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What effect do particle-emitting resonances have on the scattering cross section? What physical consid-

erations are necessary when modelling these resonances? These questions are important when theoretically

describing scattering experiments with radioactive ion beams which investigate the frontiers of the table of nu-

clides, far from stability. Herein, a novel method is developed that describes resonant nuclear scattering from

which centroids and widths in the compound nucleus are obtained when one of the interacting bodies has par-

ticle unstable resonances. The method gives cross sections without unphysical behavior that is found if simple

Lorentzian forms are used to describe resonant target states. The resultant cross sections differ significantly

from those obtained when the states in the coupled channel calculations are taken to have zero width, and

compound-system resonances are better matched to observed values.

PACS numbers: 24.10.Eq, 24.30.-v, 25.40.-h, 25.60.-t

The advent of radioactive ion beams has allowed explo-

ration of nuclei far from the valley of stability, and has led

to an immense experimental effort [1–14]. Theoretical stud-

ies of these systems are vital for interpretation of the resul-

tant data. Elastic scattering of two nuclei at low energies of-

ten gives cross sections displaying resonances associated with

properties of the compound system; the analysis of which is

appropriately done with a coupled-channel theory in which

the low-energy spectra of the nuclei concerned are most rele-

vant in defining the coupling interactions. Usually, however,

those states are not considered to be resonances. Herein we

present results found using a theory in which those target state

resonance properties are taken into account. As detailed be-

low, this requires a mathematically-robust, energy-dependent

shape to avoid unphysical behaviors in calculated observables,

such as vanishing bound states, irregular behavior at the scat-

tering threshold, and with the requirement of causality being

restored.

To this end, a multi-channel algebraic scattering (MCAS)

method [15] is used. MCAS solves coupled-channel

Lippmann-Schwinger equations in momentum space using

the Hilbert-Schmidt expansion of amplitudes. In this method,

two-body nuclear scattering potentials are expanded into a se-

ries of sturmians [15–17], and then a corollary between sep-

arable scattering potentials and separable T−matrices of the

Lippmann-Schwinger equation delivers solutions without ex-

plicitly solving the integral equations. Scattering potentials
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used for this investigation have the basic form

Vcc′(r) = f (r)

{

V0δcc′ + Vll[ℓ · ℓ]cc′

+ Vss[s · I]cc′

}

+ g(r)Vls[ℓ · s]cc′ , (1)

for each channel (c), where c denotes a unique set of quantum

numbers, and with parameters for the central (V0), orbit-orbit

(Vll), spin-spin (Vss), and spin-orbit (Vℓs) components. For the

functions f (r) and g(r), deformed Woods-Saxon form factors

are used:

f (r) =
[

1 + e( r−R
a )

]−1
; g(r) =

1

r

d f (r)

dr
. (2)

The radius of the nuclear target is taken to be deformed,

and the Woods-Saxon form factors are expanded to the sec-

ond order in terms of this deformation. To treat the nuclear

target as having collective rotor character, deformation is de-

fined in terms of spherical harmonics [18]. Full details can be

found in Ref. [19]. In this work we consider only quadrupole

deformations.

However, to preclude coupling of the incident nucleon to

Pauli-forbidden orbits in the target states, one must also in-

clude an orthogonalising pseudo-potential (OPP) [20–24], as

has also been used in atomic physics [25, 26].

By solving the Lippmann-Schwinger equations in momen-

tum space, one may describe within the same method both the

bound (to particle emission) and scattering states of the com-

pound nucleus. Bound states of the compound system can

be found by using negative projectile energies, for which all

channels are closed. Details are given in Ref. [15]. For pos-

itive energies, to systematically identify all resonance struc-

tures we use a spectral representation of the S -matrix in terms

of complex sturmian eigenvalues [16].
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To obtain S - and T -matrices, sets of sturmian functions,

Φc′n(r) and their eigenvalues ηn, are determined from the

coupled-channel interactions, Vcc′(r). For practical reasons

we choose a set (n) of finite rank, with entries being those

having largest magnitudes of ηn. These are used in defin-

ing form factors for the Hilbert-Schmidt expansion of these

coupled-channel interactions themselves. The form factors, in

momentum space, χ̂cn(p), are the Fourier-Bessel transforms

of

χcn(r) =
∑

c′=1

Vcc′(r)Φc′n(r) . (3)

Obtaining the sturmian eigenstates, ηp, requires specifica-

tion of the Green’s function [15]

[G0]nn′ =µ
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. (4)

where the wave numbers are

kc =

√

µ(E − εc) and hc =

√

µ(εc − E) , (5)

εc is the target-state centroid and E is the projectile energy.

