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Ab initio calculations provide direct access to the properties of pure neutron systems that are
challenging to study experimentally. In addition to their importance for fundamental physics, their
properties are required as input for effective field theories of the strong interaction. In this work,
we perform auxiliary-field diffusion Monte Carlo calculations of the ground and first excited state
of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field
theory interactions. We compare the results against exact diagonalizations and present a detailed
analysis of the finite-volume effects, whose understanding is crucial for determining observables from
the calculated energies. Using the Lüscher formula, we extract the low-energy S-wave scattering
parameters from ground- and excited-state energies for different box sizes.

I. INTRODUCTION

A major challenge of nuclear physics is the direct calcu-
lation of nuclear observables from the underlying theory
of quantum chromodynamics (QCD). The most promis-
ing strategy today towards this goal involves lattice QCD
calculations for small nuclei and a sequence of matching
steps to advanced few- and many-body methods based
on effective field theories (EFTs) for nuclear forces.

Solving QCD on a lattice of discretized space-time in
Euclidean space represents the only method to calculate
nuclear observables from the QCD Lagrangian [1]. Nu-
merical calculations are only feasible in a finite box where
the energy spectrum is discrete. Below the first inelas-
tic threshold, Lüscher [2, 3] established a direct connec-
tion between the scattering phase shifts in the infinite
volume and finite-volume energy levels for two-particle
scattering. The extension of this connection to the three-
particle sector is the subject of ongoing research (see, for
example, Refs. [4–7]). As a consequence, the scattering
parameters, such as the scattering length and effective
range, can be extracted from finite-volume energy levels
obtained from lattice QCD. However, as the Lüscher re-
sult corresponds to an EFT in which particles interact
only via contact interactions [8], it is not applicable to
the regime of nuclear physics where the non-analyticities
from pion exchange become important, i.e., where expo-
nential corrections start to set in.

Chiral EFT offers a framework to include explicit pi-
ons into the EFT for low-energy nucleons [9, 10]. It has
been very successful in the past years and is used exten-
sively to calculate the properties of nuclei, electroweak
transitions, and matter under extreme conditions [11–
16]. Chiral EFT is based on the chiral symmetry of QCD
and provides a systematic framework for nuclear forces;
in particular it predicts a hierarchy between two- and
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multi-nucleon forces as well as external currents. It is
therefore possible to obtain a generalization of Lüscher’s
result that includes pions by matching finite-volume re-
sults from chiral EFT interactions to lattice QCD calcu-
lations. This matching to chiral EFT is done through ad-
justment of so-called low-energy constants (LECs), which
incorporate the degrees of freedom that were integrated
out. Once the LECs are determined, one is able to cal-
culate phase shifts in the infinite volume using few- and
many-body methods to solve the Schrödinger equation.
In this way, scattering parameters in the infinite volume
can be obtained also from finite-volume calculations in
smaller boxes where pion exchanges become relevant.

Presently, the LECs in chiral EFT are fitted to ex-
perimental data, a strategy that fails in channels where
experimental data are scarce or even non-existent, such
as the three-neutron system. A future alternative strat-
egy consists of applying LECs matched to lattice QCD to
calculate other observables, which would provide a fully
QCD-based prediction for these observables. At present,
lattice QCD calculations for systems with more than one
nucleon are only available for non-physical quark masses.
However, if the quark masses are within the range of ap-
plicability of the chiral expansion, chiral EFT also allows
one to extrapolate to physical values and, in the process,
determine the LECs that govern the quark mass depen-
dence, which are largely unknown to date.

In this work, we perform finite-volume calculations of
two particles with chiral EFT interactions matched to ex-
perimental data. We focus on the neutron-neutron (nn)
system, motivated also by the fact that the corresponding
scattering length cannot be measured directly and con-
troversial data from indirect measurements would make
an independent ab initio verification particularly valu-
able [17]. Our long-term goal is to establish a technique
to match chiral nuclear interactions to data from lat-
tice QCD. This would allow the extraction of the LECs
which appear in chiral EFT directly from the lattice and
thus facilitate a path to calculate nuclear observables of
larger nuclei directly from QCD. To set the foundation
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for future work towards matching two- and higher-body
systems, we require a numerical method that is easily
scalable to many particles and is well suited to studies
in periodic boundary conditions. We use the auxiliary-
field diffusion Monte Carlo (AFDMC) method, since it
represents a very accurate method (see, for example,
Refs. [18, 19] for recent reviews), for which calculations
with chiral EFT interactions have become possible only
recently [20–24]. Furthermore, performing finite-volume
calculations is straightforward in Quantum Monte Carlo
(QMC) as coordinate space is intrinsically constrained. A
similar study on how to exploit input from lattice QCD
for determining LECs in pionless EFT using AFDMC
calculations can be found in Refs. [25, 26].

In this paper, we benchmark QMC calculations in a
finite volume for ground and excited states, both for
a contact potential as well as chiral EFT interactions.
In particular, we verify that QMC finite-volume calcula-
tions, by means of the Lüscher formalism, reproduce the
low-energy effective-range parameters corresponding to a
given nn potential. We thereby demonstrate that such
QMC calculations provide a reliable tool to establish a
bridge between lattice QCD calculations and chiral EFT,
in particular in kinematic configurations where the con-
sideration of pion exchanges becomes mandatory and the
Lüscher formula cannot be applied straightforwardly.

Generalizations of the Lüscher formalism to multi-
body systems prove to be fairly complex [4–7], to
the point that alternative strategies to extract infinite-
volume physics from finite-volume energy levels might be
welcome. For QMC methods to contribute in this direc-
tion, especially for channels where resonances may occur,
it is crucial that also excited states can be accessed, in or-
der to be able to identify the expected avoided level cross-
ing [27, 28]. This presents a challenge. Quantum Monte
Carlo was developed to solve the many-body Schrödinger
equation of a given system and find the lowest-energy
state. As this particular state is given by the bosonic
solution, nodal surfaces in the many-body wave function
have to be introduced, something which can only be done
approximately [18, 29, 30]. While an exact solution to
this problem is therefore not available at the moment, we
propose a strategy to obtain an approximate numerical
solution for the excited state. Although the nn system
strictly speaking does not exhibit a resonance, but only a
virtual state, the nn calculations presented in this paper
can be considered a first step towards this application.

