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Background: Besides its intrinsic value as a fundamental nuclear-structure observable, the weak-charge den-
sity of 208Pb—a quantity that is closely related to its neutron distribution—is of fundamental importance in
constraining the equation of state of neutron-rich matter.

Purpose: To assess the impact that a second electroweak measurement of the weak-charge form factor of 208Pb
may have on the determination of its overall weak-charge density.

Methods: Using the two putative experimental values of the form factor, together with a simple implementation
of Bayes’ theorem, we calibrate a theoretically sound—yet surprisingly little known—symmetrized Fermi function,
that is characterized by a density and form factor that are both known exactly in closed form.

Results: Using the charge form factor of 208Pb as a proxy for its weak-charge form factor, we demonstrate
that using only two experimental points to calibrate the symmetrized Fermi function is sufficient to accurately
reproduce the experimental charge form factor over a significant range of momentum transfers.

Conclusions: It is demonstrated that a second measurement of the weak-charge form factor of 208Pb supple-
mented by a robust theoretical input in the form of the symmetrized Fermi function, would place significant
constraints on the neutron distribution of 208Pb. In turn, such constraints will become vital in the interpretation
of hadronic experiments that will probe the neutron-rich skin of exotic nuclei at future radioactive beam facilities.
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I. INTRODUCTION

Starting with the pioneering work of Hofstadter in the late 1950’s [1] and continuing until this day [2–4], elastic
electron scattering has painted the most accurate and detailed picture of the distribution of protons in the atomic
nucleus. This sits in stark contrast to our poor knowledge of the neutron distribution which until very recently has
been mapped using exclusively hadronic experiments that are hindered by large and uncontrolled uncertainties [5].
The Lead Radius EXperiment (“PREX”) at the Jefferson Laboratory has opened a new window by using parity-
violating elastic electron scattering to provide the first model-independent determination of the weak form factor of
208Pb, albeit at a single value of the momentum transfer [6, 7]. Given that the weak charge of the neutron is much
larger than the corresponding one of the proton, parity-violating electron scattering provides an ideal electroweak
probe of the neutron distribution [8]. Although measuring the weak charge form factor at a single point provides
limited information on the neutron distribution, by invoking some theoretical assumptions, PREX furnished the first
credible estimate of the neutron radius of 208Pb (R208

n ) [7]. Since the proton radius of 208Pb (R208
p ) is known with

enormous accuracy [4], PREX effectively determined the neutron skin thickness of 208Pb [6, 7]:

R208
skin ≡ R208

n −R208
p = 0.33+0.16

−0.18 fm. (1)

The determination of the neutron skin thickness of 208Pb is of great significance for multiple reasons. First, as an
observable sensitive to the difference between the neutron and proton densities, it plays a critical role in constraining
the isovector sector of the nuclear energy density functional [9–13]. Second, a very strong correlation has been found
between the slope of the symmetry energy at saturation density (L) and R208

skin [12, 14–17]. This provides a powerful
connection between a fundamental parameter of the equation of state (EOS) and a laboratory observable. Note that
L is closely related to the pressure of pure neutron matter at saturation density. Third, constraining the EOS of
neutron-rich matter provides critical guidance on the interpretation of heavy-ion experiments involving nuclei with
large neutron-proton asymmetries [18–23]. Finally, even though there is a difference in length scales of 18 orders
of magnitude, the neutron skin thickness of 208Pb and the radius of a neutron star share a common dynamical
origin [12, 24–29]. Although in general neutron-star properties are sensitive to the high-density component of the
EOS, it is the pressure in the neighborhood of twice nuclear matter saturation density that sets the overall scale for
stellar radii [30]. Thus, whether pushing against surface tension in a nucleus or against gravity in a neutron star, it is
the pressure in this neighborhood that determines both the thickness of the neutron skin and the radius of a neutron
star.

However, the accurate and reliable determination of both the neutron skin thickness of 208Pb and the radius of a
neutron star present enormous challenges. While PREX convincingly demonstrated the feasibility of the method for
measuring weak-charge form factors with an excellent control of systematic errors [6, 7], unforeseen technical problems
compromised the statistical accuracy of the experiment; see the large errors in Eq. (1). Fortunately, it is anticipated
that in an already approved experiment (“PREX-II”) the uncertainty in the determination of R208

n will be reduced
by a factor of three, to about ± 0.06 fm. In turn, attempts to reliably extract stellar radii have been hindered by large
systematic uncertainties that have resulted in an enormous disparity—ranging from radii as small as 8 km all the way
to 14 km [31–33]. And whereas a better understanding of systematic uncertainties, new theoretical developments, and
the implementation of robust statistical methods seem to favor small stellar radii [34–38], a consensus has yet to be
reached. Thankfully, the historical first detection of gravitational waves [39] opens a new window into the structure
of neutron stars—particularly stellar radii—from the gravitational-wave signal from the merger of two neutron stars;
see Refs. [40, 41] and references contained therein. Indeed, it is anticipated that gravitational waves could constrain
neutron-star radii to better than one kilometer [41].

