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Abstract
Because quarks carry electric charge, they can radiate light when they change energy levels,

which is exactly what happens when they hadronize. This is true not only in jets but also in heavy

ion collisions, where a thermalized plasma of quarks and gluons cools into a gas of hadrons. First,

direct emission of photons from two quarks coalescing from the continuum into pions is calculated

using the quark-meson model. The yield of final-state photons to pions is found to be about

e2/g2
πqq, which is on the order of a percent. Second, the yield of photons from the decay of highly

excited color singlets, which may exist ephemerally during hadronizaton, is estimated. Because

these contributions occur late in the reaction, they should carry significant elliptic flow, which may

help explain the large observed flow of direct photons at RHIC by the PHENIX Collaboration at

the Relativistic Heavy Ion Collider (RHIC). The enhanced emission also helps explain PHENIX’s

surprisingly large observed γ/π ratio.
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I. INTRODUCTION

Electromagnetic radiation is produced from multiple sources in heavy ion collisions. Of
particular interest is the radiation produced during the deconfined phase by the scattering
and annihilation of quarks. This thermal radiation is not that of a blackbody yet nevertheless
provides a reasonable measurement of the temperature reached in these collisions [1, 2]. The
first predictions of thermal photon production had relatively small elliptic flow, thanks to
a large component of the photons coming from the earliest times in the collision. However,
measurements by the PHENIX collaboration at the Relativistic Heavy Ion Collider show
v2(pT ) of photons approaching that of hadrons [4], which suggests underestimation of photons
emitted later in the reaction. PHENIX’s observed yield of direct photons is also larger
than what was first predicted using thermal rates of production [2]. This discrepancy was
confirmed to exist by the ALICE collaboration, who found a similar excess in the yields
as well as in the direct photon elliptic flow when compared with theoretical calculations
[5]. Calculations using ideal hydrodynamics do not find this “photon puzzle” [9], while
all of the theory groups examining photon elliptic flow using viscous hydrodynamics find
this discrepancy between experiment and theory. One possible explanation is that the
calculations that better explain data ignore viscous corrections to the photon spectrum,
first described in [8]. Recently, considerable work both in examining thermal photon rates
and of viscous corrections has demonstrated the dependence of observables on the various
hydrodynamical parameters, and has also shown by how much the results from viscous
hydrodynamics disagree with measurements [6]. Finally, the elliptic flow of the radiated
photons gives some measure of when these photons were created: the elliptic flow during
the plasma phase starts small and then builds up to the measured values, and the photons
produced at the various times have flow similar to that of the matter from which they were
radiated [3].

Possible explanations for the large elliptic flow include initial flow, incomplete thermal-
ization in the quark sector at early times, and the enhancement of quark degrees of freedom
in the Polyakov Nambu-Jona-Lasinio and the “semi-QGP” models [11–13]. In this paper,
we consider a neglected source of photons sure to exist: the production of photons at the
point of recombination of quarks and gluons into hadrons. This source is analogous to the
recombination spectra studied in plasma physics and in cosmology, which were created as
the early universe cooled and the plasma of protons and neutrons cooled into unionized
gas [14]; in heavy ion collisions, this calculation is dramatically simplified by the fact that
reabsorption is negligible. The production of photons at the point of hadronization was
also considered by Campbell [15]; this current work differs from Campbell’s in that we are
primarily interested in how the electromagnetically charged quarks and anti-quarks radi-
ate as they hadronize, as opposed to how gluonic degrees of freedom might create light as
they disappear. In Parton-Hadron String Dynamics (PHSD), various processes which lead
to photon production are also considered, including the coalescence of quarks into mesons,
however the effect of this process on photon production has not yet been examined [7].

Figure 1 illustrates three contributions to direct photon production from deconfined
quarks. In general, quarks also can radiate as they undergo a transition from continuum
states to bound color singlets, and given an ensemble of such quarks, a fraction (which we
determine) will undergo an electromagnetic transition and radiate light. Finally, some of
these bound states are initially excited, and must undergo transitions (sometimes electro-
magnetic) to ground states. This cartoon emphasizes how large the acceleration of quarks
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FIG. 1: (Color online) An illustration of different sources of photons. Emission from the plasma

stage (A) is induced by collisions and annihilations of quarks. In (B), the transition to a bound

state is electromagnetic, leading to photon emission. If loose color singlets are first formed, photons

are also emitted during the spontaneous emission of excited states (C).

is at the end of the heavy ion collision, but work in quantifying this is necessary.
Figure 2 displays the direct photon spectra as measured by PHENIX [16] along with

the ratio of the direct photon spectra to that of positive pions [17]. If a contribution to
the photons is to explain the large elliptic flow, it must come after the first few fm/c of
the collision so that elliptic flow will have built up. By considering emission related to
hadronization, which should occur for times 3 − 6 fm/c into the collision, this criterion is
met. For the remainder of this paper, we will focus on seeing whether contributions from
emission at hadronization could have sufficient strength to give a non-negligible contribution
to photon production in heavy ion collisions. The ratio of the yields of direct photons to π+

at pT = 2 GeV/c is roughly 3%, and thermal production of photons has already been shown
to be significant; the emission at hadronization should be on the order of half of the yields
in order to be significant and to help explain the photon puzzles.