This paper is organized as follows. A brief summary
of the Lüscher formula is presented in Sec. II. Section III
gives an overview of the AFDMC method for ground
and excited states. A special emphasis is placed on the
construction of trial wave functions that become impor-
tant for the calculation of excited states. In Sec. IV, we
present AFDMC results for finite-volume calculations of
nn energies for a contact potential as well as chiral EFT
interactions at different orders. Both ground states and
excited states are compared to results from the Lüscher
formula and also to exact diagonalizations. Based on

this, we analyze in detail the finite-volume effects and
deviations caused by pion exchanges. We then success-
fully extract scattering parameters from the finite-volume
results using the Lüscher formula. Finally, we conclude
in Sec. V.

II. LÜSCHER FORMULA

The very low-momentum properties of nucleon-nucleon
(NN) interactions can be efficiently described within a pi-
onless EFT [31–33]. Constrained to short-range interac-
tions the Lagrangian becomes a series of local operators
that consist of derivatives acting on nucleon fields. Ap-
plying dimensional regularization with power-divergence
subtraction [31], the scattering amplitude for two-body
elastic scattering can be written in terms of a single scalar
integral, whose divergent part becomes absorbed into the
renormalization of the LECs of the theory. In a box of
size L3 with periodic boundary conditions it is then pos-
sible to relate the energy eigenstates of the two-body sys-
tem to the S-wave phase shift δ0(p) in infinite volume.
The eigenvalues for the energy E = p2/M , with relative
momentum p and nucleon mass M , are given in terms of
solutions of the Lüscher formula [2, 3]1

p cot δ0(p) =
1

πL
S

((Lp
2π

)2
)
. (1)

S(η) can be defined as a regulated sum

S(η) = lim
Λ→∞

(∑
|j|<Λ

1

j2 − η
− 4πΛ

)
, (2)

which runs over all three-vectors of integers j with |j| < Λ.
A more detailed discussion of S(η) as well as its practical
implementation for a numerical evaluation are summa-
rized in Appendix A.

This form of the Lüscher formula emerges naturally
in pionless EFT when the loop integral is replaced by a
discrete sum over the momentum states allowed on the
lattice [8]. In this derivation, Eq. (1) strictly holds as
long as a description in pionless EFT is justified. Due
to the t-channel cut in the one-pion exchange, this re-
stricts its range of validity to |p| < mπ/2 in the complex
p-plane. However, as shown in Refs. [2, 3], corrections
to Eq. (1) for momenta below the first inelastic thresh-
old |p| <

√
mπM are suppressed by e−mπL, so that in

practice the relation can be used as long as mπL is suffi-
ciently large. In Ref. [34], the size of these corrections in

1 This version only holds for an S-wave projected potential, with
corrections entering at the level of G-waves. We considered the
corresponding generalized relation [2, 3] as well, but found the
corrections to be negligible due to the large suppression of the
physical G-wave phase shift.
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the two-nucleon system was estimated for EFT-inspired
potentials with pion exchange and contact interactions.

For low-energy NN scattering the first parameters of
the effective-range expansion, the scattering length a and
the effective range re, are sufficient for an accurate de-
scription of the phase shift

p cot δ0(p) = −1

a
+

1

2
rep

2 +O(p4) . (3)

Therefore, it is possible for a given scattering length and
effective range to predict the energies of ground and ex-
cited states in a finite volume. Vice versa, given a set
of data points {Ei,∆Ei} for the energy eigenvalues for
different box sizes Li one can determine the scattering pa-
rameters a and re that best fulfill Eq. (1), where the left-
hand side has been replaced by Eq. (3). In fact, whenever
energy levels become negative, Eq. (1) provides a con-
straint in the unphysical region that cannot immediately
be translated into a corresponding value for the phase
shift. In such cases, the effective-range expansion (3), in
addition to providing a convenient parameterization of
the phase shift, serves another purpose, namely that of
stabilizing the analytic continuation towards the physi-
cal region, which can only be performed if the functional
form is known. This situation is realized for the ground-
state energy of the two-neutron system.

Although Eq. (1) could still be used for mπ/2 < |p| <√
mπM provided the volume is sufficiently large, the va-

lidity of the analytic continuation based on the effective-
range expansion (3) is limited by the t-channel pion
exchange, which in the partial-wave projection gener-
ates cuts on the imaginary momentum axis starting at
p = ±imπ/2. Therefore, if points with |p| > mπ/2 were
to be included, these cuts would have to be accounted
for explicitly in the functional form used in the analytic
continuation. For this reason we restrict all fits in this
paper to points within the strict radius of convergence of
pionless EFT |p| < mπ/2.

Since S(η) is not invertible, it is not possible to directly
define a function E = E(L, a, re) which could be used in
a standard χ2-fit, so that we minimize instead

χ2 =

N∑
i=1

(
1
a −

1
2reMEi + 1

πLi
S
((

Li
2π

)2
MEi

))2

σ2
i

, (4)

with standard deviations obtained from Gaussian error
propagation

σ2
i =

[
−1

2
reM +

MLi
4π3

S′
((Li

2π

)2

MEi

)]2

(∆Ei)
2 , (5)

and S′(η) = dS(η)/dη. Parameter errors are estimated
from the Hessian

H =
1

2

(
∂2χ2

∂a2
∂2χ2

∂a∂re
∂2χ2

∂re∂a
∂2χ2

∂r2e

)∣∣∣∣
amin,(re)min

, (6)

according to

∆a =
√

(H−1)11 , ∆re =
√

(H−1)22 . (7)

Based on these equations we will demonstrate the fea-
sibility of an extraction of scattering parameters from
finite-volume QMC calculations in Sec. IV, for both a
contact potential as well as chiral EFT interactions.

III. QUANTUM MONTE CARLO

The AFDMC method has been successfully applied to
both homogeneous and inhomogeneous neutron matter
in the past decade (see Refs. [18, 19] for a summary of
results and a more detailed description of the method)
and more recently has shown promising progress towards
generalization to nuclear matter and nuclei [35]. In this
section we review the basic concepts of the AFDMC
method and how it was applied in the two-neutron sys-
tem. We give particular attention to the calculation of
excited states, which is in general a nontrivial task for
QMC methods.