As alluded to earlier, the pioneering PREX experiment measured the weak form factor of 208Pb at the single
momentum transfer of q=0.475 fm−1 [6, 7]. The main goal of this contribution is to assess the impact that a second
measurement could have in determining the overall weak-form factor of 208Pb. The need for a second measurement
may be justified using simple arguments based on the nuclear mass formula of Bethe and Weizsäcker [42, 43]. Given
that the nuclear force saturates, Bethe and Weizsäcker modeled the atomic nucleus as an incompressible liquid drop.
The nearly uniform density found in the interior of a heavy nucleus features among the most successful predictions of
the model. However, the liquid drop is finite so a penalty must be assessed for the formation of the nuclear surface.
In this way, the density of a heavy nucleus is largely characterized by two parameters: a radius that accounts for the
distance over which the density is nearly uniform and a surface thickness that controls the transition from high to
low density. The corresponding nuclear form factor—which is the physical observable that is actually probed in the
experiment—is obtained from the Fourier transform of the density distribution. As such, the radius and the surface
thickness leave a very distinct imprint on the form factor. Indeed, the nuclear form factor displays a nearly universal
behavior characterized by diffractive oscillations controlled by the radius that are in turn modulated by an exponential
falloff controlled by the surface thickness [44].
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Clearly, a single measurement of the form factor can only constrain a linear combination of the radius and the
surface thickness. This hinders the model-independent determination of the mean-square radius of the distribution
as one must rely on theoretical models to lift the “degeneracy”. Instead, a second measurement of the form factor
will allow the experimental determination of these two critical parameters. In this contribution we assess the impact
of a second measurement of the weak-charge form factor of 208Pb by introducing, or rather re-introducing, a highly
convenient two-parameter characterization of the density distribution: the symmetrized Fermi function; see Ref. [45]
and references contained therein. For heavy nuclei with a radius parameter that is significantly larger than the
surface thickness, the symmetrized Fermi (SFermi) function is practically indistinguishable from the standard Fermi
(or Woods-Saxon) parametrization. However, unlike the standard Fermi function that displays a “cusp” at the center
of the nucleus, the SFermi parametrization is analytic. In the present context, this offers a unique advantage over the
standard Fermi function: the form factor associated to the symmetrized Fermi function can be computed exactly in
closed form. That this elegant result remains largely unknown to the nuclear physics community comes as a surprise
(although see Ref. [46]). As stated in Ref. [45]: “The symmetrized Fermi function has been known to some experts,
but the least one can say is that it is not well known generally. None of the text books on nuclear physics refers to
it”. On the other hand, a well-known parametrization of the nuclear form factor—with a density that is also known
in closed form—was introduced by Helm almost 6 decades ago [47]. However, the Helm form factor has a Gaussian
falloff rather than the more realistic exponential falloff displayed by the SFermi form factor.

Although presently plagued by large and uncontrolled uncertainties, hadronic reactions provide the only viable tool
to probe the neutron-rich skin of exotic nuclei. Indeed, one of the main science drivers of the Facility for Rare Isotope
Beams (FRIB) is the study of nuclei with neutron skins three or four times thicker than is currently possible [48]. Thus,
in order to reduce the hadronic uncertainties, it is imperative to find model-independent probes. As we show below,
two electroweak measurements of the weak form factor of 208Pb are sufficient to cleanly and tightly constrain the
half-density radius and the surface difussness of the corresponding symmetrized Fermi distribution. In this manner,
besides providing the first model-independent picture of the neutron distribution of 208Pb, these two electroweak
measurements supply critical calibrating anchors for future hadronic experiments at FRIB.

We have organized the paper as follows: In Sec. II we introduce the SFermi and Helm parametrization, and discuss
the simple formalism used in the optimization of the two parameters that define these parametrizations. Sec. III
presents in a simple, yet statistically rigorous manner, the great improvement in the determination of the form factor
once a suitably chosen second measurement has been selected. To establish this point, we use the well known charge
form factor of 208Pb as a proxy for its weak-charge form factor. Finally, we offer our summary and conclusions in
Sec. IV.

