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Abstract

We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed

in a previous paper [M. Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in

hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of

3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes one-

and two-pion exchange contributions without and with ∆-isobars in the intermediate states up

to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the

short-range part consists of contact interactions up to order Q4. The low-energy constants multi-

plying these contact interactions are fitted to the 2013 Granada database in two different ranges

of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and

nn singlet scattering length. Fits to these data are performed for three models characterized by

long- and short-range cutoffs, RL and RS respectively, ranging from (RL, RS) = (1.2, 0.8) fm down

to (0.8, 0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange

(contact) part of the potential.

PACS numbers: 21.30.-x, 21.45.-v
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I. INTRODUCTION

The understanding of the structure and reactions of nuclei and nuclear matter has been a

long-standing goal of nuclear physics. In this respect, few- and many-body systems provide

a laboratory for studying nuclear forces with a variety of numerical and computational

techniques. In recent years, rapid advances in ab initio few- and many-body methods,

such as no-core shell model (NCSM) [1, 2], coupled cluster (CC) [3, 4] and hyperspherical

harmonics (HH) [5–8] expansions, similarity renormalization group (SRG) approaches [9,

10], self-consistent Green’s function techniques [11, 12], and quantum Monte Carlo (QMC)

methods [13], in combination with the rapid increase in computational resources, have made

it possible to test conventional theories and new ones, such as chiral effective field theory

(χEFT), in calculations of nuclear structure and reactions.

During the last quarter century, χEFT, originally proposed by Weinberg in the early

1990’s [14], has been widely used for the derivation of nuclear forces and electroweak cur-

rents. Such a theory provides the most general scheme accommodating all possible inter-

actions among nucleons, ∆ isobars, and pions compatible with the relevant symmetries—in

particular chiral symmetry—of low-energy quantum chromodynamics (QCD), the underly-

ing theory of strong interactions. By its own nature, χEFT is organized within a given

power counting scheme and the resulting chiral potentials (and currents) are systematically

expanded in powers of Q/Λχ with Q � Λχ, where Q denotes generically a low momentum

and Λχ ∼ 1 GeV specifies the chiral-symmetry breaking scale (see Refs. [15, 16] for recent

review articles).

The power counting of χEFT indicates that nuclear forces are dominated by nucleon-

nucleon (NN) interactions, a feature which was already known before χEFT was introduced

but could be justified more formally with the advent of such a theory [14]. Many-body

forces are suppressed by powers of Q; however, the inclusion of three-nucleon forces (3N)

is mandatory at the level of accuracy now reached by few- and many-body calculations

(see [17, 18] and references therein for a comprehensive review on this topic). Being the

dominant contribution of the nuclear forces, a great deal of attention has been devoted to

the derivation and optimization of NN interactions.

About a decade ago, NN interactions up to next-to-next-to-next-to-leading order (N3LO

or Q4) in the chiral expansion were derived [19–28] and quantitative NN potentials were
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developed [29, 30] at that order. These N3LO NN interactions are separated into pion-

exchange contributions and contact terms. Pion-exchange contributions represent the long-

range part of the NN interactions and include at leading order (LO or Q0) the well-known

static one-pion-exchange (OPE) potential and at higher orders, namely next-to-leading

(NLO or Q2), next-to-next-to-leading (N2LO or Q3) and N3LO, the two-pion-exchange

(TPE) potential due to leading and sub-leading πN couplings. These sub-leading chiral

constants can consistently be obtained from low-energy πN scattering data [28, 31–33].

Also three-pion-exchange (3π) shows up for the first time at N3LO; in Refs. [21, 22], it was

demonstrated that the 3π contributions at this order are negligible. More recently two- and

three-pion exchange contributions that occur at N4LO (Q5) [34, 35] and N5LO (Q6) [36]

have been investigated.

Contact terms encode the short-range physics, and their strength is specified by unknown

low-energy constants (LECs). In order to fix these LECs, NN chiral potentials have been

confronted with the pp and np scattering databases up to lab energy of 300 MeV. These

databases have been provided by the Nijmegen group [37, 38], the VPI/GWU group [39],

and more recently the Granada group [40]. In the standard optimization procedure the

potentials are first constrained by fitting np and pp phase shifts, and then the fit is refined

by minimizing the total χ2 obtained from a direct comparison with the NN scattering data.

Entem and Machleidt [29] used their N3LO chiral potential to fit pp and np scattering data in

the Nijmegen database up to laboratory energy of 290 MeV with a total χ2/datum of 1.28.

Other available chiral potentials [30] have not been fitted to scattering data directly but

rather to phase shifts obtained in the Nijmegen analysis (the recent upgrade [35] of Ref. [30]

relies on this procedure, while in Refs. [34, 36] a study of peripheral phase shifts is carried

out with two- and three-pion exchange contributions up to order Q5 and Q6, respectively).

Recently, a different optimization strategy has been introduced by A. Ekstrom et al. [41].

This new approach is based on a simultaneous fit of the NN and 3N forces to low-energy

NN data, deuteron binding energy, and binding energies and charge radii of hydrogen,

helium, carbon, and oxygen isotopes. These authors considered the NN + 3N interaction

at N2LO, namely N2LOsat, where the NN sector is constrained by pp and np scattering

observables from the SM99 [39] database up to 35 MeV scattering energy in the laboratory

system with a total χ2/datum ≈ 4.3.
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The family of NN chiral interactions mentioned above are formulated in momentum-

space and have the feature of being strongly non-local in coordinate space, making them

not well-suited for certain numerical algorithms, for example QMC. Up to until recently,

QMC methods, such as variational Monte Carlo (VMC), Green’s function Monte Carlo

(GFMC) and auxiliary field diffusion Monte Carlo (AFDMC), have been used to compute

the properties of light nuclei with mass number A ≤ 12, closed shell nuclei 16O and 40Ca,

and nucleon matter by using phenomenological nuclear Hamiltonians based on the Argonne

v18 (AV18) two-nucleon potential [42] and the Urbana/Illinois (U/IL) series of three-nucleon

potentials [43–46]. While QMC has had great success in predicting many nuclear properties,

such as spectra, electromagnetic form factors, electroweak transitions, low-energy scattering

and response, nevertheless it has been limited to realistic Hamiltonians based on the AV18

and U/IL models and other simpler local interactions. The reason is that local coordinate-

space interactions are particularly convenient for QMC techniques, and the AV18 and U/IL

models fall into this category, while many of the available NN chiral interactions have strong

non-localities. These non-localities come about because of (i) the specific choice made to

regularize the momentum space potential, and (ii) contact interactions that depend not only

on the momentum transfer k = p′ − p but also on K = (p′ + p)/2 (p and p′ are the initial

and final relative momenta of the two nucleons).