The unifying theme of this current work is that the transition from unbound to bound
states and ultimately to ground states represents a source of electromagnetic radiation in
heavy ion collisions. This paper is broken up as follows: in Section II we use the quark-
meson model at leading order to describe electromagnetic radiation from quarks coalescing
directly into pions. This model is similar to Polyakov loop-inspired models in that the
gluonic degrees of freedom are suppressed. The diagram of interest involves an incoming
quark-antiquark pair evolving into a final-state pion and a photon, qq̄ → γπ. Because the
outgoing state has only two particles, the photon can carry approximately half the center of
mass energy which suggests the process might be a good candidate for photons in the GeV
range. In Section III we examine whether the transition to hadrons might lead to yields of
excited states beyond the thermal expectation values, using a simple scalar potential model
to confine the quarks into bound states and two different models for how this transition

3



10-5

10-4

10-3

10-2

10-1

100

101

 1 1.5 2 2.5 3 3.5 4 4.5 5

1/(2πpT )d 2N
/dpT dy [(G

eV/c) -2]

pT [GeV/c]

π+

Fit to π+
Photons

Fit to photons

(a)

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 1.5 2 2.5 3 3.5 4

γ/π + at R
H

IC
 10-20%

pT [GeV/c]

Ratio of fits

(b)

FIG. 2: (Color online) a.) The yields of π+ and direct photons in the 10-20% centrality class of

Au+Au
√
s = 200 GeV collisions from the PHENIX Collaboration [16, 17], together with fits to

these yields. b.) the ratio of the yields in Fig. 2a.
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might occur. Finally, in Section IV, we calculate the electromagnetic transitions in these
models, to determine rates for photon production both from a thermal gas of bound quarks
as well as a gas with elevated populations of excited states. In Section V, we summarize the
main points of the paper as well as suggest where a great deal of future work is necessary.

The work in this paper is only the first exploration of this effect, with a few comparisons
with data to confirm its significance. Any real explanation of the photon v2 puzzle will
necessarily involve the calculation of photon production from multiple sources (perturbative
QCD, the fragmentation of jets, thermal photon production) and viscous hydrodynamical
simulations to quantify all contributions accurately. In a follow-up to this paper, we will
integrate the photon production rate at hadronization which is calculated in this paper over
a three-dimensional hypersurface which approximates where the plasma recombinates into
hadrons. This will give a new source of photons. Only the total production of photons,
produced from multiple sources, will be compared with experimental results.

II. PHOTON PRODUCTION IN THE QUARK-MESON MODEL

In the quark-meson model (which ultimately evolved from descriptions of meson-nucleon
couplings in [18]), both quarks and mesons are treated as fundamental point-like degrees of
freedom, and gluonic degrees of freedom are ignored. The Lagrangian, without the electro-
magnetic coupling, is of the form

L = ψ̄(i/∂+ igqqπ(σ+ τ ·πγ5)−m)ψ+ 1
2
|∂µπ|2 + 1

2
|∂µσ|2− 1

2
m2
i |πi|2− 1

2
m2
i |σ|2−V (π, σ). (1)

We use conventions similar to those used in []; ψ represents the quark field including Nc = 3
and Nf = 2 degrees of freedom, while σ and π represent scalar and isoscalar fields. Here,
V (φ) is the potential which remains after spontaneously breaking the original symmetry in
the mesonic sector and explicit chiral symmetry breaking gives masses mi to the Goldstone
bosons of the mesonic sector’s symmetry breaking. For our purposes, V (φ) is ignored: we
will be concerned with tree-level diagrams where quarks and anti-quarks annihilate into
color-neutral particles.

When plasmas of quarks at temperatures near 180 MeV cool, they eventually must com-
bine to form the color singlets observed at low temperatures. The quark-meson model can
describe this process at these high but not asymptotically high temperatures, because one
needs to be in the transition range where both hadrons and quarks coexist. For simplic-
ity, we consider only those diagrams where the outgoing hadrons are pions. Later, we will
discuss how rates might grow if additional hadronic states are included. Additionally, we
consider only 2 → 2 diagrams. The neglected 2→3 processes include processes at a higher
order in the coupling of the quark-meson model. The coupling in the quark-meson model
is large, making it unclear how negligible the processes at higher order are until they are
calculated. Such a calculation would have to be accompanied with some thought into what
momentum ranges this model should be used. At these temperatures, the coupling in the
quark-meson model is small enough so that perturbative approaches are valid but not so
small that the processes at a higher order in gqqπ should never be examined. For now, we
neglect these diagrams, knowing that at low photon momenta, they should not be ignored.

At tree level this leaves only 5 leading-order channels where the outgoing states are pions
or photons: qq̄ → π0γ, qq̄ → π±γ, qq̄ → π0π0, qq̄ → π+π−, and qq̄ → π±π0. At the point of
hadronization, there exist two processes of the ones above which lead to the production of
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FIG. 3: a.) An example of a diagram contributing to the process of quarks annihilating into a pion

and a photon. b.) A diagram describing the annihilation of quarks into two pions that competes

with the photon production in Fig. 3a.

photons. If these were the only two processes, then our work would be finished: we would
only have to count the numbers of quarks to determine the number of photons produced.
However, there are two competing (indeed, significantly more frequent) processes above
which lead only to the production of pions.

This situation is encountered frequently in atomic physics, where excited states de-
excitate radiatively at a rate Γrad as well as de-excitate collisionally at a rate Γcoll. The
quantum efficiency

Q =
Γrad

Γrad + Γcoll
(2)

gives the fraction of states which de-excitate radiatively; equivalently, if there are N excited
atomic states in a given gas, and these excited states only decay once, then there are QN
photons radiated once all excited states decay. We are interested in the same quantity, the
quantum efficiency of photon production at hadronization.