Typically, the Green’s functions are solved by methods of

complex analysis.

With these sturmian form factors,

Vcc′(p, q) =
∑

n

χ̂cn(p) η−1
n χ̂c′n(q) (6)

and

Tcc′ ∝

∑

n,n′

√

kc χ̂cn(kc)
(

[η −G0]−1
)

nn′
χ̂c′n′(kc′)

√

kc′ . (7)

With regards to this investigation, the key feature in the above

is the Green’s function [15].

The spectrum of the compound system is found from

the resolvent in the T -matrix, namely
[

η −G0

]−1
where

[

η
]

nn′ = ηn δnn′ . The trajectories of the eigenvalues in the

complex-energy plane, in particular in the vicinity of the pole-

position P(1, 0), can be employed to determine each resonance

centroid and width contained in the S -matrix, no matter how

narrow or large the resonance may be [15]. The bound states

of the compound system are defined by the zeros of that ma-

trix determinant when the energy is E < 0; all channels then

being closed.

Results using the Green’s function Eq. (4) (and from those

later given) are shown in Figs. 1 and 2 using potential

strengths and deformations as per Table I. Fig. 1 presents

spectra of 9Be as an n+8Be cluster and Fig. 2 shows a set of

total elastic and reaction cross sections in the energy range to

just over 5 MeV. 8Be was treated as a rotor with quadrupole

deformation and three states of it, 0+g.s., 2+
1

and 4+
1
, used in the

coupling. In Fig.1, the spectrum for 9Be found using Green’s

functions as per Eq. (4) is shown in the column furthest right.

TABLE I: Parameter values defining the n+8Be interaction. λ(OPP)

are blocking strengths of occupied shells, in MeV. εc and Γc data

from Ref. [27]

Odd parity Even parity

V0 (MeV) -33.600 -42.975

Vll (MeV) 4.50 0.75

Vls (MeV) 13.40 7.40

Vss (MeV) 4.00 0.00

R0 a0 β2

3.0 fm 0.65 fm 0.50

Target state εc Γc λ(OPP) 1s1/2 λ(OPP) 1p3/2

0+ 0.00 5.57 eV∗ 106 0.00

2+ 3.03 1.50 106 3.50

4+ 11.35 3.50 103 0.00

∗ Treated as 0 MeV in calculation.

For comparison, the experimental spectrum [27], is shown on

the far left. Fig. 2 displays the cross sections found from the

same calculation (and others discussed later) whose spectrum

is shown in Fig. 1. The results are identified by the same no-

tation. In this case where Eq. (4) is used, the reaction cross

section only becomes non-zero above the energy of the first

target state, which is at 3.41 MeV (lab frame), as necessary.

However, in the low-energy and low-mass regime where

compound-system resonances are important, it is appropriate

to take particle-instability of target states into account by mod-

ifying the Green’s functions. In its most basic form [28], this

is done by adding a complex component to the target-state

energy. That is, the description of the target state energy be-

comes:

εc + i
Γc

2
, (8)

and the Green’s functions thus become

[G0]nn′ =µ
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(9)

This equation has no poles on the real axis, and integration

may proceed normally [28]. The spectrum in Fig. 1 identified

by the complex energy ǫc + i Γ
2

resulted on using the same in-

teraction as before but with the 2+ and 4+ states of 8Be having

their known particle-emission widths [27].

Cross sections are calculated using the S -matrix which has

the general form:

S cc′ = δcc′ −

ilc′−lc+1πµ

N
∑

n,n′=1

√

kcχ̂cn(kc)
(

[

η −G0

]−1
)

nn′
χ̂c′n′ (kc′)

√

kc′ .