The aim of diffusion Monte Carlo methods is to
solve the many-body Schrödinger equation by means of
stochastically projecting out the lowest-energy state from
a given trial wave function ψT ,

ψ(τ) = e−(H−ET )τψT , (8)

where the trial energy ET is a constant that is used to
control the normalization. In the limit of large imaginary
time τ = it, only the lowest-energy state not orthogonal
to ψT survives: ψ(τ → ∞) → ψ0. Therefore, the choice
of a trial wave function with symmetries appropriate to
the state under study is an important consideration, a
point to which we return when discussing the calcula-
tion of excited states. For strongly interacting many-
body systems it is not possible to calculate directly the
imaginary-time propagator

Gαβ(R,R′; τ) = 〈α,R|e−(H−ET )τ |β,R′〉 , (9)

where R = {r1, r2, . . . , rA} is the configuration vector of
the A nucleons and α, β are spin-isospin indices. How-
ever, in the small imaginary-time limit, the calculation is
tractable and the propagation is performed as a sequence
of small-time evolutions. Then, the realization of Eq. (8)
is given by the path integral (omitting the spin-isospin
labels)

ψ(RN , τ) =

∫ N−1∏
i=0

dRiG(Ri+1,Ri; ∆τ)ψT (R0) , (10)

where ∆τ is the small imaginary time step and the paths
Ri are sampled by Monte Carlo.

The AFDMC method takes as a basis state the tensor
product of the 3A coordinates of the A nucleons and
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the tensor product of the 4 complex amplitudes for each
nucleon to be in a state |s〉 = |p ↑, p ↓, n ↑, n ↓〉 . That is,

|RS〉 = |r1s1〉 ⊗ |r2s2〉 ⊗ · · · ⊗ |rAsA〉 . (11)

As a consequence of the choice of basis, the propagator
must contain, at most, linear operators in spin-isospin
space. Therefore, the Hubbard-Stratonovich transforma-
tion is used to linearize quadratic operators in the Hamil-
tonian

eO
2/2 =

1√
2π

∫ ∞
−∞

dx e−x
2/2exO , (12)

introducing the auxiliary fields x, which are Monte Carlo
sampled to perform the integrals. This choice provides
for polynomial scaling with nucleon number, as the spin-
isospin states are sampled instead of summed explicitly
as in, for example, the Green’s function Monte Carlo
method [18].

In this work, we take a Jastrow trial wave function,
which is a product of central correlations acting on a
Slater determinant of single-particle orbitals,

|ψJ〉 =
[∏
i<j

f c(rij)
]
|Φ〉 , (13)

with 〈RS|Φ〉 = A[〈r1s1|φ1〉 · · · 〈r2s2|φ2〉 · · · 〈rAsA|φA〉].
The Jastrow wave function incorporates the dominant
short-range central correlations into the wave function,
by a solution of the radial Schrödinger equation in the
given spin-isospin channel of the Hamiltonian. For neu-
trons in a cubic periodic box of volume L3, the single-
particle orbitals are taken as plane waves: φα(ri, si) =
eikα·riχs,ms(si), with kα = 2π

L nα and nα a vector of
integers. χs,ms denotes the spin eigenstates. For two
neutrons, only the lowest two states with k1 = k2 = 0
are occupied, leaving the Slater determinant 〈RS|Φ〉 in-
dependent of spatial coordinates.

Imposing periodic boundary conditions is equivalent
to identifying the end points of each Cartesian interval.
This implies that in coordinate space the potential in-
cludes, in addition to the original potential V (r), copies
from the surrounding boxes

V (r)→
∑
n∈Z3

V (r + nL) (14)

to preserve periodicity [2]. As long as the range of the
potential, characterized by the effective range re for ex-
ample, is small compared to the box size, re � L, the
higher terms in the sum in Eq. (14) can be safely ignored.
However, when the box size becomes comparable to the
range of the potential L ∼ re, these higher terms need to
be included in both the expectation value of the Hamil-
tonian and in the calculation of the propagator in order
to maintain the periodic boundary conditions. Below,
if necessary, we consider terms corresponding up to ei-
ther the nearest, second-to-nearest, and third-to-nearest

boxes around the original one and thereby check for con-
vergence of the sum in Eq. (14).

The calculation of excited states can be a challeng-
ing task for diffusion Monte Carlo methods. Since such
methods always project, out of a trial wave function, the
lowest-energy state of a given Hamiltonian, care must be
taken to ensure orthogonality to, for example, the ground
state (if the first excited state solution is sought). For nu-
clei, in many cases, the excited state which is desired has
quantum numbers distinct from the ground state. In this
case, all that is required is to construct a trial wave func-
tion with the appropriate quantum numbers [36]. How-
ever, in some cases, for example the Hoyle state of 12C,
the desired excited state has the same quantum numbers
as the ground state, and then more care in construct-
ing an appropriate trial wave function is required [37].
In the two-neutron system for low-energy scattering, we
consider only the case where the neutrons are in a singlet
spin state (1S0), which corresponds to the state described
by the Lüscher formula in Sec. II, and therefore the ex-
cited states possess the same quantum numbers as the
ground state. Such excited scattering states have not
been calculated previously using the AFDMC method.

The trial wave function for the first excited state cal-
culated here was determined as follows. We assume a
nodal surface defined by a particular relative distance
rnode between the two particles. Since our Slater deter-
minant is spatially independent, we introduce the node
in the central correlation of the Jastrow wave function
such that ψJ(rnode) = 0. This implies that there is no
angular dependence and the nodal surface is a sphere in
relative coordinates. The validity of this assumption and
an estimate for the related systematic error as well as an
improved nodal surface will be discussed later. To deter-
mine the nodal position, we adopt the iterative approach
described below.