The first step in calculating this efficiency is to determine the matrix elements for photon
production at hadronization. First, we consider qq̄ → π0γ: the quarks are coupled to the
mesons through the ψ̄τ · πψ in the quark-meson model. The spin-summed matrix element
squared is∑
|Mγπ0|2 = 1/2(5e2/9)g2

qq̄π

{
16[p · k(p′ · k)−m2p · p′ +m2(p · k + p′ · k)−m4]/(4(p · k)2)

+2× 16[(p · k − p · p′)(p′ · k − p · p′) +m4
q]/(4(p · k)(p′ · k))

+16[p · k(p′ · k)−m2p · p′ +m2(p · k + p′ · k)−m4]/(4(p′ · k)2)

}
.(3)

The factor of 1/2 in the front of this expression comes from the π0 being a superposition of
up and down quarks; it can be determined more carefully by examining the isospin matrices
in the quark-meson model, but this will provide no great insight compared with the previous
statement. Here and in the following work, we ignore the degeneracy factors related to the
colors of the quarks, as they multiply all rates by the same factor and therefore will cancel
out in ratios such as the quantum efficiency.
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Similarly, the production of a single charged pion and a photon qq̄ → π±γ leads to the
following matrix element squared:∑

|Mγπ±|2 =

(
4e2g2

qq̄π/9

(2p · k)2
+
e2g2

qq̄π/9

(2p′ · k)2

)
16
[
(p′ · k)(p · k) +m2

q(p · k + p′ · k)−m2
qp
′ · p−m4

q

]
− e2gqq̄π

(2m2
q −m2

π + 2p · p′)2
16(p · p′ +m2

q)(2m
2
q + 2p · p′ − p · k − p′ · k)

− 2
2e2gqq̄π/9

(2p · k)(2p′ · k)
16
(
(p · k − p · p′)(p′ · k − p · p′) +m2

qp · p′
)

+ 2
2e2gqq̄π/3

((2m2
q −m2

π + 2p · p′)(2p · k)
8(m2

q + p · p′)(2m2
q + 2p · p′ − p · k − 2p′ · k)

+ 2
e2gqq̄π/3

(2m2
q −m2

π + 2p · p′)(2p′ · k)
8(m2

q + p · p′)(2m2
q + 2p · p′ − p′ · k − 2p · k) (4)

Finally, as emphasized earlier, the matrix elements squared for pion production without
photons must be determined if we are to estimate quantum efficiency. We approximate∑

|M2π0|2 =
∑
|Mπ0π+ |2 =

∑
|Mπ0π−||2,

which is exactly the approximation of isospin symmetry. The matrix element squared and
summed over quark spins is∑

|M2π0|2 = 2g4
qq̄π

[
(p · k − p′ · k)2

p · kp′ · k
+ 1 +

m2(p · p′ −m2)

p · kp′ · k

]
. (5)

A. Thermal rates of production at T = 175 MeV

The matrix elements calculated in the previous section are used in this section to de-
termine the thermal production rates of photons and pions. Using these rates, we make
one additional approximation: that at the point of hadronization, the quarks coalesce once
and only once to form hadrons. With this assumption, the ratio of the thermal rates are
effectively branching ratios, and can be compared directly to the ratios of yields. If we did
not make this approximation and instead assumed that the quarks and hadrons coexisted
for some extended temperature range, then it would only be appropriate to integrate the
photon rates over some extended spacetime volume.

Thermal rates at T = 175 MeV are used to determine the quantum efficiency of photon
production as the plasma thermalizes. The rate integrated over quark and mesonic states
is, in general,

Ef
dΓf
dk3

f

=

∫
d3p1

(2π)3(2E1)

d3p2

(2π)3(2E2)

d3kπ
(2π)3(2Eπ)

f(E1)f(E2)|Mp1p2→fπ|2(1 + f(Eπ))

×(2π)4δ4(p1 + p2 − kf − kπ). (6)

The factors of 2E come from the normalization of field operators used to define the states
in the matrix elements, and, when written in combination with the integral measures, make
Lorentz-invariant combinations. If the final state photons and pions were produced at a
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stage where their numbers were roughly thermal, it would be appropriate to include Bose
enhancement in the determination of these rates. It is not clear if it is appropriate to do
this even for pions, but it is also easy to check, using our methods, what effect including
the enhancement has. The effect of the enhancement becomes very small with increasing
momentum of final state particles.

Integration over kπ and over one of the initial particles’ azimuthal angle simplifies the
integral into a 4-dimensional integral:

Ef
d3Γ

dk3
f

=

∫
d3kπ

(2π)32E3

d3p1

(2π)32E1

d3p2

(2π)32E2

fFD(E1)fFD(E2)
∑
|M|2(2π)4δ4(p1 + p2 − kf − kπ)

=
1

8(2π)4

∫
p1dp1√
m2
q + p2

1

p2dp2√
m2
q + p2

2

dθ1dθ2dφfFD(E1)fFD(E2)
∑
|M|2

×δ(φ− φr) + δ(φ+ φr)

| sin(φr)|
. (7)