II. THEORETICAL FORMALISM

In this section we develop the formalism required to assess the role of a second electroweak measurement of the
weak form factor of 208Pb. In the first part of the section we introduce the SFermi and Helm functions underscoring
that both have density distributions and form factors that are known in closed analytic form. The second part of this
section discusses the simple Bayesian approach that we implement to constrain the two parameters that define the
SFermi and Helm form factors.

A. Symmetrized Fermi Form Factor

The Woods-Saxon, or Fermi, function was introduced more than six decades ago to describe nucleon-nucleus
scattering [49]. Given that the nucleon-nucleon interaction is of short range relative to the overall size of the nucleus,
the mean-field potential that the nucleon scatters from resembles the underlying nuclear density that is fairly accurately
described in terms of a two-parameter Fermi shape. The conventional Fermi function is defined as follows:

fF(r) =
1

1 + e(r−c)/a
, (2)

where c is the “half-density radius” and a the “surface diffuseness”.
A less known distribution that is practically identical to the Fermi function in the relevant nuclear domain of c�a

is the symmetrized Fermi function:

fSF(r) ≡ fF(r) + fF(−r)− 1 =

(
1

1 + e(r−c)/a
− 1

1 + e(r+c)/a

)
=

sinh(c/a)

cosh (r/a) + cosh(c/a)
. (3)
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For an enlightening introduction to the SFermi distribution that underscores its unique analytic behavior see Ref. [45]
and references contained therein. Although practically indistinguishable from the conventional Fermi function, the
symmetrized Fermi function enjoys a distinct advantage over it: whereas the Fermi function displays a cusp at the
origin, the derivative of the SFermi function vanishes smoothly at r=0. As a result of the analyticity of the SFermi
function, its form factor—namely, the Fourier transform of the one-body density—may be, unlike the case of the
conventional Fermi function, evaluated in closed analytic form [45]. That is,

FSF(q) =

∫
e−iq·rρ

SF
(r)d3r = 4π

∫ ∞
0

sin(qr)

qr
ρ
SF

(r)r2dr

=
3

qc
(

(qc)2 + (πqa)2
) ( πqa

sinh(πqa)

)[
πqa

tanh(πqa)
sin(qc)− qc cos(qc)

]
. (4)

where

ρ
SF

(r) ≡ ρ
0
fSF(r); ρ

0
≡ 3

4πc (c2 + π2a2)
, (5)

and we have adopted the following normalization:

FSF(q=0) =

∫
ρ
SF

(r)d3r = 1 . (6)

Among the many appealing features of an analytic expression for the form factor is that all the moments of the
distribution can be evaluated exactly. Indeed, for low momentum transfers a Taylor series expansion of the form
factor yields

FSF(q) = 1− q2

3!
R2 +

q4

5!
R4 − q6

7!
R6 + . . . (7)

where the first three moments of the SFermi distribution are given by

R2 ≡ 〈r2〉 =
3

5
c2 +

7

5
(πa)2 , (8a)

R4 ≡ 〈r4〉 =
3

7
c4 +

18

7
(πa)2c2 +

31

7
(πa)4 , (8b)

R6 ≡ 〈r6〉 =
1

3
c6 +

11

3
(πa)2c4 +

239

15
(πa)4c2 +

127

5
(πa)6 . (8c)

Unlike the conventional Fermi function, these expressions—and indeed all the moments of the SFermi distribution—
are exact as they do not rely on a power series expansion in terms of the “small” parameter πa/c. Also interesting
and highly insightful is the behavior of the SFermi form factor in the limit of high momentum transfers. Indeed, in
this limit the SFermi form factor takes a remarkably simple form

FSF(q)→ −6
πa√

c2 + π2a2
cos(qc+ δ)

qc
e−πqa ; tan δ≡ πa

c
. (9)

This expression encapsulates many of the insights developed more than three decades ago in the context of the
conventional Fermi function. Namely, that for large momentum transfers the oscillations in the form factor are
controlled by the half-density radius c and the exponential falloff by the diffuseness parameter a (or rather πa) [44, 50].
Again, it should be underscored that this expression is exact in the limit of high momentum transfers.