Quantum Monte Carlo methods typically require lo-
cal potentials. For an eigenstate of a local Hamiltonian,
the solution of the Schrödinger equation must yield the
same energy independent of the coordinates at which
it is evaluated. Evaluating (Hψ(R))/ψ(R) where ψ is
the exact solution of the problem should therefore yield
the same energy for a configuration of the two parti-
cles R = {r1, r2} with relative distance r < rnode or
r > rnode. As a consequence, the node position can be
obtained by performing separate AFDMC simulations in
the two subspaces divided by the nodal surface and ad-
justing the node position such that the AFDMC energies
in the two subspaces agree. Each of these simulations
starts from initial configurations where all walkers are
placed in one of the two subspaces. For an arbitrarily cho-
sen node position the two simulations will yield different
energies. Moving the node position in the relative coordi-
nate such that the two independent simulations yield the
same energy within statistical uncertainties leads to the
results presented in the next section. As the constrained-
path approximation [38], which we use to tame the sign
problem, prohibits walkers from crossing the nodal sur-
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FIG. 1. (Color online) AFDMC results for the energy of two
neutrons in the ground state in finite volume with the con-
tact potential (15) for different box sizes L compared with
the Lüscher formula. C0 is adjusted to give the physical
nn scattering length a = −18.9 fm (closed circles/solid line)
and to give a very large scattering length a = −101.7 fm
(open circles/dashed line). The gray band shows a fit (as de-
scribed in the text) to the AFDMC results for a = −101.7 fm.
The energies are given in terms of the dimensionless quantity
q2 = EML2/(4π2).

face this is equivalent to performing a simulation in a
space which is limited to the region where the trial wave
function does not change sign.

IV. RESULTS

We perform AFDMC simulations of two neutrons in a
cubic box with periodic boundary conditions for both a
simple contact potential as well as chiral EFT interac-
tions. Both ground-state and first-excited-state energies
are calculated and compared to exact solutions derived
from the Lüscher formula in Eq. (1) with the effective
range expansion in Eq. (3). The box size was varied from
L = 5 fm to L = 50 fm.

A. Contact interaction

First, we consider a contact interaction independent of
spin and isospin operators smeared out by a regulating
function V (r) = C0δ(r)→ C0δR0

(r) with

δR0
(r) =

1

πΓ(3/4)R3
0

exp

[
−
( r

R0

)4
]
, (15)

where C0 is a constant and R0 = 1.0 fm determines the
range of the regulator [21].

This potential corresponds to the smeared-out con-
tact interaction which is used in the local chiral EFT
interactions considered in Sec. IV C. Furthermore, up to
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L [fm]

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

q
2

AFDMC, sph. node

AFDMC, non-sph. node

Diagonalization
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1st excited state

C
0
 physical a

FIG. 2. (Color online) AFDMC results for the energy of two
neutrons in the first excited state in finite volume with the
potential (15) for different box sizes L (red circles) compared
with the Lüscher formula (solid line). The error bars on
the AFDMC results with a spherical nodal surface include
both statistical uncertainties and a systematic uncertainty
of 1% discussed in the text in Sec. IV B. C0 is adjusted
to give the physical nn scattering length a = −18.9 fm.
The energies are given in terms of the dimensionless quan-
tity q2 = EML2/(4π2). Also shown are the energies calcu-
lated by exact diagonalization (blue diamonds) as discussed
in Sec. IV B.

the regulator, this potential corresponds to the interac-
tion underlying the derivation of the Lüscher formula de-
scribed in Sec. II. For our calculations we take L > R0 to
minimize the finite-cutoff effects. Results obtained using
this potential will serve as a benchmark for the AFDMC
method in the two-particle system since we expect agree-
ment with the Lüscher prediction up to statistical uncer-
tainties.

Table I compares results of both AFDMC and GFMC
methods for representative box sizes. The GFMC calcu-
lations reproduce the AFDMC results within uncertain-
ties, i.e., using the same number of configurations the
uncertainties in the two methods are similar. Therefore,
results will be shown only for the AFDMC method. Con-
cerning the convergence of the sum in Eq. (14), we found
for this potential that taking only the interaction in the
original box into account is sufficient, which is consistent
with the range of the potential.

Figure 1 compares the ground-state energies in terms
of the dimensionless quantity q2 = EML2/(4π2) ob-
tained from AFDMC simulations with the exact solu-
tions from the Lüscher formula for two different sets
of scattering parameters. In the first case we used
C0 = −2.2369 fm2, which corresponds to the physical
value for the nn scattering length of a = −18.9 fm
and an effective range re = 1.096 fm in infinite vol-
ume. The second case shows results for a potential with
C0 = −2.319 fm2 corresponding to a very large scat-
tering length of a = −101.7 fm and an effective range
of re = 1.074 fm. As can be seen, the agreement be-
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TABLE I. Comparison of ground-state results for two different
potentials with both the AFDMC and GFMC methods at
several box sizes L.

q2

potential L (fm) AFDMC GFMC

C0 physical a

5 −0.1001(3) −0.0999(1)

10 −0.0879(7) −0.0875(4)

20 −0.069(2) −0.070(1)

LO R0 = 1.0 fm

5 −0.1179(6) −0.1178(1)

10 −0.0931(6) −0.0940(4)

20 −0.079(2) −0.077(1)

tween Lüscher results and the AFDMC simulations of
the ground state is excellent over the full range of box
sizes considered. It is worth pointing out the precision
possible with the AFDMC method even at the extremely
low densities of 2/(50 fm)3 ∼ n0/104, with n0 the satu-
ration density of nuclear matter.

In future applications, one could take finite-volume re-
sults from lattice QCD calculations, extract scattering
parameters from them, and adjust LECs in chiral EFT
interactions to match these scattering parameters. Here
we demonstrate this idea by extracting the scattering pa-
rameters from the AFDMC results in several cases. We
propagate the estimated uncertainties from the AFDMC
simulations through the χ2-fit discussed in Sec. II and fit
the first two or three parameters of the effective range
expansion. In particular, in order to see how robust
the extraction of the infinite-volume scattering param-
eters from the AFDMC calculations is, we consider the
contact potential with the very large scattering length.
Here we performed a two-parameter fit to a and re us-
ing the ground-state data yielding a = −98(4) fm and
re = 1.066(7) fm which agree within the uncertainties
with the infinite-volume parameters given above. Fig-
ure 1 shows the corresponding Lüscher result. The large
uncertainty in the fitted scattering length of more than
4% could be reduced significantly when including more
data at L > 20 fm where a dominates the fit.

Results for excited state energies of two neutrons with
the contact potential with physical scattering length are
shown in Fig. 2. AFDMC results are shown for both a
spherical nodal surface as described in Sec. III and a non-
spherical nodal surface as will be introduced in Sec. IV B.
The AFDMC results from the spherical node are system-
atically above the Lüscher results by ∼ 1%; however, the
overall trend is correctly reproduced. The global devia-
tions can be understood when taking the assumption of
a spherical nodal surface into account. An analysis of
the systematic error related to this assumption will be
discussed in the following section. The results from the
non-spherical nodal surface reproduce the Lüscher results
very accurately.