Local chiral interactions were developed up to N2LO (or Q3) [47, 48] only recently. These

interactions are regularized in coordinate space by a cutoff depending only on the relative

distance between the two nucleons, and use Fierz identities to remove completely the de-

pendence on the relative momentum −i∇ (or equivalently K), by selecting appropriate

combinations of contact operators. The LECs multiplying these contact terms have been

fixed by performing χ2 fits to the np phase shifts from the Nijmegen partial-wave analysis

(PWA) up to 150 MeV lab energy. The resulting chiral potentials have been used in GFMC

calculations for A ≤ 5 nuclei and AFDMC calculations of neutron matter [48–50]. While this

Fierz re-arrangement is effective in completely removing non-localities at N2LO, it cannot

do so at N3LO. As shown in Ref. [51], operator structures depending quadratically on −i∇

are unavoidable, and therefore the potentials constructed in Ref. [51] belong to the class of

“minimally non-local” chiral potentials at N(3)LO, where, hereafter, the notation N(3)LO

implies that these interactions include the short-range part up to N3LO and the long-range

part up to N2LO (see discussion in Sec.II).
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In the present work we construct fully local versions of these minimally non-local NN

potentials [51] by dropping the terms proportional to ∇2, and use them in HH, VMC and

GFMC calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The

paper is organized as follows. In the next section we summarize the main points of Ref. [51],

and then proceed to discuss the modifications adopted in this work in order to construct the

new class of local potentials. In Sec. III we provide the χ2 values obtained by performing

different types of fits, show the calculated phase shifts for the lower partial waves (S, P,

and D waves), and compare these phase shifts to those from recent PWA’s. There we also

provide tables of the pp, np and nn effective range parameters and deuteron properties. In

Sec. IV the HH, VMC and GFMC methods are briefly described and results for the binding

energies of A= 3, 4, and 6 nuclei are discussed. Clearly, the N(3)LO calculations reported

here with only two-body forces are incomplete, since three-body forces start to come in

at N2LO. Nevertheless, they provide the basis for the calculations of light nuclei structure

based on chiral two- and three-body forces (including ∆-isobar degrees of freedom in the

intermediate states) which will follow.

II. LOCAL CHIRAL NN POTENTIALS

Following Ref. [51], the local NN potential constructed in the present work is written as a

sum of an electromagnetic-interaction component, vEM12 , and a strong-interaction component,

v12. The vEM12 interaction is the same as that used in the AV18 potential [42], while the v12

one is obtained in χEFT and is conveniently separated into long- and short-range parts,

respectively vL12 and vS12. The vL12 part includes the one-pion-exchange (OPE) and two-

pion-exchange (TPE) contributions up to N2LO (or Q3) in the chiral expansion. The TPE

component also contains diagrams involving ∆-isobars in intermediate states [51]. It should

be noted that strict adherence to power counting would require inclusion of additional one-

loop as well as two-loop TPE and three-pion exchange contributions at order Q4. These

contributions have been neglected, since they are known to be small (see, for example,

Ref. [16]). Furthermore it is the LECs at Q4 (denoted as Di in the tables below) that are

critical for a good reproduction of phase shifts in lower partial waves, particularly D-waves,

and a good fit to the NN database [16] in the 0–200 MeV range of energies considered in

the present study.
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The strength of this long-range part is fully determined by the nucleon and nucleon-to-∆

axial coupling constants gA and hA, the pion decay amplitude Fπ, and the sub-leading N2LO

LECs c1, c2, c3, c4, and b3 + b8, constrained by reproducing πN scattering data [28]. Note

that the LEC (b3 + b8) is explicitly retained in our fitting procedure, even though it has

been shown to be redundant at this order [52]. Here and in what follows, we adopt the same

values for pion and nucleon masses, Fπ, gA and hA and the sub-leading N2LO LECs as listed

in Tables I and II of Ref. [51].

The potential vL12 can be written in coordinate space as a sum of 8 operators,

vL12 =

[
6∑
l=1

vlL(r)Ol
12

]
+ vσTL (r)OσT

12 + vtTL (r)OtT
12 , (1)

where

Ol=1,...,6
12 = [1 , σ1 · σ2 , S12]⊗ [1 , τ1 · τ2] , (2)

OσT
12 = σ1 · σ2 T12, and OtT

12 = S12 T12, and T12 = 3 τ1zτ2z − τ1 · τ2 is the isotensor operator.

The first 6 terms (the so-called v6 operator structure) in Eq. (1) are the charge-independent

(CI) central, spin, and tensor components without and with the isospin dependence τ1 · τ2,

while the last two terms (proportional to T12) are the charge-independence breaking (CIB)

central and tensor components induced by the difference between the neutral and charged

pion masses in the OPE. The radial functions vlL(r), vσTL (r), and vtTL (r) are explicitly given

in Appendix A of [51]. The singularities at the origin are regularized by cutoff functions of

the form

CRL
(r) = 1− 1

(r/RL)6 e(r−RL)/aL + 1
, (3)

where three values for the radius RL are considered, RL = (0.8, 1.0, 1.2) fm with the diffuse-

ness aL fixed at aL = RL/2 in each case.

The main difference between the potentials constructed in Ref. [51] and those in the

current work lies in the operator structure of their short-range components, which we now

take to have the form

vS12 =
16∑
l=1

vlS(r)Ol
12 , (4)

where Ol=1,...,6
12 have been defined above,

Ol=7,...,11
12 = L · S , L · S τ1 · τ2 , (L · S)2 , L2 , L2 σ1 · σ2 , (5)
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and

Ol=12,...,16
12 = T12 , (τ z1 + τ z2 ) , σ1 · σ2 T12 , S12 T12 , L · ST12 . (6)

The parametrization above differs in two ways from that of the minimally non-local potential

of Ref. [51]. The first difference concerns the p2 terms

{ vpS(r) + vpσS (r)σ1 · σ2 + vptS (r)S12 + vptτS (r)S12 τ1 · τ2 , p2 } ,

which are now absent in Eq. (4), i.e., the LECs mutliplying these contact terms are enforced

to vanish in the fits to follow. The second difference has to do with the charge-symmetry

breaking (CSB) piece of vS12, which, in contrast to Ref. [51], includes only the LO term

proportional to (τ z1 + τ z2 ) needed to reproduce the singlet nn scattering length.

The radial functions vlS(r) are the same as those listed in Appendix B of Ref. [51], and

involve a local regulator (to replace the δ functions) taken as

CRS
(r) =

1

π3/2R3
S

e−(r/RS)
2

, (7)

where we consider, in combination with RL = (0.8, 1.0, 1.2) fm, RS = (0.6, 0.7, 0.8) fm,

corresponding to typical momentum-space cutoffs ΛS = 2/RS ranging from about 660 MeV

down to 500 MeV. Hereafter we will denote the potential with cutoffs (RL, RS) = (1.2, 0.8)

fm as model a, that with (1.0, 0.7) fm as model b, and that with (0.8, 0.6) fm as model c.