B. Helm Form Factor

Another simple, yet realistic, distribution that also captures the main features of the form factor is the Helm
function. Although much better known than the symmetrized Fermi form factor, in the interest of completeness we
provide a short summary of its most important properties. The Helm form factor was introduced exactly 60 years
ago to analyze elastic scattering of electrons from nuclei [47]. The Helm form factor is defined as the product of two
fairly simple form factors: one associated with a uniform (“box”) density and the other one accounting for a Gaussian
falloff [7, 47, 51]. That is,

FH(q) = FB(q)FG(q) = 3
j1(qR0)

qR0
e−q

2σ2/2 , (10)
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where

FB(q) =

∫
e−iq·rρ

B
(r)d3r =

∫
e−iq·r

(
3Θ(R0−r)

4πR3
0

)
d3r = 3

j1(qR0)

qR0
, (11a)

FG(q) =

∫
e−iq·rρ

G
(r)d3r =

∫
e−iq·r

(
e−r

2/2σ2

(2πσ2)3/2

)
d3r = e−q

2σ2/2 . (11b)

Here j1(x) is the spherical Bessel function of order one:

j1(x) =
sin(x)

x2
− cos(x)

x
. (12)

A great advantage of the Helm form factor is that it is defined in terms of a form factor that encodes the uniform
interior density and another one that characterizes the nuclear surface. As such, the Helm form factor is defined
entirely in terms of two constants: the box (or “diffraction”) radius R0 and the surface thickness σ. Although slightly
more complicated than the form factor, a closed-form expression for the Helm density also exists. It is given by,

ρ
H
(r)=

1

2
ρ
0

[
erf

(
r +R0√

2σ

)
−erf

(
r −R0√

2σ

)]
+

1√
2π

(σ
r

)
ρ
0

[
exp

(
− (r +R0)2

2σ2

)
−exp

(
− (r −R0)2

2σ2

)]
; ρ

0
≡ 3

4πR3
0

, (13)

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0

e−z
2

dz. (14)

As in the case of the symmetrized Fermi function, the Helm form factor has been normalized to FH(q=0)=1. Finally,
the first three moments of the Helm distribution are given by the following simple expressions:

R2 ≡ 〈r2〉 =
3

5
R2

0 + 3σ2 , (15a)

R4 ≡ 〈r4〉 =
3

7
R4

0 + 6R2
0σ

2 + 15σ4 , (15b)

R6 ≡ 〈r6〉 =
1

3
R6

0 + 9R4
0σ

2 + 63R2
0σ

4 + 105σ6 . (15c)

C. Parameter Optimization

In this section we outline the necessary steps that are required to determine the two model parameters that
define the SFermi and Helm form factors from a measurement of the experimental weak-charge form factor of 208Pb.
Evidently, without further theoretical assumptions, it is impossible to constrain both model parameters from our
current knowledge, namely, a single measurement of the form factor; see Eqs. (8) and (15). In the particular case
of PREX—where the weak form factor was extracted at a single q-point—constraints on the surface thickness σ of
the Helm model were obtained by analyzing the theoretical predictions of several mean-field models. This lead to a
theoretical uncertainty in the determination of σ of about 10% [7], which was ultimately incorporated into the final
estimate of the weak-charge radius of 208Pb. Our aim here is to demonstrate that measuring the weak form factor at
a suitable second point minimizes the reliance on theoretical models.

Naturally, the selection of the first q-point should match the PREX momentum transfer of q
1
=0.475 fm−1. Given

this unique data point, how accurately can we constrain the weak form factor of 208Pb and in particular its mean-
square radius? To answer this question from a strict statistical perspective we must construct the likelihood function
defined as [52]:

p(F |ω) = e−
1
2
χ2(F ;ω) , (16)

where

χ2(F ;ω) =

(
FSF(q

1
;ω)− Fexp(q

1
)
)2

∆F 2
exp(q

1
)

. (17)
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Here ∆Fexp defines the experimental error and ω ≡ {a, c} denotes the two model parameters of the symmetrized
Fermi function FSF(q). Note that the likelihood function p(F |ω) represents the probability that a given set of SFermi
parameters describes the observed outcome, namely, the measured experimental form factor. Often, however, one
may refine the probability distribution by injecting our own biases and intuition. For example, as indicated in Ref. [7],
mean-field predictions of the weak-charge density of 208Pb suggest a Helm surface thickness of σ= (1.02 ± 0.09) fm.
Such biases may then be incorporated into a prior probability p(ω) that represents the best estimate of the model
parameters prior to the realization of the experiment(s). For the prior we adopt a fairly broad Gaussian distribution
(see Table I) centered around the predictions of an accurately-calibrated set of mean-field models [13]. That is,

p(ω) =
∏
i

1√
2πσ2

i

e−(ωi−ω̄i)
2/2σ2

i . (18)

To provide the connection between our own theoretical biases (encoded in the prior) and the experimental measurement
(encoded in the likelihood) we invoke Bayes’ theorem. That is,

p(ω|F ) =
p(F |ω)p(ω)

p(F )
, (19)

where p(F ) is known as the marginal likelihood [52]. The posterior probability density p(ω|F ), namely the updated
beliefs about ω given the result of the measurement, represents the probability of the model parameters given the
experimental evidence, namely, the form factor. In principle, the implementation of Bayes’ theorem requires the
calculation of the marginal likelihood. In practice, however, the calculation of this term—as well as any other
normalization factor independent of ω—may be bypassed through the use of Monte Carlo methods.