Figure 2 also shows a fit to the combined data of all
AFDMC results for ground and excited states with the

improved nodal surface for the contact potential with
physical scattering length. For the fit the first three co-
efficients of the effective range expansion including the
shape parameter were taken into account. The sensi-
tivity to the shape parameter is largest for the states
with largest momentum p, which correspond to excited
states for small box sizes. As there are only a few of
these contained in the data set the shape parameter can-
not be determined with enough precision. The three-
parameter fit yields a reduced χ2 value of 0.74, a scat-
tering length of a = −19.0(1) fm and an effective range
of re = 1.081(5) fm. These both agree well with the
infinite-volume values given above. A more detailed dis-
cussion covering different aspects of extracting the scat-
tering parameters from finite volume energies of ground
and excited states is given in Sec. IV C.

B. Exact diagonalization and nodal surface

Diffusion Monte Carlo simulations do not provide di-
rect access to the propagated wave function. In order
to study the nodal structure of the wave function of two
neutrons in a box we diagonalize the Hamiltonian in an
appropriate basis. The computational effort can be min-
imized by choosing basis states satisfying the boundary
conditions of the system under study. We are interested
in the zero-total-momentum eigenstates of a cubic box
with periodic boundary conditions. Furthermore, since
we are limiting ourselves to S-wave states we only need
to take basis functions of even parity into account. A
convenient set of basis functions meeting these require-
ments is given by

ψ3D
nmk(r) = ψn(x)ψm(y)ψk(z) ,

ψn(x) =

√
2− δ0n
L

cos

(
2π

L
nx

)
, (16)

where n = 0, 1, 2, . . . and r = r1 − r2.
Exploiting further the cubic symmetry of the box,

which implies that the eigenstates have to remain invari-
ant under exchange of coordinates x, y, z, the number
of basis states can be reduced by defining symmetrized
states for n 6 m 6 k

ψ3D sym
nmk (x, y, z) = N

∑
{n,m,k}

ψ3D
nmk(x, y, z) ,

N =

 1/
√

6 for n 6= m 6= k

1/
√

12 for n = m 6= k
1/6 for n = m = k

, (17)

where the sum runs over all permutations of {n,m, k}.
The number of basis states implicitly set by nmax >
n,m, k has to be chosen such that the energy eigen-
states are converged. As the box size L grows, nmax

has to be increased as higher momentum states con-
tribute to the eigenstates. The calculations for L =



7

FIG. 3. (Color online) The nodal surfaces rnode(θ, φ) of the
first excited states of the contact potential (15) with the physi-
cal nn scattering length a = −18.9 fm for different box sizes L.
The wave functions from which the nodal surfaces are ex-
tracted are obtained via diagonalization. See text for details.

5, 10, 20, 30, 40, 50 fm presented here were performed us-
ing nmax = 10, 16, 32, 48, 54, 54, respectively. Solving the
eigensystem Hψ = Eψ yields the eigenstates ψgs and ψex

corresponding to the ground- and first-excited-state en-
ergies E0 and E1 in terms of the basis defined in Eq. (17),

ψgs/ex =
∑

n,m,k<nmax
n6m6k

c
gs/ex
nmk ψ

3D sym
nmk . (18)

The excited-state energies for the contact potential (15)
with the physical nn scattering length a = −18.9 fm are
shown in Fig. 2. The results for the excited state from the
diagonalization agree within 0.01% for L = 20, 30, 40 fm
with the exact results obtained from the Lüscher formula.
At L = 5 fm (L = 10 fm) a deviation of 1.6% (0.2%) from
the Lüscher result can be observed. For the small boxes,

0 2 4 6 8 10 12 14

l

0.001

0.01

0.1

1

c
l

L=10 fm

L=20 fm

L=30 fm

FIG. 4. (Color online) The coefficients cl of the decompo-
sition of the nodal surfaces in terms of cubic harmonics Y cl
as in Eq. (21) as a function of l. The coefficients for each
box size shown are normalized such that c0 = 1. The y-axis
is log scaled showing the power-law suppression of the two
coefficients c4 and c6 with comparison to c0.

especially for L = 5 fm, the range of the potential R0 and
the box size L are of the same order and the finite range
of the contact potential (15) becomes relevant. Hence, a
deviation from the Lüscher prediction is expected. For
L = 50 fm a deviation of ∼ 0.1% was obtained imply-
ing that nmax needs to be increased in order to reach
convergence.

The nodal surface rnode(θ, ϕ) can be extracted from
the wave function of the excited state by solving
ψex(rnode, θ, ϕ) = 0 for θ ∈ [0, π], ϕ ∈ [0, 2π]. Figure 3
shows the nodal surfaces for different box sizes. For the
contact potential (15) with the physical nn scattering
length a = −18.9 fm, the nodal surface is not spherical
for any box size and not even closed for box sizes of 5,
30, 40, and 50 fm. In order to estimate the systematic er-
ror caused by assuming spherical symmetry in the nodal
surface for the AFDMC simulations, we decomposed the
nodal surfaces in real spherical harmonics Ylm

rnode(θ, φ) =

∞∑
l=0

l∑
m=−l

clmYlm(θ, φ) . (19)

We found that the coefficients clm vanish for all l,m other
than l = 0, 4, 6, 8, ... and m = 0, 4, 8, ..., which suggests
that there is a more appropriate set of functions in which
one can expand the nodal surface. Indeed, in a cubic box
the rotation symmetry group is broken down to the cubic
symmetry group Oh. The irreducible representation of
Oh is given by combinations of spherical harmonics, so-
called cubic harmonics Y cl with

Y cl (θ, φ) =
∑

m=0,4,8,...

almYlm(θ, φ) , (20)

where the coefficients alm are given in Ref. [39]. We found
that for a given l the coefficients cl = clm

alm
agree for all
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|m| 6 l. Hence, as expected it is possible to expand the
nodal surface in terms of cubic harmonics,

rnode(θ, φ) =
∑
l

clY
c
l (θ, φ) . (21)

The corresponding coefficients cl for box sizes where the
nodal surface is closed (L = 10, 20 fm) and almost closed
(L = 30 fm) are shown in Fig. 4. Note that the coeffi-
cients are normalized such that c0 = 1. c0 being much
larger than cl for l > 4 justifies the approximation of
the nodal surface as a sphere used in the AFDMC simu-
lations as the spherical contribution from Y c0 dominates
the nodal surface. We do not perform the decomposi-
tion for the other box sizes since the holes in the surfaces
cause large uncertainties when decomposing into cubic
harmonics.