In the final line of Eq. 7, the angle φ is the difference in azimuthal angle between initial
states 1 and 2, and φr is one of the solutions to

cos(φr) =
2m2

q + (E2
f −m2

π − |k|2) + 2(E1E2 − E1Ef − E2Ef ) + 2(p1 · k + p2 · k)

2p1p2 sin(θ1) sin(θ2)

+ cot(θ1) cot(θ2)

This formula will be used to calculate numerically the rates of both photon and pion
production, near thermal freeze-out, in the quark-meson model. With what should these
results be compared? The PHENIX collaboration has measured both the photon yields [16]
and the π+ yields [17] in the 10-20% centrality class. The plot of these yields is shown in
Fig. 2a. Here lies the utility of using rates as opposed to lifetimes: if photons and pions were
made exclusively by the processes in Section II, then the ratio of these two experimental
yields would be equal to the ratio of the respective differential thermal rates. A fit to the
ratio of the experimentally measured yields is shown in Fig. 2b.

Using Eq. 7, the thermal rates can be easily calculated after making the proper substi-
tutions for the matrix element squared. For photon production, this term is∑

|Mi→fγ|2 =
∑
|Mqq̄→π0γ|2 + 2

∑
|Mqq̄→π+γ|2.

The factor of two in the above equation comes from the matrix element squared with a π−

in the final state is identical to the matrix element squared with a π+ in the final state. For
pion production, isospin symmetry is useful for simplifying the expression:∑

|Mi→fπ0 |2 = 2
∑
|Mqq̄→2π0 |2 +

∑
|Mqq̄→π0π+ |2 ≈ 4

∑
|Mqq̄→2π0|2.

The factor of two in front of the first process comes simply from there being two neutral
pions in the final state.

The ratio of the thermal production rates is shown in Fig. 4. Here, the temperature is set
to 175 MeV, every pion mass is set to 139.57 MeV/c2, and two dramatically different quark
masses have been chosen, 140 MeV/c2 and 40 MeV/c2. Near the freeze-out temperature, the
effective mass of quarks in any effective description of nuclear physics is expected to change
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rapidly, as the quarks are bad quasiparticles below the transition and good quasiparticles at
sufficiently high temperatures. Both masses give similar results at high k, but are different
at low k where the radically different kinematical cuts have a significant effect. We note
that the simplest estimate of this ratio, e2/g2

qq̄π ≈ 0.7%, is approximately one third of the
experimentally determined ratio near pT = 2 GeV/c. The dotted curve shows the ratio of
yields as discussed in the introduction (the fit is slightly different to be more accurate near
pT = 2.5 GeV). The production of photons at hadronization does not dominate, but our
results indicate that near pT = 2.5 GeV, it might be a contribution which should not be left
out by theorists seeking to explain experimental data.
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FIG. 4: (Color online) the ratio of rates, for two different choices of the effective quark masses.

Taking into account various effects will modify this calculation of the γ/π ratio: first,
the ratio would increase if the coexisting phase lasts long enough that mesons are created
and destroyed numerous times. Second, if processes such as qq̄ → ρ → ππ were taken
into account, the denominator would increase and the estimate for the ratio would decrease.
Finally, the value of gqqπ might be lower than the value of 3.63 used here, which was motivated
by the Goldberger Treiman relation [20]. In fact, the value of gqq̄π(T ) found in [21] from
fits to data for the decay of rho mesons to dielectrons is 2.97, significantly lower than the
estimate used in this paper. This would lead to a significant enhancement of the quantum
efficiency of photon production, by a factor (3.63/2.97)2 = 1.5.
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III. ENHANCED PRODUCTION OF EXCITED STATES

All deconfined quarks must eventually disappear and form hadrons and other color sin-
glets. At this transition to bound states, one might imagine a quark and an anti-quark
beginning a spiral around each other. The quarks’ momenta and separation determine the
angular momentum and radial quantum number of the bound state. At a temperature of
175 MeV, the density of the plasma is such that a quark will on average form a color singlet
with an antiquark at a distance of 1.3 fm. This is somewhat larger than a typical hadron.
This suggests an enhanced production of meson-like bound states with J > 0.

To estimate the production of these states, we now must go beyond the point-like de-
scriptions of mesons in the previous section and use valence quark models for mesons. This
will require finding solutions to the Dirac equation in spherical coordinates. A pedagogical
review of these solutions is found in Appendix A. For the following discussion, we call the
vector potential V (r), the scalar potential U(r), and we emphasize that the a-states have
parity (−1)j−1/2 while the b-states have parity (−1)j+1/2. 1 A good set of quantum num-
bers for these states contains the radial number n, angular momentum quantum number j,
azimuthal quantum number m, and parity. Our choice of the bag model in this instance
is rather arbitrary; we also try linear confining potentials and found results which could
differ by a factor of two. Unfortunately, lattice QCD calculations are not in a state where it
can provide detailed microscopic descriptions of excited states, let alone transitions between
these states, so valence quark models for these transitions remain the best we can do. One
weakness of the valence quark model used here is the lack of magnetism, which should be a
very important effect for nearly massless quark and antiquarks.