These radial functions contain 26 LECs. Of these, 20 are in the charge-independent part

of vS12: 2 at LO (Q0), 7 at NLO (Q2), and 11 at N(3)LO (Q4). The remaining 6 are in its

charge-dependent part: 2 at LO (one each from CIB and CSB), and 4 at NLO from CIB. The

optimization procedure to fix these 26 LECs is the same as that adopted in Ref. [51], and is

discussed in the next section. It uses pp and np scattering data (including normalizations), as

assembled in the Granada database [40], the nn scattering length, and the deuteron binding

energy. The minimization of the objective function χ2 with respect to the LECs is carried

out with the Practical Optimization Using no Derivatives (for Squares), POUNDerS [53].

III. TOTAL χ2 AND PHASE SHIFTS

We report results for the local potentials v12 + vEM12 described in the previous section

and corresponding to three different choices of cutoffs (RL, RS): model a with (1.2, 0.8) fm,

model b with (1.0, 0.7) fm, and model c with (0.8, 0.6) fm. Models a, b, and c are fitted to the
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model order ELab (MeV) Npp+np χ
2/datum

b LO 0–125 2558 59.88

b NLO 0–125 2648 2.18

b N2LO 0–125 2641 2.32

b N(3)LO 0–125 2665 1.07

a N(3)LO 0–125 2668 1.05

c N(3)LO 0–125 2666 1.11

ã N(3)LO 0–200 3698 1.37

b̃ N(3)LO 0–200 3695 1.37

c̃ N(3)LO 0–200 3693 1.40

a N(3)LO 0–200 3690 2.41

b N(3)LO 0–200 3679 3.76

c N(3)LO 0–200 3679 4.52

TABLE I: Total χ2/datum for model a (ã) with (RL, RS) = (1.2, 0.8) fm, model b (b̃) with (1.0, 0.7)

fm, and model c (c̃) with (0.8, 0.6) fm fitted up to 125 (200) MeV laboratory energy. For model

b, results of the fits up to 125 MeV order by order in the chiral expansion are also given; Npp+np

denotes the total number of pp and np data, including observables and normalizations. The last

three rows list the χ2/datum obtained (without refitting) with models a, b, and c over the energy

range 0–200 MeV.

Granada database of pp and np observables in two different ranges of laboratory energies,

either 0–125 MeV or 0–200 MeV, to the deuteron binding energy and nn singlet scattering

length. For convenience potential models a, b, and c fitted up to 200 MeV laboratory energy

are labelled as ã, b̃ and c̃, respectively. We list the total number of pp and np data (including

normalizations) and corresponding total χ2 per datum for all the potentials in Table I. The

total number of data points, Npp+np, changes slightly for each of the various models because

of fluctuations in the number of normalizations (see Ref. [51] for more details on the fit

procedure). For model b we performed fits of the Granada database up to 125 MeV order

by order in the chiral expansion. The total χ2/datum are 59.88, 2.18, 2.32 and 1.07 at LO,

NLO, N2LO and N(3)LO, respectively. There is a strong reduction in the total χ2 going
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from LO and NLO and from N2LO and N(3)LO. However, the quality of the fit worsens

slightly in going from NLO to N2LO. At N2LO we fixed the chiral LECs, namely c1, c2, c3,

c4 and b3 + b8, from the πN scattering analysis of Ref. [28]. In the range 0–125 MeV, the

total χ2/datum at N(3)LO are 1.05, 1.07, 1.11 for models a, b, and c, respectively; while

in the range 0–200 MeV the total χ2/datum at N(3)LO are 1.37, 1.37, 1.40. The total

χ2/datum at N(3)LO for models a, b, and c when compared (without refitting) to the 0–200

MeV database are 2.41, 3.76, 4.52, respectively. In both energy ranges, the quality of the

fits deteriorates slightly as the (RL, RS) cutoffs are reduced from the values (1.2,0.8) fm of

model a down to (0.8,0.6) fm of model c.

The fitted values of the LECs corresponding to models a, b, c and ã, b̃, c̃ are listed in

Tables II and III, respectively. The values for the πN LECs in the OPE and TPE terms of

these models are given in Table I of Ref. [51].

The np and pp S-wave, P-wave, and D-wave phase shifts for potential models fitted up to

125 MeV and 200 MeV laboratory energy are displayed in Figs. 1 and 2, respectively. The

top two panels of these figures show the phase shifts for np in T = 1 and T = 0 channels,

respectively, while the remaining bottom panels show the pp phase shifts (in T = 1 channel).

The width of the shaded band represents the cutoff sensitivity of the phases obtained with

the full models a, b, and c, including strong and electromagnetic interactions. The calculated

phases are compared to those obtained in PWA’s by the Nijmegen [37], Granada [40], and

Gross-Stadler [54] groups. The recent Gross-Stadler PWA is limited to np data only.

In Fig. 3, the np (top panels) and pp (lower panel) S-wave, P-wave, and D-wave phase

shifts are displayed for model b up to 125 MeV lab energy order-by-order in the chiral

expansion. Dashed (blue), dash-dotted (green), double-dash-dotted (magenta), and solid

(red) lines represent the results at LO, NLO, N2LO and N(3)LO, respectively. Of course,

the description of the phase shifts improves substantially, as one progresses from LO to

N(3)LO. The low-energy scattering parameters are listed in Table IV, where they are

compared to experimental results [55–59]. The singlet and triplet np, and singlet pp and nn,

scattering lengths are calculated with the inclusion of electromagnetic interactions. Without

the latter, the effective range function is simply given by F (k2) = k cot δ = −1/a + r k2/2

up to terms linear in k2. In the presence of electromagnetic interactions, a more complicated

effective range function must be used; it is reported in Appendix D of Ref. [51], along with

the relevant references.
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FIG. 1: (Color online) S-wave, P-wave, and D-wave phase shifts for np in T=0 and 1 states (top

two panels) and pp (lower panel), obtained in the Nijmegen [37, 38], Gross and Stadler [54], and

Granada [40] PWA’s, are compared to those of models a, b, and c, indicated by the band.
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FIG. 2: (Color online) Same as Fig. 1 but for models ã, b̃, and c̃ fitted to 200 MeV lab energy.

The static deuteron properties are shown in Table V and compared to experimental val-

ues [60–63]. The binding energy Ed is fitted exactly and includes the contributions (about

20 keV) of electromagnetic interactions, among which the largest is that due to the mag-
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FIG. 3: (Color online) Chiral expansion of the np (top two panels) and pp (bottom panel) S-wave, P-

wave, and D-wave phase shifts up to 125 MeV for model b in comparison with the Nijmegen [37, 38],

Gross and Stadler [54], and Granada [40] PWA’s. Dashed (blue), dash-dotted (green), double-

dash-dotted (magenta), and solid (red) lines show the results at LO, NLO, N2LO and N(3)LO,

respectively.
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TABLE II: Values of the LECs corresponding to potential models a, b, c (fitted up to 125 MeV lab

energy). The notation (±n) means ×10±n.