The radial solution of two-particle scattering problem
in infinite volume can be written in terms of spherical
Bessel functions jl(pr). For pr � 1, the Bessel functions
behave as jl(pr) ∼ (pr)l. In a cubic box the lowest pos-
sible momentum is p ∼ 1/L. As the excited states are
completely determined by the nodal surface, which in our
case is described by its radius rnode, naive dimensional
analysis suggests that we can identify r = rnode. Hence,
we expect that higher l contributions are suppressed by
(rnode/L)l when comparing to the leading contribution.
Indeed the coefficients c4 and c6, shown in Fig. 4, are
suppressed according to a power law compared to the
leading spherical contribution with l = 0.

Although this is no longer true for l > 6, the argument
can still serve as an estimate of the systematic uncer-
tainty introduced through the assumption of a spherical
nodal surface in the AFDMC simulations of the first ex-
cited state. A perturbative expansion of the energy in
terms of different l contributions to the wave function,

E = 〈ψl=0|H |ψl=0〉 + c24〈ψl=4|H |ψl=4〉 + . . . , (22)

implies a correction proportional to (c4)2 when assum-
ing that 〈ψl|H |ψl〉 is of the same order for all l. Taking
into account that the suppression seems to decrease with
higher l we estimate (c4)2 conservatively as being of the
order of 1% even though c4 ≈ 0.045 (see Fig. 4). There-
fore, an additional systematic error of 1% is added to
the statistical uncertainties from the QMC simulations
in Figs. 2 and 7.

Furthermore, it is clear that the nodal surfaces shown
in Fig. 3 are less spherical for box sizes where the sur-
face is not closed. This statement is supported by Fig. 4
where the coefficients for L = 30 fm are larger than
the other contributions. This matches the deviations
of AFDMC results with the spherical node from the
Lüscher predictions in Figs. 2 and 7, which are largest
for L = 5, 40, 50 fm.

Our diagonalization study suggests that a large im-
provement in our AFDMC results can be obtained by in-
corporating the first non-spherical contribution into the
nodal surface

rnode(θ, φ) = c0Y
c
0 (θ, φ) + c4Y

c
4 (θ, φ) . (23)

As discussed in Sec. III separate QMC runs were pre-
formed on the two sides of the nodal surface in order to
find an optimal set of parameters c0 and c4. Details on
how the non-spherical nodal surface was incorporated in
the Jastrow wave function can be found in Appendix B.

As can be seen in Fig. 2 the improved nodal surface
yields AFDMC results much closer to the Lüscher pre-
diction. However, one can see still some disagreement
between the three methods employed (diagonalization,
AFDMC, and Lüscher) at the smallest box size consid-
ered L = 5 fm. The results coming from the exact diago-
nalization and the AFDMC results should agree well, as
they do for larger box sizes. That they do not suggests
that our improved nodal surface is likely missing higher-
order Y cl contributions and the associated uncertainties
might be underestimated. Since the Lüscher results are
based on the effective range expansion, while the diago-
nalization uses the full potential, deviations at large en-
ergies (corresponding to small box sizes) are expected as
soon as the effective range expansion is no longer accu-
rate enough to describe the phase shift.

C. Chiral EFT interactions

In this section, we present results for the different local
chiral EFT potentials from Ref. [21]. To avoid large sta-
tistical uncertainties, QMC simulations require interac-
tions where all momentum dependencies up to quadratic
terms can be separated. This requirement is met by lo-
cal potentials [18]. However, chiral EFT interactions are
usually formulated in momentum space and are typically
nonlocal. Local chiral NN potentials have been developed
recently up to next-to-next-to-leading order (N2LO) in
the chiral power counting and applied in calculations of
neutron matter, light nuclei, and neutron-alpha scatter-
ing using continuum QMC methods [20–24].

Table I compares results for the leading chiral potential
for both GFMC and AFDMC methods. As discussed be-
fore, uncertainty estimates are very similar and we limit
our plots to results from the AFDMC method.

The range of the chiral potentials exceeds the range of
the contact potential in Eq. (15). A check for convergence
showed that for box sizes up to L = 20 fm inclusion of
copies of the original box up to the second-to-nearest is
required to reach truncation uncertainties comparable to
the statistical errors, while beyond L = 20 fm at most
the nearest copies need to be included.

In Fig. 5 we show results of AFDMC simulations which
were performed using the chiral leading-order (LO) po-
tential for R0 = 1.0 fm and R0 = 1.2 fm, correspond-
ing to cutoffs of 500 MeV and 400 MeV in momentum
space, respectively. The corresponding scattering lengths
and effective ranges were obtained by calculating phase
shifts in the infinite volume. Similar to the previous cases
we compare Lüscher results using the scattering param-
eters to AFDMC results for different box sizes. Figure 6
shows results for the chiral NLO and N2LO potentials
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for R0 = 1.0 fm. In all cases the overall agreement for
box sizes L > 10 fm is excellent, while the AFDMC re-
sults for ground-state energies at L = 5 fm start to de-
viate from the Lüscher prediction. In Fig. 7 results for
the excited states of the chiral LO potential for both
a spherical nodal surface as described in Sec. III and a
non-spherical nodal surface as introduced in Sec. IV B are
shown. While the spherical node over-predicts at large
L, the improved nodal surface yields results consistent
with the Lüscher prediction in this region. However, in
this context it is worth pointing out that for the chiral
potentials the nodal surfaces tend to be more deformed
than for the contact potential, which implies that the un-
certainties for the small boxes are likely underestimated.

As discussed in Sec. II the analytic continuation of the
Lüscher formula is limited to the threshold of pionless
EFT |p| < mπ/2. Figures 5, 6 and 7 show the corre-
sponding maximal value for q2. The absolute values of
the AFDMC energies for L = 5 fm (ground states) and
L = 5, 10 fm (excited state) for the different chiral po-
tentials exceed the threshold of pionless EFT, and hence
the (exponentially suppressed) disagreement is to be ex-
pected. In the end, this effect reflects the necessity of
the inclusion of pions in the effective theory for the cor-
rect description of processes where momenta are of the
order of the pion mass. However, we find that the size
of the corrections is smaller than naively expected: for
the smallest box size with mπL = 3.5 the leading ef-
fect should scale as c1e

−mπL = 18% [34], where c1 = 6
denotes the multiplicity of nearest neighbors, but the ac-
tually observed deviation merely amounts to about 3%.
This finding could be related to the observation in [34]
that for a realistic NN potential the effective scale in the
exponent can exceed the pion mass, leading to a stronger
suppression than expected from the one-pion exchange
alone.