(10)
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FIG. 1: (Color online.) Experimental spectrum of 9Be compared with MCAS calculations with target states defined as per labels (see text).

Unbracketed numbers are excitation energies, bracketed numbers are widths, all in MeV.

where η is an array of sturmian eigenvalues. G0 is the Green’s

function defined by Eq. (4) in the case where no target state

widths are considered, and by Eq. (9) in the case where states

are described as per Eq. (8). As the systems considered herein

do not have particle emission widths in their ground states,

the sturmians “in the elastic channel” χ̂1n(k1) and χ̂1n(k1) will

not be different from cases where no target-state widths are

considered. However, S -matrices and thus cross sections will

still be altered by the inclusion of particle-emission widths

through the channels of
(

[

η −G0

]−1
)

nn′
not involving the tar-

get ground state. The cross sections that result from using

complex energies for the 2+
1

and 4+
1

states in 8Be, are shown in

Fig. 2, identified by the notation ǫc + i Γ
2
.

Of note, with particle-emission considered, the reaction

cross section is non-zero from zero projectile energy upwards,

due to loss of flux from target decay. However, their asymp-

totic behaviour at low projectile energies is unphysical, and is

due to the Lorentzian form that implicitly defines the target

states in Eq. (9) being non-zero at and below the scattering

threshold, as also observed in a technical note, Ref. [29]. This

also affects the energy of bound states, causing some to be-

come spuriously unstable.

To overcome this non-physical behaviour, a scaling factor

is applied to target-state widths, such that the target states are

now described as

εc + i
U(E) · Γc

2
, (11)

which changes the Green’s functions of Eq. (9) by multiplica-

tion of Γc in both integrals by U(E). The minimum conditions

placed on the scaling function are

U(E) = 0 at E ≤ 0

U(E) = 1 at E = εc

U(E)→ 0 as E → ∞ .

In addition, to fully eliminate asymptotic behaviour in the re-

action cross sections, it is required that

dU(E)

dE
→ 0 as E → +0 .

See Ref. [29] for an example in which a scaling function was

investigated where the last condition was not met (and where

causality correction, discussed below, was not addressed.)

The concept of energy dependent widths goes back to

Wigner [30], and is widely used in nuclear cross section es-

timates [31]. Typically, the low-energy dependence of such

scaled resonances are ruled by the centrifugal (and eventually

Coulomb) barrier. The probability of formation of a resonance

is modulated at low energies by these “penetration” factors. It

is these factors which lead to the requirement on the scaling

functions that they and their derivatives are vanishing at the

scattering threshold.

However, the introduction of energy-dependent widths ne-

cessitates an energy-dependent addition to the target-state

centroid, transforming the energy of the state to

εc + ∆εc(E) + i
Γc · U(E)

2
. (12)

This is because the Green’s functions define the sturmian

eigenvalues of the expansion of the potential. Thus, making

the prescription of the target states complex in effect makes

the potential an optical potential. As detailed in Refs. [32, 33],

energy-dependent complex-components in optical potentials

lead to a wave equation that violates causality unless the po-

tential is restricted by the addition of a dispersion relation

to the real part of the potential. These concepts have been

used in phenomenological optical models in, for example,

Refs. [34, 35].

Here, the dispersion relation is an energy-dependent adjust-

ment of the target-state centroid energy, ∆εc(E), given by the
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FIG. 2: (Color online.) Calculated n+8Be elastic scattering (a) and reaction (b) cross sections. Inset (c) shows threshold behaviour of the

reaction cross sections.

principal part integral

∆εc(E) =
Γc

2

1

π
P

∫

∞

0

U(E′)

E′ − E
dE′ . (13)

This manifests in Eq. (9) (with Γ multiplied by U(E)) as wave

numbers with the form

kc =

√

µ(E − εc − ∆εc(E)) and hc =

√

µ(εc + ∆εc(E) − E) .