LECs Model a Model b Model c

CS (fm2) 0.2726141(+1) 0.8038124(+1) 0.1858356(+2)

CT (fm2) −0.5228448 −0.1203741(+1) −0.6118406(+1)

C1 (fm4) −0.6992838(−1) −0.2280422 −0.5624246

C2 (fm4) −0.1496013 −0.2249889 −0.3529711

C3 (fm4) −0.2502401(−1) −0.4007665(−1) −0.2225345

C4 (fm4) −0.2728396(−1) 0.1243960(−1) 0.3381613(−1)

C5 (fm4) −0.6530008(−2) −0.1870727(−1) −0.2881762(−1)

C6 (fm4) −0.7554924(−1) −0.7406609(−1) −0.6535759(−1)

C7 (fm4) −0.1017206(+1) −0.1197452(+1) −0.1464748(+1)

D1 (fm6) −0.4251199(−1) −0.3820959(−1) −0.2163208(−1)

D2 (fm6) −0.5567938(−2) −0.5343034(−2) 0.2866318(−2)

D3 (fm6) −0.1666607(−1) −0.1601394(−1) −0.1472287(−1)

D4 (fm6) 0.1054347(−2) 0.4219347(−2) 0.1052796(−2)

D5 (fm6) 0.5383828(−2) 0.8971752(−2) 0.7477159(−2)

D6 (fm6) −0.8012050(−2) −0.5986245(−2) −0.2247046(−2)

D7 (fm6) −0.2309392(−1) −0.6180197(−2) 0.3616700(−1)

D8 (fm6) 0.1383136(−1) 0.1782567(−1) 0.2903320(−1)

D9 (fm6) 0.4797012(−1) 0.3094851(−1) 0.9175910(−1)

D10 (fm6) −0.1156876 −0.8073891(−1) −0.1229688

D11 (fm6) −0.1453295(−1) −0.1162060(−1) −0.2671576(−1)

CIV
0 (fm2) 0.9325477(−2) 0.1018989(−1) 0.1357818(−1)

CIT
0 (fm2) 0.1578240(−1) 0.2416591(−1) 0.2195881(−1)

CIT
1 (fm4) −0.2179452(−2) −0.3707396(−2) −0.2698274(−2)

CIT
2 (fm4) −0.6288540(−2) −0.3601899(−2) −0.1288174(−2)

CIT
3 (fm4) −0.5799803(−2) −0.4559006(−2) −0.3126089(−3)

CIT
4 (fm4) 0.2250167(−1) 0.1859997(−1) 0.8987538(−2)
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TABLE III: Same as Table II but for potential models ã, b̃, c̃ (fitted up to 200 MeV lab energy).

LECs Model ã Model b̃ Model c̃

CS (fm2) 0.2936041(+1) 0.8398499(+1) 0.1858331(+2)

CT (fm2) −0.4933897 −0.1207696(+1) −0.6116424(+1)

C1 (fm4) −0.1013462 −0.2324413 −0.5565484

C2 (fm4) −0.1444844 −0.2108143 −0.3574422

C3 (fm4) −0.3647634(−1) −0.3461629(−1) −0.2266117

C4 (fm4) −0.1630825(−1) 0.8748772(−2) 0.3921168(−1)

C5 (fm4) −0.6658100(−2) −0.3614304(−1) −0.2661419(−1)

C6 (fm4) −0.6176835(−1) −0.5542581(−1) −0.6532432(−1)

C7 (fm4) −0.9578191 −0.1019849(+1) −0.1465875(+1)

D1 (fm6) −0.3102824(−1) −0.1193597(−1) −0.2144023(−1)

D2 (fm6) −0.4438695(−2) −0.4450346(−2) 0.1386494(−2)

D3 (fm6) −0.1351171(−1) −0.9542801(−2) −0.1620926(−1)

D4 (fm6) −0.7084459(−3) 0.3976205(−2) 0.2071219(−2)

D5 (fm6) 0.1110108(−1) 0.7809205(−2) 0.7238077(−2)

D6 (fm6) −0.8598857(−2) −0.7362895(−2) −0.2323562(−2)

D7 (fm6) −0.5367908(−1) −0.4158494(−2) 0.3065351(−1)

D8 (fm6) 0.3119241(−1) 0.1090986(−1) 0.2957488(−1)

D9 (fm6) 0.3281636(−1) 0.6095858(−3) 0.9135194(−1)

D10 (fm6) −0.8647128(−1) −0.5432144(−1) −0.1196465

D11 (fm6) −0.1167788(−1) −0.5186422(−2) −0.3065569(−1)

CIV
0 (fm2) 0.9575695(−2) 0.1077541(−1) 0.1312712(−1)

CIT
0 (fm2) 0.2194758(−1) 0.2102140(−1) 0.1394723(−1)

CIT
1 (fm4) −0.1550501(−2) 0.1152693(−3) −0.8965197(−2)

CIT
2 (fm4) −0.8354679(−2) −0.1391786(−2) −0.3079018(−2)

CIT
3 (fm4) −0.6682746(−2) −0.3194459(−3) 0.3905867(−4)

CIT
4 (fm4) 0.1276971(−1) 0.2879873(−2) 0.8844043(−3)
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TABLE IV: The singlet and triplet np, and singlet pp and nn, scattering lengths and effective

ranges corresponding to the potential models a, b and c (fitted up to 125 MeV lab energy), and ã,

b̃, c̃ (fitted up to 200 MeV lab energy). Experimental values are from Refs. [55–59].

Experiment Model a Model b Model c Model ã Model b̃ Model c̃

1app −7.8063(26) −7.776 −7.774 −7.769 −7.775 −7.770 −7.769

−7.8016(29)

1rpp 2.794(14) 2.780 2.771 2.754 2.774 2.760 2.753

2.773(14)

1ann −18.90(40) −18.896 −18.921 −18.966 −18.904 −19.009 −18.919

1rnn 2.75(11) 2.825 2.815 2.795 2.819 2.801 2.794

1anp −23.740(20) −23.722 −23.739 −23.741 −23.758 −23.754 −23.740

1rnp 2.77(5) 2.666 2.686 2.684 2.642 2.682 2.683

3anp 5.419(7) 5.424 5.424 5.423 5.399 5.394 5.424

3rnp 1.753(8) 1.761 1.760 1.770 1.727 1.720 1.773

netic moment term. The asymptotic S-state normalization, AS, deviates less than 1% from

the experimental data, and the D/S ratio, η, is ∼ 2 standard deviations from experiment

for all models considered. The deuteron (matter) radius, rd, is under-predicted by about

0.2−1.0%. It should be noted that this observable has negligible contributions due to two-

body electromagnetic operators [64]. The magnetic moment, µd, and quadrupole moment,

Qd, experimental values are underestimated by all models, but these observables are known

to have significant corrections from (isoscalar) two-body terms in nuclear electromagnetic

charge and current operators [64]. Their inclusion would bring the calculated values consid-

erably closer to experiment.