We will treat the transition from quark to bound states as adiabatic: here, time-dependent
potentials change slowly enough that the quantum numbers of a state are conserved. The
adiabatic limit suffers from an important flaw: it ignores the collisions between quarks which
may also change the angular momentum states. Rather than attempt to estimate this, we
suggest that the yields of the hadrons described with the cocktail be independently verified,
partly for the sake of understanding photon production. We estimate the structure of the
plasma near the transition: at the threshold of hadronization, we approximate the quarks
as massless and free within some range, but also confined to form a color singlet with an
antiquark in a spherical volume. To confine a particle in a spherical volume of radius R,
U(r) is needed (the temporal component of a vector field does not confine massless particles).
For massless Dirac particles confined in an infinite spherical well where U(r) is zero below
R and infinite above R, the solutions to the radial wavefunctions are A(r) = NJj−1/2(kr),
a(r) = NJj+1/2(kr) and B(r) = NJj+1/2(kr), b(r) = −NJj−1/2(kr), where Jj(x) is the j-th
spherical Bessel function. The momentum k is determined by requiring the current normal
to the spherical boundary of the well to be zero (interestingly, this is different from requiring
ψ(x) to be zero): Jj+1/2(kr) − Jj−1/2(kr) = 0 for a-states and Jj−1/2(kr) + Jj+1/2(kr) = 0
for b-states. The energy spectrum is listed in Bhaduri in units of 1/R [20]. This relativistic
generalization of the infinite square well is often called the “bag model”, and is useful for
describing some aspects of the hadronic spectrum [22]. For the rest of the paper, we simply

1 To be clear: the quantum numbers we use here are angular momentum, the radial quantum number, and

parity. Splitting the eigenstates of these operators into sets of a and b-states is done only because the

expressions for these eigenstates as spinors and functions of x have the same form within these sets, not

when looking at all the states with the same parity.
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imagine hadronization as the shrinking of this bag from a large size to approximately the
radius of a meson, ≈0.8 fm.

Using this, the energy spectrum of quarks confined to a spherical volume can be calculated
as a function of R, the radius of the confining sphere, and thermal expectation values can be
calculated using this spectrum. We work at T = 175 MeV. The average number of particles

〈N(R)〉 =
∑

i
gi exp(−Ei(R)/T )
1+exp(−Ei(R)/T )

approaches n∞× 4
3
πR3, the number density in the infinite limit

times the volume, fairly quickly; by R = 2 fm, these numbers are nearly the same. We find
the radius where there is on average 1 quark for each antiquark of the opposite color to be
very nearly 1.3 fm at this temperature. In other words, the spatial structure of the plasma
can be approximated with confining spheres of radius R = 1.3 fm containing on average 9
quarks and 9 antiquarks, which form 9 color singlets (ignoring baryons).

TABLE I: The energies of various eigenstates of the quarks confined to a sphere of radius 1.3 fm,

and the probability of a quark to be found in that state at T = 175 MeV.

A(B) j n E [fm−1] 〈N〉
A 1/2 0 2.043 0.288

B 1/2 0 3.812 0.070

A 3/2 0 3.204 0.231

B 3/2 0 5.123 0.046

A 5/2 0 4.327 0.136

B 5/2 0 6.371 0.024

A 7/2 0 5.430 0.071

B 7/2 0 7.581 0.012

A 1/2 1 5.396 0.018

B 1/2 1 7.002 0.005

A 3/2 1 6.758 0.011

We may now ask: what is the probability that these nearly free quarks and antiquarks
form bound states with various quantum numbers? In the adiabatic transition, this is
estimated by looking at the quantum numbers of the quarks and antiquarks before the
transition. The thermal expectation value for a quark to be in a given state is given by

〈Ni(R)〉 = gi

(
exp(−Ei/T )

1 + exp(−Ei/T )

)
/
∑
j

exp(−Ej/T )

1+exp(−Ej/T )
. (8)

This is shown in Table I for some of the lowest energy states and at T = 175 MeV. The
adiabatic transition has led to a significant enhancement of excited states compared with
the thermal expectation values associated with the various mesons. This strongly suggests
that the hadronic cocktail used to determine the direct contribution to photon yields might
be significantly underestimating the component coming from the decays of an hadrons.

Finally, the adiabatic limit is only one extreme limit for time-dependent perturbation
theory. The other limit is the “sudden approximation”, where free quarks and antiquarks are
immediately subjected to a confining potential. This is a very interesting limit theoretically
for relativistic wave equations: the vacuum of the field theory becomes nontrivial to define.
A universal feature of all relativistic field theories with acceleration is the production of
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particle-antiparticle pairs, for a pedagogical review of this see [23]. We considered this
extreme limit as well, for the case of massless quarks subjected suddenly to a confining
potential; the results are summarized in Appendix B.

IV. ELECTROMAGNETIC TRANSITIONS OF THE EXCITED STATES

These excited states must ultimately decay. Electromagnetic transitions are possible,
and will contribute to the production of photons at freeze-out. Ideally, one would estimate
the enhancement of excited states at freeze-out, map the quantum numbers of these excited
states to measured hadronic states, and use this result to modify the cocktail contribution
to inclusive photon production. However, the lack of measurements of the electromagnetic
decays of these states and in some cases, the masses of these states, makes such a calculation
difficult at the moment. We end this work by estimating the rates for spontaneous emission,
using the same models for mesons used in Section III.

