
The loss of absolute cross sections for the (p,d) and

(d,p) data complicates our usual procedures. Equation 1
is used to determine the reaction normalization in the
helium-induced reactions for ν0h11/2 strength. This is
then used to determine the vacancy of the ν0h11/2 orbital

using the data from the (α,3He) reaction, which accounts
for the majority of the neutron vacancies in 134,134Ba.
The remaining neutron vacancy is shared between the
ν2s1/2 and ν1d orbitals (mainly the ν1d3/2), and to a
much lesser extent the ν0g7/2 and ν1d3/2 orbitals, as dis-
cussed in more detail below. This remaining vacancy is
attributed ` = 0 and 2 orbitals and the data from the
(d,p) reaction is used to determine the ratio of these two.

Taking the He-induced reactions on 136Ba for the
jπ = 11/2− as an example, (2j + 1)C2S+ = 0.94 and
C2S− = 5.99. For the adding reaction C2 is 1. For the
neutron-removing reaction, a correction should be made
to account for the isobaric analogue state (IAS), which
was not observed in this reaction at the excitation en-
ergies we probe. The correction is small in this case,
being 1/(2T + 1), or 1/25 times the spectroscopic fac-
tor for proton removal from the π0h11/2 orbital. Were
the proton 0h11/2 orbital fully occupied, this would be
12/25, or 0.48 nucleons. Recent work by Entwisle et
al. [8] measured the π0h11/2 occupancy to be small, 0.62,
about 5% of the full shell, as would be expected below
the Z = 64 sub-shell closure. The correction to C2S− is
thus ∼ 0.025, negligible compared to 5.99, and less than
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TABLE I. Neutron vacancies from this analysis.

Isotope ν0g7/2 ν1d ν2s1/2 ν0h11/2 Totala

134Ba 0.00+0.15
−0.00 1.12±0.15 0.50±0.15 2.38±0.15 4.00

136Ba 0.00+0.15
−0.00 0.24±0.05 0.08±0.02 1.68±0.13 2.00

136Xe 0.00 0.00 0.00 0.00 0.00

136Ba−136Xe 0.00+0.15
−0.00 0.24±0.05 0.08±0.02 1.68±0.13 2.00

a The sums are defined as 4.00 and 2.00 for 134,136Ba, respectively, and the vacancies for 136Xe defined as 0.00, as discussed in the text.
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FIG. 3. (color online). The change in proton (top) and neutron (bottom) occupancies in the 0ν2β decay of 136Xe in the
bar charts. The proton data are from Ref. [8] and the neutron data from the present work. The three different theoretical
calculations are from the shell model, SM1 [14] and SM2 [50], and the interacting boson model, IBM [51]. The discrepancy
between the theoretical calculations and the experimental data is shown on the right where the error bars show the experimental
uncertainty.

the uncertainties. It is, however, included. This then
makes Nj = (6.02 + 0.94)/12 = 0.58. This value of nor-
malization is consistent with other works [48]. Applying
this yields a vacancy (occupancy) for the ν0h11/2 orbital
of 1.68 (10.32). The remaining 2 − 1.68 = 0.32 nucle-
ons must be ν2s1/2 and ν1d (probably 1d3/2) strength
(see comments on the ν0g7/2 below). The ratio between
the 1d and 2s components was taken from the θlab = 5.9◦

(d,p) data—this angle chosen over the 10.9◦ data to avoid
the sharp minimum in the ` = 0 angular distribution,
which is poorly described by DWBA. This procedure was
also carried out for 134Ba, and with numerous different
parameterizations in the DWBA calculations. The rms

spread with different parameterizations is included in the
estimate of the uncertainties.

The ν0g7/2 vacancy is very small. We set an upper
limit in this work of 0.15 nucleons, which is both com-
mensurate with the sensitivity to this strength in our
previous work [7] and to the uncertainties in the present
work. A 7/2+ state at 2.53 MeV in 137Ba has been re-
ported in the (p,d) study of Ref. [19], however, it was not
seen in the (p,d)-reaction studies of Refs. [21, 22], and was
surmised to be a weak ` = 2 state which would account
for its relatively weak population in the (3He,α)-reaction
study of Ref. [22]. In the present work, it is weakly pop-
ulated at a level of <10 µb/sr, an order of magnitude



6

weaker than the ν0h11/2 strength. An ` = 4 transition
with this Q value is poorly matched in angular momen-
tum, making the extraction of a spectroscopic factor less
reliable. In 135Ba, a state previously reported to be a
tentative 5/2 or 7/2+ assignment at 1.56 MeV was pop-
ulated in this work with a cross section of ∼20 µb/sr in
the (α,3He) reaction, again an order of magnitude weaker
than the ν0h11/2 strength. From the angular distribution

of the (3He,α) cross sections, an ` = 4 assignment looks
probable. Because of the very low cross sections and poor
momentum matching, we only assign an upper limit to
the vacancy of the ν0g7/2 orbit.