Finally, we observe that inclusion of the p2-dependent terms would have improved only

marginally the fits to the database in the energy range 0–200 MeV. For example, in the case

of the b̃ model the value of the χ2/datum would have been reduced from the current 1.37 to

1.34. The present fits in the range 0–125 MeV already have χ2/datum close to 1 (in fact less

than 1.1 for models a and b), and are therefore to be considered statistically satisfactory.

However, apart from the small improvement that the p2-dependent terms would bring to the

total χ2 in the fit to the NN scattering data, the effect of these terms on nuclear observables

15



has not been studied.

TABLE V: Same as in Table IV but for the deuteron static properties; experimental values are

from Refs. [60–63].

Experiment Model a Model b Model c Model ã Model b̃ Model c̃

Ed (MeV) 2.224575(9) 2.224574 2.224573 2.224576 2.224574 2.224568 2.224570

AS(fm−1/2) 0.8846(9) 0.8862 0.8861 0.8874 0.8811 0.8799 0.8877

η 0.0256(4) 0.0249 0.0248 0.0250 0.0247 0.0245 0.0250

rd (fm) 1.97535(85) 1.968 1.968 1.971 1.956 1.955 1.971

µd (µ0) 0.857406(1) 0.850 0.849 0.850 0.850 0.850 0.849

Qd (fm2) 0.2859(3) 0.268 0.267 0.269 0.263 0.256 0.269

Pd (%) 5.24 5.49 5.32 5.22 5.21 5.35

IV. HH AND QMC CALCULATIONS FOR LIGHT NUCLEI

The study of light nuclei is especially interesting since it provides the opportunity to test,

in essentially exact numerical calculations, models of two- and three-nucleon forces. In this

section, we briefly discuss the HH and QMC methods adopted here for the accurate or exact

solution of the few-nucleon Schrödinger equation, H Ψ = EΨ, where Ψ is a nuclear wave

function with specific spin, parity and isospin. We then present results for the binding ener-

gies and rms radii of the A= 2–6 nuclei with a Hamiltonian H including the nonrelativistic

kinetic energy in combination with the two-body potentials v12 of Sec. II. In particular for

our calculations we use nuclear wave functions corresponding to models a, ã and b, b̃, whose

LECs are specified in Tables II and III.

The HH method is used to calculate the ground-state energies of 3H and 4He and these

results provide a benchmark for the corresponding QMC calculations. The QMC methods

are then applied to compute binding energies and rms radii of the 3He ground state, of the

6Li and 6He ground and excited states.
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A. The Hyperspherical Harmonics Method

The HH method uses hyperspherical-harmonics functions as a suitable expansion basis

for the wave function of an A-body system. In the specific case of A= 3 and 4 nuclei, the

corresponding ground-state wave functions ΨJπ

A (Jπ being the total angular momentum and

parity) can be expanded in the following way:

Ψ
1/2+

3 =
∑
[K3]

u[K3](ρ3)B[K3](Ω3) , (8)

and

Ψ0+

4 =
∑
[K4]

u[K4](ρ4)B[K4](Ω4) . (9)

Here B[K3](Ω3) and B[K4](Ω4) are fully antisymmetrized HH-spin-isospin functions for three

and four nucleons characterized by the set of quantum numbers [K3] ≡ [n1, l1, l2, L, s, S, t, T ]

and [K4] ≡ [n1, n2, l1, l2, l3, l
′, L, s, s′, S, t, t′, T ] respectively. The quantum numbers ni, li and

l′ enter in the construction of the HH vector and are such that the grand angular momenta

are K3 = 2n1 + l1 + l2 and K4 = 2n1 +2n2 + l1 + l2 + l3. The orbital angular momenta li (and

l′ for A = 4) are coupled to give the total orbital angular momentum L. The total spin and

isospin of the vector are indicated with S and T , respectively, and s, s′, t, t′ are intermediate

couplings. A detailed description of the HH method with the explicit expression of the

HH-spin-isospin functions can be found in Refs. [65–68].

The hyperspherical coordinates (ρA,ΩA) in Eqs. (8) and (9) are given by the hyperradius,

ρ2A =
∑A−1

i=1 x2
i expressed in terms of the A–1 Jacobi vectors xi of the systems, and the

hyperangles ΩA = (x̂1 . . . x̂A−1, α2 . . . αA−1), with x̂i being the unit Jacobi vectors and αi

the hyperangular variables. For A = 3, cosα2 = x2/ρ3, and for A = 4, cosα2 = x2/
√
x21 + x22

and cosα3 = x3/ρ4 [68].

In the present application of the HH method, the hyperradial functions are in turn ex-

panded in terms of generalized Laguerre polynomials multiplied by an exponential function

uµ(ρA) =
∑
m

Cm,µ L(3A−4)
m (z) e−z/2 , (10)

with z = βρA, β being a nonlinear parameter, and µ ≡ [KA]. Introducing the above

expansion in Eqs. (8) and (9), we can rewrite ΨJπ

A in the compact form

ΨJπ

A =
∑
m,µ

Cm,µ Φm,µ(ρA,ΩA) , (11)
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where the (normalized) complete antisymmetric vectors are

Φm,µ(ρA,ΩA) = L(3A−4)
m (z)e−z/2B[KA](ΩA). (12)

The ground state energy E is obtained by applying the Rayleigh-Ritz variational principle,

which leads to the following eigenvalue-eigenstate problem∑
m′,µ′

(Hmµ,m′µ′ − EImµ,m′µ′) = 0 (13)

where Hmµ,m′µ′ are the Hamiltonian matrix elements 〈mµ|H|m′µ′〉 and Imµ,m′µ′ indicates the

matrix elements of the identity matrix. The convergence of the energy E in terms of the size

of the basis is studied as follows. The HH functions are collected in channels having specific

combinations of the HH-spin-isospin quantum numbers. For the three-nucleon system the

basis includes all possible combinations of HH functions up to l1+ l2 = 6 corresponding to 23

angular-spin-isospin channels with isospin components T = 1/2, 3/2. For each channel the

hyperangular quantum number n1 and hyperradial quantum number m are increased until

convergence is reached at a level of accuracy of the order of a few keV on the sought energy

eigenvalue. In the case of A= 4 all possible combinations of HH functions up to l1+l2+l3 = 6

having T = 0 are included, while for the wave function components having T > 0 HH-spin-

isospin states up to l1 + l2 + l3 = 2 are considered. This selection corresponds to about

234 angular-spin-isospin channels. For each channel the hyperangular quantum numbers

n1, n2 and hyperradial quantum number m are increased until convergence is reached at a

satisfactory level of accuracy. Detailed studies of the convergence have been done in Ref. [67],

showing that with this kind of expansion an accuracy of about 20 keV can be obtained for

the 4He ground state energy.