As we shall see later in Sec. III, the posterior probability density defined in such a way provides a robust statistical
benchmark for the selection of the second q-point [53]. Our goal in selecting this second point is to lift the degeneracy
among the many models that are consistent with the single PREX measurement. To do so, one should search for a
region in q that maximizes the variability among the theoretical predictions. Perhaps not surprising, this happens
near the first diffraction maximum (i.e., near the first maximum in |F (q)| away from q= 0). Once the two values of
the momentum transfer (q

1
and q

2
) have been selected, the determination of the model parameters follows from a

likelihood function suitably augmented relative to Eq. (17). That is, the augmented objective function χ2(F ;ω) now
becomes

χ2(F ;ω) =

(
FSF(q

1
;ω)− Fexp(q

1
)
)2

∆F 2
exp(q

1
)

+

(
FSF(q

2
;ω)− Fexp(q

2
)
)2

∆F 2
exp(q

2
)

. (20)

III. RESULTS

In this section we examine the accuracy that may be attained in the determination of the weak form factor of 208Pb
and more specifically in its weak-charge radius from only two experimental measurements. To test the soundness and
reliability of the proposed method, we rely on a form factor that is known with exquisite precision over many orders
of magnitude in momentum transfer: the charge form factor of 208Pb [2]. That is, we simulate the impact of a second
measurement by selecting the charge form factor of 208Pb as a proxy for the weak form factor.

A. Selection of the second value of the momentum transfer

The selection of the second value of the momentum transfer q
2

is motivated by our desire to lift the degeneracy
between the many models that satisfy the constraint imposed by the single PREX measurement. To do so, we search
in a region of q that maximizes the variability among the theoretical predictions. Namely, we define the one-point
likelihood in Eq. (17) in terms of the charge form factor of 208Pb at q

1
= 0.5 fm−1 which is given by Fch(q

1
) = 0.210.

This choice is motivated by the existing PREX [6] measurement that resulted in a weak form factor comparable
to Fch(q

1
), namely, Fwk(q1) = 0.204 ± 0.028 (exp) ± (0.001) (model) [7]. For the experimental uncertainty we assume

∆Fexp(q
1
) = 0.005. Although significantly larger than the typical error of the charge form factor, attaining such

level of precision may be difficult for the weak-charge form factor—at least as presently envisioned by PREX-II.
However, such precision may be achieved at the planned “Mainz Energy-Recovering Superconducting Accelerator”
(MESA) facility. Finally, we adopt what we view as a fairly conservative choice for the Gaussian prior p(ω) defined
in Eq. (18). Whereas for the central values ω̄i we rely on the predictions of an accurately calibrated model [13], for
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the relative standard deviation we adopt a fixed value of one half to account for the significant spread displayed by a
large collections of mean-field models [16, 17]. The (prior) central values for both the SFermi and Helm distributions
have been tabulated in Table I. We note that we have tested other choices and found our results robust against the
choice of prior.

SFermi Helm

c̄ = 6.683 R̄0 = 6.788
ā = 0.494 σ̄ = 0.880

TABLE I. Central values for the Gaussian distribution assumed for the prior; see Eq. (18). In all cases the relative standard
deviation has been fixed to one half; for example, σc = c̄/2=3.342 fm. All quantities are given in fm.

5.4 5.6 5.8 6
Rch(fm)

0

1

2

3

4

5

P(
R

ch
)

Rch
208=(5.534±0.125)fm

(b)

FIG. 1. (color online) (a) Correlation plot between the half-density radius c and the surface diffuseness a that define the
symmetrized Fermi function. The number of points represent the raw data obtained from the Monte-Carlo simulation. Also
shown are the respective averages and standard deviations. The solid red line represents the functional form obtained from
solving the equation Fch(q1; a, c)=0.210. (b) Probability distribution function for the charge radius of 208Pb obtained from the
Monte-Carlo simulation.