The decay rate for a given transition, Γi→f,k, is found using perturbation theory,

Γi→f,k =
k

3π

∣∣〈f |~αeik·r|i〉∣∣2 . (9)

Here ~α are the α matrices used in the Dirac representation of the Dirac equation,

~α =

(
0 ~σ

~σ 0

)
. (10)

This equation was simplified by applying the dipole approximation, eik·r = 1, which unlike
the case for atomic or nuclear transitions, is not a particularly good approximation for
massless quarks. With this approximation decays are confined to final states with j within
one unit of the decaying state, and the new state must have opposite parity. If the dipole
approximation were relaxed, the allowed matrix elements would be reduced by the phase
factor, but transitions to other states would then be possible. It should also be emphasized
that this picture ignores the fact that the initial and final states are complex many-body
states and that the true matrix element might be significantly lower (as is represented by
spectroscopic factors). Nonetheless this provides a starting point for understanding the
potential impact of these decays.

Using the wavefunctions in Appendix A, the matrix elements can be significantly simpli-
fied. Summing over final-state polarizations mf ,

Γi→f =
ke2

3π



2jf+1

ji

(∫∞
0
r2draf (r)Ai(r)

)2
, jf = ji − 1, a→ a

2jf+1

ji

(∫∞
0
r2drBf (r)bi(r)

)2
, jf = ji − 1, b→ b

1
ji(ji+1)

(∫∞
0
r2dr[(ji + 1)Af (r)bi(r)− jiaf (r)Bi(r)]

)2
, jf = ji, b→ a

1
ji(ji+1)

(∫∞
0
r2dr[(ji + 1)bf (r)Ai(r)− jiBf (r)ai(r)]

)2
, jf = ji, a→ b

2jf+1

jf

(∫∞
0
r2drAf (r)ai(r)

)2
, jf = ji + 1, a→ a

2jf+1

jf

(∫∞
0
r2drbf (r)Bi(r)

)2
, jf = ji + 1, b→ b

(11)

The charge, e needs to be altered to fit the charge of the given quark that is undergoing the
transition.
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The rates for these transitions can now be determined with these approximations. Table
II shows the numerical results for some of the transitions among the energy eigenstates
when the potential is the Cornell potential. When ∆n = 0, they are on the order of 0.001
fm−1. Since the total rate of decay of each of these states is similar to 1 fm−1, the branching
fraction into inclusive photons is roughly one tenth of a percent.

TABLE II: The rates for a representative sample of transitions from (n1, j1)→ (n2, j2). The factor

of 1/q2 represents the fractional charge of the quark or antiquark.

j1 n1 j2 n2 Γ/q2

3/2 0 1/2 0 0.003178

3/2 1 1/2 0 7.553e-05

3/2 1 1/2 1 0.001413

3/2 2 1/2 2 0.001010

3/2 3 1/2 3 0.0008215

3/2 4 1/2 4 0.0007087

3/2 4 7/2 3 2.259e-06

9/2 4 7/2 4 0.0007591

If the population of states is given, one can then calculate the rate to emit photons of a
given energy per excited state. Combined with an estimate of the density of states per unit
volume, one can find dΓ/dEd4x. The density of quarks would be ≈ 2.1 per cubic fm for
light free quarks, which suggests the density of proto-hadron is ≈ 1 fm−3. The photon yield
per volume binned by energy can then be generated if one assumes that the rate roughly
exists for a given time, which here we will assume that time is 3 fm/c. Finally, one can
estimate the γ/π+ ratio from entropy arguments. Lattice calculations [24] show the entropy
is 8/fm3 when T = 175 MeV. In the final state, there are approximately 4.5 units of entropy
per particle and about 20% of the particles are positive pions. This suggests that 1 fm3 of
this matter should be responsible ≈ 0.3 positive pions per cubic fm.

We consider an adiabatic transition where the radius of the confining bag R slowly changes
from 1.3 fm to 0.8 fm. In Figure 5, the rates for photon production in two different scenarios
are compared. In the curve marked “adiabatic”, the populations of excited states are de-
termined by thermal expectation values before the phase transition where the bag shrinks,
when R = 1.3 fm, with the energy levels determined by this large radius. In the curve
marked “thermal”, the populations of excited states are determined by the energy levels
after the bag shrinks, when R = 0.8 fm.

Two facts emerge from examining these curves. First of all, the adiabatic transition to
hadrons has led to an enhancement of photon yields, exactly as described intuitively at the
beginning of Section III. Second, there is some production of photons predicted in our valence
quark model just coming from the excitations of hadrons, in a thermal, equilibrated hadron
gas, as shown by the curve marked “thermal”. Depending on the (temperature-dependent)
masses of heavy mesons in hadron gas, it might be necessary to include their decay through
photon emission when considering photon production at the late stage of the collision. The
ratio of the photon yields in Fig. 2a to the rate per unit volume in Fig. 5 at pT = 2.5 GeV
is ≈ (10 fm)4, suggesting that the decays of excited states enhanced at freeze-out might
constitute a few tenths of the production of “direct photons” near this momentum.
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FIG. 5: (Color online) the photon production rates for two different populations of excited bound

states. The black dashed line shows is proportional to exp(−E/T ), where T = 0.15 MeV.

V. CONCLUSIONS

Photons must be created during the recombination stage of heavy ion collisions. In
this paper, we used a simplified model to show roughly the magnitude of this production.
The yield falls short of dominating in any range of transverse momentum, however, it is
nevertheless significant enough in the 2-3 GeV range so that further investigation is necessary.
Significant uncertainty exists in our estimation, owing to the nature of the physics in the
problem: we are estimating photon production in a thermal quark-meson model exactly
where the parameters of the model should be changing rapidly, reflecting the change in the
degrees of freedom from quarks to hadrons.