B. Quantum Monte Carlo Methods

Over the last three decades, QMC methods have been successfully used to study the

structure and reactions of light nuclei and nucleonic matter starting from phenomenologi-

cal interactions. The extensive use of these ab-initio methods for computing many of the

important properties of light nuclei, such as spectra, form factors, radiative and weak tran-

sitions, low-energy scattering and electroweak response, has led to a rather large number

of references, where detailed descriptions of QMC algorithms, as well as tests of their ac-

curacy, have been described in detail and discussed at length (see, for example, the review
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article [13] and references therein for a complete overview of the topic). In this section we

briefly outline those features of QMC techniques relevant for the implementation of these

methods with the present chiral (and local) NN potentials at N(3)LO.

The QMC calculations proceed in two steps. The first step is the variational Monte

Carlo (VMC) calculation, in which trial wave functions are optimized by minimizing the

Hamiltonian. The second consists of the Green’s function Monte Carlo (GFMC) calculation,

in which the exact wave functions of the nuclear Hamiltonian are projected out of these

optimized trial wave functions by evolving them in imaginary time.

In VMC calculations, one assumes a suitably parametrized form for the antisymmetric

wave function ΨT of a given spin, parity and isospin and optimizes the variational parameters

by minimizing the energy expectation value, ET ,

ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

≥ E0 , (14)

which is evaluated by Metropolis Monte Carlo integration [69]. The lowest value for ET is

then taken as the approximate ground-state energy. Upper bounds to energies of excited

states can also be obtained, either from standard VMC calculations if they have different

quantum numbers from the ground state, or from small-basis diagonalizations if they have

the same quantum numbers.

The “best” variational wave functions ΨT for the nuclei studied in the present work have

the form [70]

|ΨT 〉 = S
A∏
i<j

(1 + Uij) |ΨJ〉 , (15)

where S is the symmetrization operator. The Jastrow wave function ΨJ is fully antisym-

metric and has the (Jπ;T ) quantum numbers of the state of interest, while Uij are the

two-body correlation operators. The correlation functions in Uij are obtained by solving

two-body Euler-Lagrange equations projected in pair spin S and isospin T channels, and for

finite nuclei are required to satisfy suitable boundary conditions [70]. Since the calculations

carried out here are with only two-body interactions, three-body correlations induced by

three-body interactions are not explicitly accounted for in ΨT .

In order to find the optimum ΨT , the minimization of the energy expectation value and

its associated variance are carried out with respect to the variational parameters. In the

case of A= 6 nuclei, the optimization of the energies is subject to the constraint that the
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rms radii are close to the GFMC ones obtained with the AV18. This is because the best

variational wave functions we have do not make p-shell nuclei stable against breakup into

sub-clusters.

Given the best set of variational parameters, the trial wave function ΨT can then be used

as the starting point of a GFMC [71, 72] calculation which projects out of it the exact lowest

energy state Ψ0 with the same quantum numbers. The projection of Ψ0 is carried out by

evolving for long imaginary time τ = −i t

|Ψ0〉 ∝ lim
τ→∞
|Ψ(τ)〉 = lim

τ→∞
e−(H−E0) τ |ΨT 〉 , (16)

with the obvious initial condition |Ψ(τ=0)〉 = |ΨT 〉. In practice the imaginary-time evolution

operator exp[−(H−E0) τ ] is computed for small time steps ∆τ with τ =n∆τ , and is carried

out with a simplified version H ′ of the full Hamiltonian H. In the presence of only NN

interactions the Hamiltonian H ′ contains a charge-independent eight-operator projection,

[1 , σ1 · σ2 , S12 ,L · S]⊗ [1 , τ1 · τ2], of the full two-body potential, constructed to preserve

the potential in all S and P waves as well as the 3D1 and its coupling to the 3S1.

The desired expectation values of ground-state and low-lying excited-state observables

are then computed approximately by stochastic integration of “mixed” matrix elements [75]

〈O(τ)〉M =
〈Ψ(τ)|O|ΨT 〉
〈Ψ(τ)|ΨT 〉

, (17)

where O is the observable of interest to be evaluated. By writing Ψ(τ) = ΨT + δΨ(τ) and

neglecting terms of order [δΨ(τ)]2, one obtains an approximate expression for

〈O(τ)〉 ≡ 〈Ψ(τ)|O|Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉

≈ 〈O(τ)〉M + [〈O(τ)〉M − 〈O〉V] , (18)

where 〈O〉V is the variational expectation value.

In the case of the Hamiltonian, since the propagator commutes with it, the mixed estimate

〈H(τ)〉M of Eq. (17) is itself an upper bound to the the ground-state energy E0 and can be

expressed as [75]

E(τ) = 〈H(τ)〉M =
〈Ψ(τ/2)|H|Ψ(τ/2〉
〈Ψ(τ/2)|Ψ(τ/2)〉

. (19)

Because the simpler H ′ is used to generate the GFMC propagator the total energy is then

computed by the mixed estimate of H ′ plus the difference 〈H−H ′〉M evaluated by Eq. (18).

Apart from the use of mixed estimates and H ′ in the propagation, another source of

systematic errors that affects GFMC calculations is the well-known fermion sign problem.
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In essence this results from the fact that during the imaginary-time propagation bosonic

noise gets mixed into the propagated wave function. This bosonic component has a much

lower energy than the fermion component and thus is exponentially amplified in subsequent

iterations of the short-time propagators. The desired fermionic component is projected

out by the antisymmetric ΨT when Eq. (17) is evaluated; however, the presence of large

statistical errors which increase with τ effectively limits the maximum τ that can be used

in the calculations. Since the number of pairs to be exchanged grows with the mass number

A, the sign problem also grows exponentially with increasing A.

For spin- and isospin-dependent wave functions, the fermion sign problem can be con-

trolled by a suitable constrained path approximation, which basically limits the propagation

to regions where the propagated |Ψ(τ)〉 and trial |ΨT 〉 wave functions have a positive over-

lap and discards those configurations that instead have a negative or vanishing overlap (see

Ref. [76] for details on this topic). To address the possible bias that the constrained path

technique can introduce in the calculations, all the configurations, including those that are

being rejected, for the previous nuc (typical 10−20) time steps are used when evaluating

expectation values. In general the number nuc is chosen to be as large as possible within a

reasonable statistical error.

For phenomenological nuclear Hamiltonians (such those based on the AV18 potential) the

constrained-path approximation was not necessary for calculations of A ≤ 4 systems, since

the sign problem was quite mild for these light nuclei. On the other hand, it is essential

for GFMC calculations with the N(3)LO NN chiral interactions of Sec. II, since the sign

problem is far more severe for this category of potentials.