With the definition of the posterior distribution now firmly in place, we proceed to generate the distribution of
SFermi parameters using a standard Metropolis Monte-Carlo algorithm [54]. We underscore that the distribution
of parameters is generated exclusively by the information that is presently known, namely, a single experimental
measurement of the form factor that is encoded in the likelihood, and a set of theoretical biases that are embedded in
the prior. The left-hand panel in Fig. 1 displays the correlation plot between the half-density radius c and the surface
diffuseness a that define the SFermi distribution. As expected from just a single measurement, the model parameters
are highly correlated. Indeed, the solid red line represents the functional relation implied by an ideal—i.e., error free
and unbiased—single measurement of the form factor: Fch(q

1
; a, c)=0.210. In turn, such a distribution of parameters

generates the highly-asymmetric probability distribution function for the charge radius of 208Pb displayed on the
right-hand panel of Fig. 1. For comparison, the experimental value is R208

ch =5.5012(13) fm [4].
As already alluded to and now clearly displayed in Fig. 2, there is a very large (indeed infinite!) number of pairs

(c, a) that pass through the single experimental point (indicated by the red circle). However, the plot is highly
informative because it identifies the region of largest variability among the many models that satisfy the experimental
constraint. This variability is quantified in terms of the relative variance in the model predictions (green solid line)
which is maximized in the region around q

2
= 0.8 fm−1. This situation is highly favorable because the momentum

transfer is large enough for the parity-violating asymmetry to be “sizable” (as the asymmetry scales with q2) but not
overly large for the nuclear form factor to be highly suppressed.
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0.0 0.5 1.0 1.5 2.0 2.5
q(fm-1)

0.0

0.2

0.4

0.6

0.8

1.0

F ch
(q

)

σ(q)

208Pb

FIG. 2. (color online) Variability in the charge form factor of 208Pb generated by the distribution of parameters displayed in
Fig. 1. Also shown with the green solid line is the relative uncertainty in the model predictions as a function of the momentum
transfer.

Having identified the second q-point, we are now ready to answer the central question posed in this manuscript:
How accurately can we describe the form factor of 208Pb by measuring only two points? To answer this question we
repeat the same procedure that we have just implemented but now with a likelihood function augmented by a second
value of the charge form factor at the newly identified momentum transfer of q

2
=0.8 fm−1, namely, Fch(q

2
)=−0.0614.

For simplicity, we assume the same prior distribution and the same experimental error as before; that is, ∆Fexp(q
1
)=

∆Fexp(q
2
)=0.005.

The improvement in our knowledge of the underlying symmetrized Fermi function is readily apparent in Fig. 3.
This figure is the analog of Fig. 1, although note the disparity in scales between the two figures. The distribution of
parameters is displayed on the left-hand panel of Fig. 3 together with the 39% (in yellow) and 95% (in blue) confidence
ellipsoids. Note that now the posterior distribution is constrained by two functional relations: Fch(q

1
; a, c) = 0.210

(solid red line) and Fch(q
2
; a, c) =−0.061 (solid purple line) which together provide nearly “orthogonal” constraints

that set stringent limits on both the half-density radius c and the surface diffuseness a; see Table II. Note that the
theoretical errors quoted in Table II, namely, about 1% for c and 13% for a, were obtained by assuming that the form
factor at both momentum transfers may be determined with an experimental error of 0.005. Finally, the right-hand
panel in Fig. 3 shows the probability distribution function for the charge radius of 208Pb [see Eq. (8)]; along with the
best Gaussian fit. Thus, the theoretical prediction for the charge radius of 208Pb obtained from the knowledge of only
two experimental points is R208

ch =5.504(45) fm, which compares very favorably with the corresponding experimental
value of R208

ch =5.5012(13) fm [4].

SFermi Helm

c = 6.655 ± 0.081 R0 = 6.785 ± 0.057
a = 0.514 ± 0.066 σ = 0.913 ± 0.116

Rch = 5.504 ± 0.045 Rch = 5.492 ± 0.041

TABLE II. Average values and corresponding theoretical uncertainties generated from the posterior distribution for a sym-
metrized Fermi and Helm form factors. Also shown are the predictions for the charge radius of 208Pb, which should be compared
against the experimental value of R208

exp =(5.5012 ± 0.0013) fm [4]. All quantities are given in fm.

Having calibrated the parameters of the symmetrized Fermi function using two experimental points and a fairly
unconstrained prior distribution, we are now in a position to examine the overall agreement between the theoretical
predictions and the experimental data for the entire charge form factor. This is shown in Fig. 4a using both linear
and logarithmic scales. The two isolated red points represent the two experimental measurements that were used to
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FIG. 3. (color online) (a) Correlation plot between the half-density radius c and the surface diffuseness a that define the
symmetrized Fermi function. The number of points represent the raw data obtained from the Monte-Carlo simulation. Also
shown are the 39% and 95% confidence ellipses. The solid red and purple lines represents the functional form obtained from
solving the equations: Fch(q1; a, c)=0.210 Fch(q2; a, c)=−0.061. (b) Probability distribution function for the charge radius of
208Pb obtained from the Monte-Carlo simulation. The black solid line represents a fit to a Gaussian probability distribution.