There is also theoretical evidence for enhancement of J > 0 and radially excited mesonic
states above thermal expectations at the point of hadronization. These will decay, also
possibly by electromagnetic transitions which produce light at energies of approximately 1
GeV.

Finally, we exploited the valence quark model we used to describe mesons to examine
the electromagnetic radiation of hadronic gas. The model had the strength of including all
excited states, but the weakness shared by all simplified models for hadrons where the states
do not exactly match the hadronic spectrum.

The photons produced at the point of recombination will have an elliptic flow similar to
that of the hadrons detected in heavy ion collisions. While the yield of these photons is not
enough immediately to explain the large measured v2 of photons, it is large enough that it
might be part of the eventual explanation of this effect.
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We tried to be comprehensive by describing all the possible effects of the medium on this
production of radiation. Significant areas for improvement of these calculations exist: first,
the timescales over which quarks form bound states need to be examined carefully. Second,
the models for mesons should be improved, perhaps with the inclusion of chromomagnetism.
Next, because these calculations have implications not just for photons but also for the yields
of heavy mesons, the calculations in Section III should be checked against and perhaps
superseded simply by experimental measurements of the production of these states in heavy
ion collisions. Finally, the radiated photon’s momentum is large compared with the binding
energy of mesons, making the inclusion of electromagnetic form factors an important and
relatively easy next step.
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Appendix A: The Dirac equation in spherical coordinates

The solutions to the Dirac equation in spherically symmetric potentials have been worked
out pedagogically in a number of references [20, 25]. It is possible to make simultaneous
eigenstates of energy, J2, Jz, and parity. In the Dirac representation, the four-component
wave functions have the form

ψa,n,j(r) =

(
An,j(r)Yj,mj− 1

2

−ian,j(r)Yj,mj+ 1
2

)
(A1)

where ψa,n,j(r) has parity (−1)j−
1
2 , and

ψb,n,j(r) =

(
Bn,j(r)Yj,mj+ 1

2

−ibn,j(r)Yj,mj− 1
2

)
(A2)

where ψb,J(r) has parity (−1)j+
1
2 , and YJ` are two-component spinors,

Y l±
1
2
,m

` ≡ 1√
2l + 1

( √
l ±m+ 1/2Y

m− 1
2

`

±
√
l ∓m+ 1/2Y

m+ 1
2

`

)
As usual, the eigenvalue of Ĵ2 is j(j+1)~2 and of Ĵz is m~. However, the orbital and intrinsic
angular momentum quantum numbers cannot form a set of commuting observables, not even
in the case of Dirac particles without electric charge, which is not the case for the Dirac
equation’s non-relativistic limit, the Schrödinger equation.

The radial functions An,j(r) and an,j(r) are solutions to the equations

(E − V (r)−m− U(r))An,j(r) = a′n,j(r) +
(j + 3/2)an,j(r)

r
, (A3)

(E − V (r) +m+ U(r))an,j(r) = −A′n,j(r) +
(j − 1/2)An,j(r)

r
.

(A4)
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The equations for Bn,j(r) and bn,j(r) yield solutions with the same n, j, and m quantum
numbers but opposite parity:

(E − V (r)−m− U(r))Bn,j(r) = b′n,j(r)−
(j − 1/2)bn,j(r)

r
,

(E − V (r) +m+ U(r))bn,j(r) = −B′n,j(r)−
(j + 3/2)Bn,j(r)

r
.

Here, there are two possible spherically symmetric potentials: the scalar potential U(r),
which acts very much like a position dependent mass for the particles and antiparticles,
and a vector potential V (r), which is one component of the potential coming from a gauge
interaction.

For a particle with energy E, the antiparticle solution of energy −E is found by solving
the equations with the sign of the vector potential V (r) reversed but without changing the
sign of the scalar potential U(r) nor the mass.

In the bag model for hadrons, quarks are confined to spherical volumes where the prob-
ability of finding a quark outside of some radius R vanishes. Some work with the equations
above shows that this is impossible simultaneously for particle and antiparticle solutions us-
ing a vector potential, but can be done with the scalar potential U(r) (note how this matches
the intuition of the scalar potential being a position-dependent mass, which can make both
particles and antiparticles heavy, while Coulomb potentials affect particles with different
charges differently). For the bag model used in this work, the scalar potential is infinite for
r > R, zero inside, and there is no vector potential. At the boundary, the solutions obey
the boundary condition

iγµnµψ(R) = ψ(R), (A5)

which comes from forcing the Dirac field’s probability current ψ̄γµψ to be zero at the bound-
ary. Note how the lack of a derivative term in the probability current for a Dirac particle
potnentially leads to discontinuities at boundaries.

Given that there is zero potential inside the solutions are given in terms of spherical
Bessel functions,

An,j(r) = Jj−1/2(Enr), an,j(r) = Jj+1/2(Enr), (A6)

Bn,j(r) = −Jj+1/2(Enr), bn,j(r) = Jj−1/2(Enr).

For each J and parity (A, a solutions vs. B, b solutions) there are numerous values of En that
satisfy the boundary conditions; they are indexed by n, which increases by one with each
additional node. We emphasize one more time that these quantum numbers vary from the
usual non-relativistic problem in that the orbital angular momentum is not a good quantum
number, and the upper and lower components of the wave function behave as ` = J−1/2 or
` = J + 1/2 for the A, a solutions, and as ` = J + 1/2 or ` = J − 1/2 for the B, b solutions.