C. Results for binding energies

In this section we present results for ground and excited states of 3H, 3He, 4He, 6He, and

6Li nuclei using a subset of the local chiral potentials discussed in Sec. II. In particular, in

order to solve the 3H and 4He ground states, we use VMC, GFMC, and HH methods with

N(3)LO NN models a, ã, b and b̃, while for 3He, 6He, and 6Li ground and excited states we

present VMC and GFMC calculations performed with model b̃ only.

The variational wave functions used for the VMC results include only spatial and spin-

isospin two-body correlations denoted by Uij as in Refs. [70, 75]; the Jastrow wave functions
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for the s-shell (A= 3 and 4) and p-shell (A= 6) nuclei are also given explicitly in those refer-

ences. For these calculations, the search in parameter space is made using COBYLA (Con-

strained Optimization BY Linear Approximations) algorithm available in the NLopt [73]

library. The optimal parameters are found typically using runs of 100,000 configurations

for the evaluation of matrix elements in Eq. (14). When the optimal trial wave function is

found, a long run with 1,000,000, 500,000, and 200,000 configurations is made in A= 3, 4 and

6 nuclei, respectively, which then is used as input for the GFMC calculations. The GFMC

results are obtained using the constrained path technique with nuc = 20 unconstrained time

steps. The imaginary-time evolution for the a and b̃ models (ã and b ones) is computed with

small time step ∆τ = 0.0005 (0.0001) MeV−1 up to total time τ = 0.2 MeV−1.

The results for the 3H and 4He ground states are shown in Tables VI and VII, respectively.

The VMC calculations give energies that are 3–4% above the corresponding HH or GFMC

predictions; the latter are in good agreement with each other. The errors quoted for the

VMC and GFMC results are the Monte Carlo statistical errors. We see that increasing the

laboratory energy range, in which the LECs are fitted, from 125 to 200 MeV (as discussed

in Sec. III), leads to more binding for these systems.

In Table VIII we present the GFMC calculations for the 3H and 4He ground-state en-

ergies and rms proton radii at LO, NLO, N2LO and N(3)LO in the chiral expansion for

potential model b. At LO we find that the nuclei are significantly overbound: by as much

as 5 MeV (for 3H) and 27 MeV (for 4He) more bound of their corresponding experimental

values, E0 = −8.482 MeV (for 3H) and E0 = −28.30 MeV (for 4He). The NLO contribution

is an important correction to the LO results. At this order the 3H and 4He become, respec-

tively, ∼1 MeV and ∼5 MeV underbound compared to their experimental values. At N2LO

and N(3)LO the nuclei are still underbound, but getting closer to experiment. The N2LO

contributions are small relative to the NLO ones and the N(3)LO corrections to the N2LO

results are almost negligible within the statistical errors.

In Table IX we report VMC and GFMC calculations for 3H, 3He, 4He, 6He, and 6Li

ground and excited states obtained using model b̃, which has, among the N(3)LO local

potentials presented in Sec. II, the “best” behavior in terms of sign problem. In that table

we also report the corresponding GFMC calculation obtained with the AV18. We note that

for A = 3, 4 and 6 the binding energies obtained using model b̃ differ by about 0.2 – 0.3

MeV, 1.07 MeV, and 1.3 – 0.5 MeV, respectively, from the corresponding ones obtained using
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Model a Model ã Model b Model b̃

Method E0

√
〈r2p〉 E0

√
〈r2p〉 E0

√
〈r2p〉 E0

√
〈r2p〉

VMC –7.592(6) 1.65 –7.691(6) 1.62 –7.317(7) 1.68 –7.643(5) 1.63

GFMC –7.818(8) 1.62 –7.917(10) 1.60 –7.627(17) 1.65 –7.863(8) 1.57

HH –7.818 –7.949 –7.599 –7.866

TABLE VI: The 3H ground-state energies E0 (MeV) and rms proton radii rp (fm) with models a,

ã, b, and b̃. Statistical errors on the energy evaluations are indicated in parentheses for the VMC

and GFMC calculations.

Model a Model ã Model b Model b̃

Method E0

√
〈r2p〉 E0

√
〈r2p〉 E0

√
〈r2p〉 E0

√
〈r2p〉

VMC –24.38(1) 1.51 –25.03(1) 1.49 –22.89(2) 1.54 –24.46(2) 1.49

GFMC –25.13(5) 1.49 –25.71(3) 1.50 –23.88(5) 1.53 –25.21(4) 1.45

HH –25.15 –25.80 –23.96 –25.28

TABLE VII: Same as in Table VI but for the 4He ground state.

AV18.

The optimization of the 3He ground state has been performed using as starting point the

variational parameters for 3H, but varying only the separation energies and tensor/central

ratios—these parameters characterize the asymptotic boundary conditions imposed on the

pair-correlation functions [70]. The calculated VMC energy, as shown in Table IX, is ∼ 0.2

MeV above the GFMC one.

The ground state of 6He, not bound with respect to the 4He threshold with model b̃ or

AV18, is a (Jπ, T ) = (0+; 1) state which has predominantly a 2S+1L[n] = 1S[42] character (we

use spectroscopic notation to denote the orbital angular momentum L, the spin S and the

Young diagram spatial symmetry [n] of the state). The (2+; 1) first excited state, mostly a

1D[42] state, is above the threshold for decay to α + 2n with a width of ≈ 100 keV and we

treat it as a stable state. For both states we allow a possible 3P[411] admixture in the total

wave function, and then use generalized eigenvalue routines to diagonalize the resulting 2×2

matrix for each of them and extract the corresponding contributions, 1S[42] and 3P[411] for
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3H 4He

Model order E0

√
〈r2p〉 E0

√
〈r2p〉

b LO –13.407(9) 1.23 –55.53(1) 0.90

b NLO –7.379(4) 1.69 –23.04(2) 1.55

b N2LO –7.574(9) 1.65 –23.95(3) 1.52

b N(3)LO –7.627(17) 1.65 –23.88(5) 1.53

TABLE VIII: GFMC calculations order by order in the chiral expansion for 3H and 4He ground-

state energies E0 (MeV) and rms proton radii rp (fm) obtained using model b. Statistical errors

on the energy evaluations are indicated in parentheses. The experimental binding energy and rms

proton radius are E0 = −8.482 MeV and
√
〈r2p〉 = 1.58 fm for 3H [13] and E0 = −28.30 MeV and√

〈r2p〉 = 1.462 fm for 4He [13].

the (0+; 1) ground state, and 1D[42] and 3P[411] for the (2+; 1) excited state. We do not

report the calculated energies for the three 3P[411] states with (Jπ, T ) = (2+; 1), (1+; 1), and

(0+; 1) since they have yet to be identified experimentally.