(14)

Many nuclear targets have a ground state with no particle-

emission width, and when considering the channels involv-

ing those ground states, the wave numbers have the form

of Eq. (5) rather than Eq. (14), and the Green’s function of

Eq. (4) applies rather than Eq. (9) (modified by U(E) and

∆εc(E)).

One candidate for an energy-dependent target-state width

scaling is based upon a Wigner distribution [36], modified to

meet the necessary conditions:

U(E) = eq

(

E

εc

)Z

e−q(E/εc)Z

H(E) (15)

where q and Z are positive parameters. The Heaviside func-

tion ensures proper bound-state properties. Without it the

Green’s function is complex for negative E. The upper panel

of Fig. 3 shows the scaling function of Eq. (15) for q = 1, and

Z = 2. The lower panel shows the integrated result of Eq. (13)

with εc = 1 MeV and Γc = 2 MeV.

At projectile energies below that of a resonant target state’s

actual centroid, the effect of reducing the width of that state

increases the centroid used for purposes of defining the wave

number. Conversely, at projectile energies above the actual

centroid, the reduction in target state width decreases the cen-

troid used. The transition from positive to negative centroid

correction occurs at E > εc for these values of q and Z, which

is caused by the exponential suppression of the scaling func-

tion U(E) at energies larger than E. As projectile energy tends
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FIG. 3: (Color online.) (a) Scaling function U(E) of Eq. (15) for

q = 1, and Z = 2 with εc = 1. (b) Numerically evaluated ∆εc(E)

with U(E) having parameters as above and Γc = 2 MeV. (c) Insert

showing approach to -0 as projectile energy increases.

to infinity, the centroid correction tends to +0.

Column 2 of Fig. 1 shows the resonances and bound states

of an MCAS calculation with resonant states defined as per

Eq. (12), using the Green’s function defined accordingly. The

calculation used the same potential as all the others, and in fact

the parameters were tuned for this case. The appropriately-

labelled curves in Fig. 2 show the resultant elastic and reaction

cross sections. Column 3 of Fig. 1 and the matching curves

of Fig. 2 show the results of the energy-dependent scaling of

widths but neglecting the causality correction to the centroid

energy.

It is seen from differences between columns 2 and 5 of

Fig. 1 that consideration of nuclear instability in scattering

calculations has non-trivial impact upon compound-state cen-

troids, affecting how scattering potentials must be defined to

match experiment. The differences between column 2 and 3

show that the causality correction accounts for a significant

part of this variation. The result of the full physical descrip-

tion of target states [column 2] gives the best centroid values

for the 1
2

−

and 5
2

+

resonances, the features that dominate the

calculated cross sections.

The 1
2

−

resonance is only known to decay by neutron emis-

sion, and the 5
2

+

resonance by neutron and γ emission [27],

and so this MCAS calculation considers all important com-

ponents of the resonances’ widths. The calculation with no

consideration of 8Be decay widths [column 5] leads a width

for the 1
2

−

state that is only 9% of that observed experimen-

tally, where the calculation with target-state width scaling and

causality correction [column 2] gives a result that is 50% of

the known value. The calculation in which decay widths are

included but not scaled [column 4] produces 112% of the

known value, but as with column 3, the calculated result is un-

physical as previously discussed. Regarding the 5
2

+

resonance,

the width result in column 5 is 44% of the experimental value,

while that of column 2 is 144%, a slightly better ratio, and that

of column 4 is a large overestimation at 260%. The centroid

of the 5
2

−

resonance is poorly recreated in all calculations, and

concordantly the widths are over- or under-estimated in all

cases by orders of magnitude. Thus, certainly in the case of

the 1
2

−

resonance, and arguably that of the 5
2

+

resonance, con-

sideration of particle emission from target states is seen to be a

necessary ingredient in better describing scattering involving

loosely-bound nuclei. Further investigation of scaling factor

forms may yield yet better descriptions of compound-system

resonance shapes.

The appropriately-labelled curves in Fig. 2 show cross sec-

tions resulting from defining target states as per Eq. (12), and

with target state width scaling but neglecting the causality cor-

rection. Again the reaction cross section is non-zero from zero

projectile energy upwards due to flux loss, but it is observed

that the scaling factor successfully eliminates the erroneous

asymptotic rise in the reaction cross section near the threshold.