Appendix B: The “sudden approximation” and particle production in quantum

field theories with time-dependent potentials

Hadronization is, in the most abstract sense, a problem of time-dependent potentials:
deconfined quark states are subjected to a confining potential, leading to the production of
hadrons and in this paper, photons. The formalism most familiar to physicists for dealing
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with time-dependent potentials is the Dyson series in time-dependent perturbation theory.
However, when starting work on a given problem, consideration of the extreme limits is
helpful and occasionally, all that is needed.

In the main narrative of this paper, we considered hadronization to be an adiabatic pro-
cess: the potential changes from negligible to confining slowly enough so that the quantum
numbers of the various quark states are conserved. The opposite limit is the “sudden ap-
proximation”, where the potential turns on instantaneously. In this limit, the wavefunction
is conserved (the intuition is that not enough time has passed for the probability distribution
to change). In non-relativistic quantum mechanics, this approximation is very useful: one
simply takes the wavefunction right before the potential turns on, determines the expression
for this wavefunction in terms of the new eigenfunctions of the system once the potential has
turned on, and one now knows the dynamics of the system into the future. In relativistic
field theories, the situation is richer physically, as we will now demonstrate.

We examined the particle production in the sudden approximation using central potentials
which phenomenologically describe quarks in mesons. The massless Dirac equation was
solved numerically for the lowest energy (−1)j−

1
2 -parity eigenstates when j = 1

2
, 3

2
, 5

2
, 7

2
,

and 9
2
. To be physically relevant to quarks forming hadrons, the central potentials were set

as V (r) = −0.383/r and U(r) = 5.73r/fm2; the potential U(r) confines all solutions to this
equation while V (r) is the Coulomb potential appropriate for weakly coupled gauge theories.
These are the solutions appropriate for quarks suddenly forced into bound states by a rapid
transition to low temperatures. Meanwhile, massless quarks above deconfinement have, in
the Dirac representation of the gamma matrices, the normalized solution for a left-handed
particle (not antiparticle) moving freely in the z-direction:

ψk(z, t) =
1√

2(2π)3/2
exp(−i|k|t+ ikz)


1

0

1

0

 . (B1)

If the potentials suddenly change from zero to the Coulombic and confining potential
terms described above, one encounters a problem common when working with quantum
fields in curved spacetime: it becomes impossible to choose a vacuum which is “empty”
both when the potential is zero and when it is the confining Cornell potential. What was
the vacuum state for free massless Dirac particles is now is an excited state with particles and
antiparticles described by the ψa and ψb wavefunctions. Very abstractly, where the subscript
“1” indicates the free theory and the subscript “2” the confined theory, the expectation for
the number of particles of type “2” after the vacuum of type “1” is subjected to the confining
potential is given by

〈0|1b̂i†2 bi2|0〉1 =
∑
j,k

〈0|1(αijb
j
1 + βijb

j
1)†(αikb

k
1 + βijb

k
1)|0〉1 =

∑
j

βijβ
†
ji,

where αij and βij are the Bogoliubov coefficients, the index j represents labels for both
momentum and spin and the index i represents the quantum numbers of the a and b states,
and where no sum over i is represented by the repeated index. When the initial state is not
the vacuum but instead contains a free Dirac particle, the expectation for the number of
particles becomes

〈0|1bl1(k)b̂i†2 b
i
2b
l†
1 (k)|0〉1 = |βil|2 +

∑
j

βijβ
†
ji.
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In non-relativistic quantum mechanics (where there is no particle production by potentials
breaking Poincare symmetry), the quantity |βil|2 would simply be the probability that a
plane wave would be measured in the energy eigenstate described by the ψa(b) wavefunctions:

Pk−>n,J,M,a(b) =

∣∣∣∣∫ d3xψ†k(z)ψn,J,Ma(b) (x)

∣∣∣∣2 . (B2)

More explicitly, for the a states,

Pk−>n,J,M,a =

∣∣∣∣ ∫ ∞
0

r2dr

∫ π

0

sin(θ)dθ

∫ 2π

0

dφ
1√
2

1

(2π)3/2
exp(−ikz)

[√
J +M

2j
A(r)Y

M−1/2
J−1/2 (θ, φ)

−i

√
J −M + 1

2(J + 1)
a(r)Y

M−1/2
J+1/2 (θ, φ)

]∣∣∣∣2.
Here, the z-direction was chosen to coincide with the plane wave’s momentum k. This prob-
ability should then be convolved with the thermal distribution of quarks at T = 175 MeV
and summed over m states:

Γn,J =

∫
d3p exp(−p/T )

∑
m

∣∣∣∣∫ d3xψ†k(x)ψn,J,Ma (x)

∣∣∣∣2 . (B3)
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FIG. 6: (Color online) The ratio exp(−Ej/T )/ exp(−E1/2/T ) of Boltzmann factors for the lowest

energy a state of a given j, compared with the ratio of thermal rates of production of these states.

In Fig. 6, the ratio of the thermal average of the probability of a massless quark with
momentum 2 fm−1 to the probability of being found the in the j = 1/2 lowest a state is com-
pared with the ratio of the Boltzmann factor at T = 175 MeV to the Boltzmann factor of this
ground state. Comparing these ratios, instead of just comparing the quantum-mechanical
and thermal probabilities, spares us from having to calculate the partition function for a
particle in these potentials. The ratios by definition agree for the ground state, while the
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J > 1/2 states show significant enhancement above the thermal value.
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