calibrate the model parameters (c and a). In turn, the dense collection of black points represents the full experimental
form factor [2] that we aim to reproduce. Our theoretical predictions are displayed with a blue solid line together
with the theoretical-uncertainty band shown in cyan. On a linear scale, it is difficult to discern the agreement (or
lack-thereof) between theory and experiment. Moreover, on a linear scale it is also difficult to appreciate the diffractive
oscillations modulated by an exponential envelope that are the hallmark of the nuclear form factor. Thus, we display
on the inset in Fig. 4a the absolute value of the form factor using a logarithmic scale. The diffractive oscillations
(controlled by c) and the exponential envelope (controlled by a) are now easily discernible. We observe a fairly good
agreement between theory and experiment over several diffractive maxima up to momentum transfers well beyond
the value of the second point (q

2
=0.8 fm−1). However, at the largest momentum transfers displayed in the figure, i.e.,

q& 2.5 fm−1, there is a clear deterioration in the model predictions. Finally, the associated charge density of 208Pb
is displayed in Fig. 4b. Although it provides an excellent description of the experimental data at large distances as
evinced in the inset, it fails to account for the experimental “dip” in the nuclear interior, which correlates with the
deterioration of the theoretical predictions at large momentum transfers. Note that in contrast, accurately-calibrated
mean-field models tend to overestimate the dip in the nuclear interior which is sensitive to shell effects [55]; see Fig. 6.

For completeness, we display in Fig. 5 the form factor and corresponding spatial density of 208Pb—but now using
the Helm representation. Here too the agreement with experiment is fairly good and underscores the fact that any
two-parameter function that properly encapsulates the diffractive oscillations an the exponential falloff of the form
factor is likely to provide an adequate description of the data, at least at low momentum transfers. Naturally, the
great virtue of the symmetrized Fermi and Helm parameterizations is that both the spatial density and the form factor
are known in closed analytic form. However, a distinct advantage of the former over the latter is that it displays an
exponential rather than a Gaussian falloff at large distances.

As mentioned repeatedly earlier, the main goal of this manuscript is to assess using exclusively statistical methods
and physical insights the impact of a second electroweak measurement of the weak form factor of 208Pb. In particular,
we aim to quantify the experimental precision required in the determination of the weak-charge (or neutron) radius of
208Pb to have a strong impact on both nuclear structure and astrophysics. Using the charge form factor of 208Pb as a
proxy, we found that by measuring two suitable points with relative small, yet attainable, errors, the charge radius of
208Pb could be reproduced accurately with a precision of about 0.04 fm. It is therefore natural to ask how meaningful
would a measurement of the weak-charge radius of 208Pb to this precision be on constraining the density dependence
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FIG. 4. (color online) (a) Charge form factor and (b) the corresponding charge density of 208Pb. The two red points on the
left-hand panel represent the sole input used in the calibration of the symmetrized Fermi function. The theoretical predictions
are displayed by an uncertainty band (in cyan) and the experimental data is from Ref. [2].

of the symmetry energy?
To elucidate this question we display in Table III predictions for several relevant quantities computed with a recent

set of accurately calibrated relativistic mean field models. These models are constrained by the same isoscalar sector
but differ in a single isovector assumption, namely, the choice of the neutron skin thickness of 208Pb [13]. Although the
set of models is relatively small, note that the theoretical spread in R208

wk is nearly five times as large as the assumed
(0.04 fm) experimental precision. Pictorially, the imprint of the isovector sector is illustrated in Fig. 6. Indeed, whereas
the charge density remains practically unchanged, significant differences emerge in the weak-charge density, as the
latter is dominated by the neutron distribution. Shown in the inset on a logarithmic scale are symmetrized Fermi
and Helm fits to the RMF charge density that evinced the more realistic exponential falloff of the SFermi density. As
a figure of merit, we can establish that if R208

wk is relatively small, i.e., in the R208
wk = (5.64−5.72) fm range, or within

the assumed ±0.04 fm uncertainty, one could constrain the slope of the symmetry energy to about 15 MeV and the
radius of a 1.4M� neutron star to within 1.2 km. Of course, these estimates are based on a very limited set of RMF
models that suffer from their own limitations and theoretical biases. Yet, our conclusions appear consistent with other
studies that incorporate a very large ensemble of reasonable nuclear energy density functionals [17, 56]. However, we
note that one may constrain the density dependence of the symmetry energy directly from the measured weak form
factor at the momentum transfer of the PREX experiment. Indeed, as shown in Table III, the correlation between L
and FPREX

wk remains strong, at least for the limited set of models used in this contribution; plans to verify the validity
of this correlation for a larger set of models is currently under way [57]. Connecting L directly to FPREX

wk would avoid
ambiguities associated with the determination of both the half-density radius and the surface diffuseness from a single
measurement.