This is highlighted by the inset panel. Causality restoration,

by altering centroids, affects the shape of the cross sections,

with consequences for scattering-potential parameterisation.

To further illustrate the effect of the Green’s functions

of Eq. (9) modified with U(E) and ∆εc(E), we examine a

gedanken case of the scattering of low-energy neutrons from
12C, with coupling of the neutron to the 0+

1
, 2+

1
and 0+

2
states of

12C. A range of artificial particle-emission widths are assigned

to the 2+
1

and 0+
2

states of the target, with the resulting elastic-

scattering and reaction cross sections shown in Figs. 4 and 5,

respectively. Note that the width scaling factor, Eq. (15), tends

to zero as εc tends to zero, meaning that within this formalism

ground state widths cannot be considered. Thus, ground state

widths are set to zero and the principle-parts method of solv-

ing the Green’s functions of Eq. 4 is retained for this channel.

Fig. 4 shows that, while the inclusion of target state widths

has minimal impact upon the scattering background, with in-

creasing target-state widths, compound-system resonances are

reduced in amplitude and increased in width. With increasing

target-state widths, narrow resonances are subsumed into the

scattering background. The wider compound-state resonances

persist to greater widths. Note that, even when not discernible

from the scattering background, the method of obtaining res-

onances outlined above still identifies them.

The contour map view in the second panel of Fig. 5 shows

that when target-state widths equal 0 MeV, the reaction cross

section only becomes non-zero above the energy of the first

target state, at 4.81 MeV (lab frame), as is necessary. When

target-state widths are increased, the reaction cross section

becomes non-zero for all projectile energies greater than the

scattering threshold, as particle decay leads to flux loss. As

target widths increase from zero, compound-system reso-

nances immediately appear and dominate this region below

the first target state energy. The third panel presents several

reaction cross sections at small Γc to show their behaviour in
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FIG. 4: (Color online.) (a) n+12C elastic scattering cross section with gedanken particle-emission widths, Γc, of 12C 2+
1

and 0+
2

states as per

the axis. E is the projectile energy. (b) Contour map detail of the top panel. Target states are as per the right of Eq. (12), with q = 1, Z = 2 in

Eq. (15).

more detail.

The second panel further shows that as widths increase,

these resonances rapidly become subsumed into the scattering

background. No unphysical asymptotic behavior is observed

at projectile energies near the scattering threshold.

To further examine behaviour of the reaction cross section

near the scattering threshold, Fig. 6 shows the case of the 12C

2+
1

and 0+
2

states each having a width of 0.5 MeV. The two

results shown used target states defined as per Eq. (8) and

Eq. (12) respectively. As in the 9Be investigation, the for-

mer has erroneous asymptotic behaviour as E → +0, which is

eliminated in the latter.

In conclusion, a method of accounting for states that are

particle-unstable in nuclei undergoing low-energy resonant

scattering is developed, which is free of unphysical behaviour

at the scattering threshold and conserves causality. This is

performed by choosing an appropriate target-state resonance

shape, modifying a Lorentzian by use of widths dependent

on projectile energy, with a correction to target-state cen-

troid energy. Resultant scattering cross sections are markedly

different from those found when particle instability is not

considered. Compound-system resonances decrease in mag-

nitude and increase in width, with otherwise narrow reso-

nances becoming obscured into the scattering background.

This was shown to improve agreement between calculated and

observed widths of such resonances. When using parameter-

driven scattering potentials, the effects of the target-state res-

onance shape - and in the case energy-dependent modified

Lorentzians, the centroid correction - are non-trivial in defin-

ing the potential. Compound spectra associated with, and

scattering cross sections from, weakly-bound radioactive ion

beams with light-mass targets should be influenced by such

considerations as these.

This work is supported by the Australian Research Council,

National Research Foundation of South Africa and U.S. Na-

tional Science Foundation under Award No. PHY-1415656.
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FIG. 6: Calculated n+12C reaction cross for Γc = 0.5 MeV.
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