Figure 8 shows phase shifts obtained by solving Eq. (1)
for the AFDMC results for the excited state with the LO
chiral potential shown in Fig. 7 (red circles and orange
squares). A direct extraction of phase shifts from finite-
volume energies is only possible for states with E > 0
as only the effective-range expansion provides an ana-
lytic continuation to imaginary momenta corresponding
to bound states. We compare the AFDMC results to the
phase shifts obtained by solving the nn scattering prob-
lem for the same chiral LO potential in infinite volume
(black line). As in Fig. 7, the overall trend is correctly
reproduced by both spherical and non-spherical node re-
sults. We show again in gray the region for which mo-
menta exceed the regime of pionless EFT, |p| > mπ/2.
The AFDMC data with a spherical node underestimate
the phase shift over the whole region. The improved
nodal surface yields phase shifts in very good agreement
with the infinite-volume phase shift at small momenta.
Beyond the regime of pionless EFT the results are still
too low but are significantly closer to the phase shift than
the spherical node results. We also show the phase shift
obtained from the effective range expansion with the first

0 10 20 30 40 50 60

L [fm]

-0.12

-0.11

-0.10

-0.09

-0.08

-0.07

-0.06

-0.05

q
2

AFDMC, LO R0=1.0 fm

Lüscher, a=−18.9 fm, re=2.01 fm

AFDMC, LO R0=1.2 fm

Lüscher, a=−18.9 fm, re=2.15 fm

ground state

FIG. 5. (Color online) AFDMC results for the energy of two
neutrons in the ground state in finite volume with the LO
chiral EFT interaction compared with the Lüscher formula
for different box sizes L. The cutoffs R0 = 1.0 fm (red cir-
cles/solid line) and R0 = 1.2 fm (blue diamonds/dashed line)
are used. The energies are given in terms of the dimensionless
quantity q2 = EML2/(4π2). The region where |p| > mπ/2 is
indicated by the gray band, see Sec. II.

0 10 20 30 40 50 60

L [fm]

-0.13

-0.12

-0.11

-0.10

-0.09

-0.08

-0.07

-0.06

-0.05

q
2

AFDMC, NLO R0=1.0 fm

Lüscher, a=−18.9 fm, re=2.71 fm (NLO)

AFDMC, N2LO R0=1.0 fm

Lüscher, a=−18.9 fm, re=2.79 fm (N2LO)

Lüscher fit to ground state, N2LO, a=−18.8(3) fm

ground state

FIG. 6. (Color online) AFDMC results for the energy of two
neutrons in the ground state in finite volume with the NLO
and N2LO chiral EFT interactions with cutoff R0 = 1.0 fm
compared with the Lüscher formula for different box sizes L.
The results at NLO (N2LO) are given as the red circles/solid
line (blue diamonds/dashed line). The dark gray band shows
a fit (as described in the text) to the AFDMC results for the
N2LO chiral potential. The energies are given in terms of
the dimensionless quantity q2 = EML2/(4π2). Points in the
region |p| > mπ/2 indicated by the gray band are not included
in the fit, see Sec. II.

two parameters a = −18.9 fm and re = 2.01 fm (dashed
line) as used for the Lüscher result in Fig. 7. For mo-
menta above the strict range of validity, the AFDMC
results are larger than the phase shift from the truncated
effective range expansion. This corresponds to Fig. 7
where these points lie below the Lüscher result.
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0 10 20 30 40 50 60
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0.76

0.78
q

2

AFDMC, sph. node

AFDMC, non-sph. node

Lüscher, a=−18.9 fm, re=2.01 fm

Lüscher fit, a=-19.1(3) fm

1st excited state

LO R0=1.0 fm

FIG. 7. (Color online) AFDMC results for the energy of
two neutrons in the first excited state in finite volume with
the LO chiral EFT interaction with cutoff R0 = 1.0 fm (red
circles) compared with the Lüscher formula (solid line) for
different box sizes L. The error bars on the AFDMC re-
sults with a spherical nodal surface include both statisti-
cal uncertainties and a systematic uncertainty of 1 % dis-
cussed in the text in Sec. IV B. The dark gray band shows
a combined fit (as described in the text) to the ground- and
first-excited-state AFDMC results for the LO chiral potential.
The energies are given in terms of the dimensionless quantity
q2 = EML2/(4π2). Points in the region |p| > mπ/2 indicated
by the gray band are not included in the fit, see Sec. II.

V. CONCLUSIONS

In this work, we have presented first results for the two-
neutron finite-volume ground- and first-excited states us-
ing AFDMC, both for a contact potential and chiral EFT
interactions. To extract the excited-state energy we used
an approximate method based on an iterative determi-
nation of the nodal surface of the excited-state wave
function, with systematic uncertainties estimated by di-
rect diagonalization of the contact-potential Hamilto-
nian. Having obtained the exact nodal surfaces through
the diagonalization we incorporated non-spherical nodal
surfaces in the AFDMC method, which significantly im-
proves results for the excited states. Using Lüscher’s
method to extract the scattering length and effective
range from fits to the finite-volume energy levels of the
ground and excited state, we found good agreement with
the scattering parameters determined directly in infinite
volume, which demonstrates the viability of the AFDMC
approach for the calculation of the finite-volume two-
particle spectrum.