The vacancies for both 134Ba and 136Ba are given in
Table I. For 136Ba the change in neutron vacancy with
respect to 136Xe is shown in Fig. 3 along with recent
data on the proton occupancies [8]. The cross sections,
in absolute units for the case of the (α,3He) and (3He,α)
reactions and in arbitrary units in the case of the (p,d)
and (d,p) reactions, and spectra for each reaction, are
provided in the Supplemental Material [52]. The uncer-
tainties in this work hinge on those associated with the
extraction of the 0h11/2 strength. The systematic uncer-

tainties on the absolute cross sections for the (α,3He) and
(3He,α) are most likely dominated by uncertainties in the
angle of the spectrometer, the uniformity of the targets,
and the implementation of the Faraday cup and beam
current integrator. These are not trivial to estimate, and
so we place a conservative estimate of ∼20%. The rela-
tive uncertainties on the cross sections, target-to-target,
are smaller as all variables were kept the same bar the
target itself—these are estimated to be around 5%. Sta-
tistical uncertainties on the large peaks, the 11/2−, were
∼1% for the neutron removing and ∼5% for the neutron
adding, becoming >10% for peaks with cross sections
.20 µb/sr. For the (d,p) and (p,d) reactions, the statis-
tical uncertainties were less than 5% for peaks with cross
sections >0.2–4 mb/sr. The uncertainties in the summed
strength is driven largely by the DWBA analysis, which
yielded a spread of around ±0.15 nucleons in the ν0h11/2
strength. The rms spread in the ` = 0 and 2 vacancies
based on the DWBA analysis is � 0.1 nucleons and is
thus dominated by the uncertainties in the ν0h11/2 de-

rived from the (α,3He) and (3He,α) data. Because of the
relatively small values of the ν2s1/2 and ν1d strength,
we adopt the same uncertainty as the ν0h11/2 orbitals
for vacancies >0.5 nucleons, and assume 20% for values
<0.5 nucleons. The ν0g7/2 vacancy is left as an upper
limit and is not included in the sums.

Discussion. With 136Ba lying just two neutrons away
from N = 82, it is not surprising that the ν0h11/2 ac-
counts for a large fraction of the vacancy as shown in

Fig. 3. Two of the three calculations also show that the
ν0h11/2 accounts for most of the vacancy. It is, however,
underestimated in all cases, most notably in the latest
shell-model calculations (SM2) [14]. To a small extent,
this is offset by the presence of some vacancy in the 0g7/2
orbital in all calculations, for which we set an upper limit
from the experiment comparable to that in all the theo-
retical calculations. This is similar to what was observed
in the case of 130Te → 130Xe. All available theoretical
calculations show significant changes in the vacancy of
both the ν0h11/2 and ν1d orbitals occur in the 0ν2β de-

cay of 136Xe, which is in contrast to the experimental
data. The changes in the ν0g7/2 and ν2s1/2 orbitals are
in relatively good agreement. The change in proton oc-
cupancies for both A = 130 and 136 systems are quite
similar [8], perhaps owing to the fact that they are both
close to the closed Z = 50 shell. For neutrons, they are
quite different. For A = 130, there is a large change in
the ν1d occupancy of around 1.25 nucleons, but far less
for A = 136 of around 0.25 nucleons, where the bulk of
the change is in the ν0h11/2 orbital. This may simply

reflect the proximity of 136Ba to N = 82.

Conclusion. These results, along with recent results on
the proton occupancies from Ref. [8], complete a descrip-
tion of the ground-state proton and neutron occupancies
for both 136Xe and 136Ba, the parent and daughter of the
0ν2β-decay candidate. Further, it completes the work on
three of the most promising candidates, 76Ge, 130Te, and
136Xe. Common to all these is that, in general, there are
significant discrepancies between a theoretical descrip-
tion of the ground-state occupancies and how they change
in the decay, and the experimental data. This highlights
an important deficiency in the calculations. Even if the
calculations of the nuclear matrix elements were insensi-
tive to the occupancies, if they do not correctly describe
the initial and final states, of which the occupancies pro-
vide a description, it is arguable that it is difficult to draw
conclusions about the reliability of the nuclear matrix el-
ement. The experimental data from this work provide
useful comparisons for new theoretical calculations.
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