The p−shell spectrum for 6Li consists of a (1+; 0) ground state which is mostly a 3S[42]

state, a triplet of 3D[42] excited states with (3+; 0), (2+; 0), and (1+; 0) components, and

a singlet of 1P[411] excited state with a (1+; 0) component, the latter not yet identified

experimentally. The 6Li ground state is stable while the excited states are above the α + d

threshold, but we treat them as bound states here. In addition there are (0+; 1) and (2+; 1)

excited states that are the isobaric analogs of the 6He states, but they will not be discussed

here. For the (1+; 0) ground and excited states we allow admixtures of 3S[42], 3D[42] and

1P[411] components in the total wave function and then diagonalize a 3×3 matrix to extract

the corresponding contributions. This diagonalization procedure is not necessary for the

(3+; 0) and (2+; 0) excited states since both of them are pure 3D[42] states. The energies

of the 3D[42] triplet give a measure of the effective one-body spin-orbit splitting. The J-

averaged centroids for both model b̃ and AV18 are 3.6 MeV above their respective ground

states; however the spread between lowest and highest triplet members is 1.5 MeV for model

b̃ and 2.1 MeV for AV18.

The minimization of the energy for the 6Li ground state has been carried out by requiring

the resulting proton rms radius, rp, to be close to the GFMC one obtained with the AV18.
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TABLE IX: The 3H, 3He, 4He, 6He, and 6Li ground- and excited-state energies in MeV and proton

rms radii rp in fm with model b̃ compared with the corresponding GFMC results obtained with

the AV18. Statistical errors on the energy evaluations are indicated in parentheses.

VMC GFMC GFMC(AV18)

AZ(Jπ;T ) E0

√
〈r2p〉 E0

√
〈r2p〉 E0

√
〈r2p〉

3H(12
+

; 1
2) –7.643(5) 1.63 –7.863(8) 1.57 –7.610(5) 1.66

3He(12
+

; 1
2) –6.907(5) 1.84 –7.115(9) 1.84 –6.880(5) 1.85

4He(0+; 0) –24.46(2) 1.49 –25.21(4) 1.45 –24.14(1) 1.49

6He(0+; 1) –22.58(3) 2.05 –24.53(6) 2.07(1) –23.76(9) 2.06(1)

6He(2+; 1) –20.94(2) 2.06 –22.87(6) 2.18(2) –21.85(9) 2.11(1)

6Li(1+; 0) –25.86(3) 2.58 –27.71(8) 2.62(1) –26.87(9) 2.58(1)

6Li(3+; 0) –22.73(3) 2.59 –24.56(8) 2.59(1) –24.11(7) 2.87(1)

6Li(2+; 0) –21.42(3) 2.61 –24.04(9) 2.79(2) –22.75(11) 2.63(1)

6Li(1+2 ; 0) –20.42(3) 2.58 –23.09(11) 2.89(2) –21.99(12) 2.85(3)

For the excited states, we minimize their energies by requiring that these excited states have

radii only slightly larger than the ground state. A similar optimization strategy has been

adopted for the 6He ground and excited states, except that we use as starting point the 6Li

variational parameters and vary only those parameters associated with the single-particle

radial functions, φp, in the Jastrow part of the trial wave function [75].

V. SUMMARY AND CONCLUSIONS

In the present work we have constructed two classes of chiral potentials at N(3)LO, which

are fully local in configuration space, for use (primarily) with HH and QMC methods. The

two classes only differ in the range of lab energies over which the LECs in the contact

interactions have been fitted to the NN database (as assembled by the Granada group),

either 0–125 MeV (models a, b, and c) with χ2/datum . 1.1 for a total of about 2700 data

points or 0–200 MeV (models ã, b̃, and c̃ ) with χ2/datum . 1.4 for about 3700 data points

(representing an increase of roughly 40% in the size of the fitted database relative to the

0–125 MeV case). Within a given class, models a, b, and c (or ã, b̃, and c̃ ) have different
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short-range and long-range cutoff radii, respectively RL and RS: (RL, RS) = (1.2, 0.8) fm for

models a and ã, (1.0, 0.7) fm for models b and b̃, and (0.8, 0.6) fm for models c and c̃. The

cutoff radius RL regularizes the long-range part of the potential, which includes OPE and

TPE terms without and with excitation of intermediate ∆ isobars as illustrated in Fig. 1

of Ref. [51]. The cutoff radius RS provides a range to the δ-functions and their deriva-

tives, which characterize the contact interactions in the short-range part of the potential.

These contact interactions require a total of 26 independent LECs, 20 of which occur in the

charge-independent (CI) component and 6 in the charge-dependent (CD) one (5 for central,

tensor and spin-orbit CIB terms, and 1 for a central CSB term). These 26 LECs are then

constrained by the fits above (their values are listed in Tables II and III).

A subset of the potentials—a, ã, b, and b̃—have been used in HH, VMC, and GFMC

calculations of binding energies and proton rms radii of nuclei with A= 2–6. The GFMC

calculations are rather challenging owing to the serious fermion-sign problem associated with

these potentials, even for s-shell nuclei (3H, 3He, and 4He); this problem becomes especially

severe for models c and c̃, and they have not been used in the present work. However,

implementation of the constrained-path algorithm in the course of the imaginary-time prop-

agation substantially reduces the statistical fluctuations in the energy evaluation, and leads

to 3H and 3He ground-state energies in excellent agreement with those obtained in the HH

calculations. All present models, especially c and c̃ , have rather strong spin-orbit, quadratic

orbital angular momentum (L2), and quadratic spin-orbit components, particularly in the

(S, T ) = (1, 0) channel: for internucleon separation close to zero, they have values of ∼ 2800

MeV, ∼ 200 MeV, and ∼ 460 MeV respectively, in this channel. While these components

vanish for nucleon pairs in relative S-wave, they do so, in the course of a GFMC imaginary-

time propagation, only by averaging large values of opposite signs, thus producing large

fluctuations.

The models ã and b̃ produce more binding in A= 3 and 4 nuclei than a and b; the extra

binding of model b̃ relative to b amounts to 5% in 4He. It appears that model b̃ leads to

ground- and excited-state energies of A= 3–6 nuclei, which are close to those calculated

with AV18. Clearly, the next stage in the program of studies of light nuclei structure with

chiral interactions we envision, is the inclusion of a three-nucleon potential. A chiral version

of it at leading order, including ∆-isobar intermediate states, has been developed, and is

currently being constrained by reproducing observables in the A= 3 systems.

26



We conclude by observing that a number of different groups [77–79] have developed

procedures which allow to assess, in a systematic way, the theoretical uncertainties inherent

to the use of chiral potentials. In the present work these uncertainties have been estimated

by investigating i) how the χ2/datum and 3H and 4He binding energies change as the long-

and short-range cutoffs are varied, ii) how these χ2/datum and binding energy values change

as the range of lab energy used in constraining the fits is extended from 125 MeV to 200

MeV, and iii) how for a fixed set of cutoffs (those of model b) the quality of the fit and the

3H and 4He ground-state energies improves with increasing order in the chiral expansion.
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