In this way, our work establishes QMC techniques as a
powerful method for the matching of chiral EFT and lat-
tice QCD results. By equating the finite-volume energy
levels one can directly determine the LECs in the chi-
ral potential without the necessity of first extracting the
infinite-volume phase shift. Advantages of this procedure
concern the fact that it evades limitations of the Lüscher

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

p [fm-1]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

 δ
0
(p

)

AFDMC, sph. node

AFDMC, non-sph. node

δ0(p) chiral LO

ERE with a=−18.9 fm, re=2.01 fm

LO R0=1.0 fm, excited state

FIG. 8. (Color online) 1S0 nn phase shift δ0(p) from AFDMC
results for the first excited state in finite volume with the LO
chiral EFT interaction with cutoff R0 = 1.0 fm with spherical
nodal surface (red circles) and non-spherical nodal surface
(orange squares) compared with the phase shift obtained from
nn scattering in infinite volume (solid line). The error bars
on the AFDMC results include both statistical uncertainties
and a systematic uncertainty of 1 % discussed in the text in
Sec. IV B. The dashed line shows the phase shift obtained
from the effective range expansion (ERE) with a = −18.9 fm
and re = 2.01 fm. The region where |p| > mπ/2 is indicated
by the gray band, see Sec. II.

formula for small volumes and should generalize straight-
forwardly to the multi-body system, to avoid the com-
plexity typically inherent in the extension of Lüscher’s
approach beyond the two-body sector. For the extrac-
tion of resonance properties along these lines, we antic-
ipate control over excited states to be essential, so that
also in this regard the recovery of the virtual state in the
two-neutron system as reflected by the large scattering
length, both in the ground- and first-excited state, can
be considered a successful proof of principle.

ACKNOWLEDGMENTS

We thank J. A. Carlson, Z. Davoudi, A. Rusetsky,
M. J. Savage, K. E. Schmidt, S. R. Sharpe, and K. A.
Wendt for helpful discussions. This work was supported
in part by the ERC Grant No. 307986 STRONGINT, the
Deutsche Forschungsgemeinschaft through Grant SFB
1245, the US Department of Energy Grant Nos. DE-
AC52-06NA25396 and DE-FG02-00ER41132, the Na-
tional Science Foundation Grant No. PHY-1430152
(JINA-CEE), the NUCLEI SciDAC program, the LANL
LDRD program, and the Natural Sciences and Engineer-
ing Research Council of Canada. The computations were
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Appendix A: Evaluation of S(η)

The definition of S(η) that appears in Eq. (2) can
be evaluated numerically, however, in practice it con-
verges relatively slowly. A more efficient approach used
in Ref. [2] relies on Poisson’s summation formula as well
as the fact that S(η) equals the analytic continuation of

Z00(s, η) =
∑
j

1

(j2 − η)s
, Re s >

3

2
, (A1)

for s→ 1, which leads to

S(η) =
∑
j2<η

1

j2 − η
+

∫ 1

0

dt F 1
00(t, η)

+

∫ ∞
1

dt F00(t, η) +

1∑
i=0

(
Ai
i+ 1

+
Bi

i− 1
2

)
, (A2)

where

F 1
00(t, η) =−

∑
j26η

et(η−j
2) +

(
π

t

)3/2

etη
∑
j

e−
π2

t j2

−
1∑
i=0

(Ait
i +Bit

i−3/2) ,

F00(t, η) =
∑
j2>η

e−t(j
2−η) ,

Ai =− 1

i!

∑
j26η

(η − j2)i ,

Bi =π3/2 η
i

i!
. (A3)

This representation accelerates convergence exponen-
tially and can be easily implemented using standard in-
tegration routines.

Appendix B: Jastrow wave function for
non-spherical nodal surfaces

The Jastrow wave function ψJ(r) commonly used in
QMC simulations is given by the solutions of the radial
Schrödinger equation with the central part of the poten-
tial. The solutions are required to meet the following
boundary conditions:

ψJ(0) = u0 ,

ψJ(L/2) = 1 ,

ψ′J(0) = 0 ,

ψ′J(L/2) = 0 , (B1)

where u0 is a constant. Furthermore, for the ground state
trial wave function it is required that there be no nodes
in ψJ(r).

The spherical nodal surface was implemented by con-
structing a Jastrow function with a single node. This
was achieved by writing the Jastrow in terms of a sum of
different solutions of the radial Schrödinger equation

ψsph
J (r) = N(ψ1

J(r)− c ψ0
J(r)) , (B2)

where N denotes a normalization constant and the super-
script in ψiJ(r) denotes the number of nodes. By changing
the parameter c it is possible to adjust the position rnode

of the node such that ψsph
J (rnode) = 0.

In order to improve the nodal surface in the QMC
method we take advantage of the analysis of the nodal
surface obtained from the diagonalization in Sec. IV B.
Usually the Jastrow function is a radial function only al-
lowing for spherical nodal surfaces. If the non-spherical
nodal surface is to be reproduced by the Jastrow func-
tion, angular dependencies have to be introduced.

Including the first non-spherical contribution in the
nodal surface corresponds to adding the cubic harmonic
with l = 4 to the spherical term:

rnode(r̂) = c0Y
c
0 (r̂) + c4Y

c
4 (r̂) , (B3)

where Y cl denote cubical harmonics and r̂ = r/r is the
unit vector pointing in the direction of r. c0 and c4 are
coefficients defining the nodal surface.

The function defined by

fnon-sph(r) = ψ1
J(r)− ψ1

J(rnode(r̂))

ψ0
J(rnode(r̂))

ψ0
J(r) (B4)

vanishes when r = rnode for a given direction r̂. However,
this function does not meet the boundary conditions in
Eq. (B1). Furthermore it is not continuous at r → 0 since
for vectors r1 and r2 pointing in different directions

lim
r1→0

fnon-sph(r1) 6= lim
r2→0

fnon-sph(r2) . (B5)

Therefore, the function defined in Eq. (B4) is multiplied
by a normalizing function

n(r) = n3(r̂)r3 + n2(r̂)r2 + n1(r̂)r + n0(r̂) ,

n3(r̂) =
16

L3

( u0

a(r̂)
− 1

b(r̂)

)
,

n2(r̂) =
12

L2

( 1

b(r̂)
− u0

a(r̂)

)
,

n1(r̂) = 0 ,

n0(r̂) =
u0

a(r̂)
, (B6)

where

a(r̂) = fnon-sph(r)|r=0 ,

b(r̂) = fnon-sph(r)|r=L/2 , (B7)
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and u0 < 0 defines the value of the Jastrow at r = 0.
The non-spherical Jastrow is then given by

ψnon-sph
J (r) = fnon-sph(r)n(r̂) , (B8)

which obeys the required conditions in Eq. (B1). Now,
the excited state energies can be found as discussed in
Sec. III by adjusting the parameters c0 and c4.
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