IV. CONCLUSIONS

Almost 80 years ago and shortly after the discovery of the neutron by Chadwick, Bethe and Weizsäcker described
the atomic nucleus as a two-component quantum drop with a constant interior density and a nearly universal surface.
Since then, elastic electron scattering experiments have provided a detailed map of the charge distribution that
validates the simple picture of Bethe and Weizsäcker. Indeed, to a large extent the nuclear charge density can be
accurately described by only two parameters: a radius and a diffuseness. These two parameters leave their imprint in
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FIG. 5. (color online) (a) Charge form factor and (b) the corresponding charge density of 208Pb. The two red points represent
the sole input used in the calibration of the Helm function. The theoretical predictions are displayed by an uncertainty band
(in cyan) and the experimental data is from Ref. [2].

Model R208
ch R208

wk R208
wk −R208

ch FPREX
wk L R(1.4M�)

RMF-012 5.504 5.636 0.132 0.239 48.254 12.400
RMF-016 5.499 5.667 0.168 0.234 50.961 12.839
RMF-022 5.496 5.722 0.226 0.226 63.524 13.609
RMF-028 5.495 5.790 0.295 0.216 112.644 14.234
RMF-032 5.489 5.822 0.333 0.212 125.626 14.718

TABLE III. Predictions from a set of accurately calibrated relativistic mean-field models [13] for the charge radius, weak-charge
radius, and their difference for 208Pb (all in fm). Also shown is the weak-charge form factor at the PREX momentum transfer,
the slope of the symmetry energy L (in MeV) and the radius of a 1.4M� neutron star (in km). Some of these quantities may be
compared against the following experimental values: R208

ch =5.5012(13) fm [4], FPREX
wk =0.204(28), and R208

wk =5.826(181) fm [7].

the characteristic diffractive oscillations modulated by an exponential falloff of the charge form factor. In this way,
elastic electron scattering has provided the most accurate map of the distribution of charge in the nucleus.

Unfortunately, our picture of the corresponding weak-charge density is fairly crude. Whereas the charge density
is dominated by the protons, the weak-charge density is dominated by the neutrons, as the weak neutral Z0 boson
couples preferentially to the neutrons. However, probing the neutron distribution is enormously challenging. Strongly
interacting probes such as pions and protons couple strongly to neutrons but these reactions are plagued by hadronic
uncertainties. Instead, parity-violating electron scattering is clean and model independent but the measured asymme-
try is very small. Fortunately, in a pioneering measurement, the PREX collaboration used parity-violating electron
scattering to extract the weak-charge form factor of 208Pb at a single value of the momentum transfer [6].

In this manuscript we used standard statistical methods and physical insights to assess the impact of a second elec-
troweak measurement of the weak-charge form factor of 208Pb. To do so, we introduced—or rather re-introduced [45]—
the two-parameter symmetrized Fermi function, that is practically identical to the conventional Fermi function, but
with far superior analytic properties. Indeed, the symmetrized Fermi function has a form factor that is known exactly
in closed analytic form. By using such a parametrization, we estimated the accuracy and precision by which the root-
mean-square radius of the distribution may be extracted from a single experimental measurement. Given that the
symmetrized Fermi function—or any other realistic parametrization—requires the determination of two parameters,
it is perhaps not surprising that we found a large number of combinations of parameters that satisfy the single exper-
imental constraint and, thus, a resulting RMS radius that was neither accurate nor precise. So the natural follow-up
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models. The labels indicate the predicted neutron-skin thickness of 208Pb. The inset displays the fastest Gaussian falloff of the
Helm form factor relative to the exponential falloff of symmetrized Fermi function. The experimental data is from Ref. [2].

task involved estimating the potential improvement in the determination of the RMS radius from a measurement of
the form factor at a suitably chosen second point. To address this task we used the exquisitely known experimental
charge form factor of 208Pb as a proxy for the weak charge form factor. To select the second point we examined the
largest spread in the predictions of all the symmetrized Fermi models that satisfy the original (one point) constraint.
Based on the largest variability, the optimal second point was identified near the first diffraction maximum (i.e., near
the first maximum in |F (q)| away from q=0). Incorporating this second point into the posterior probability density
resulted in a significant improvement. First, we observed that the two measurements provide nearly “orthogonal”
constraints that lift the original degeneracy among the parameters. Second, in the particular case of the symmetrized
Fermi function, we obtained a RMS radius that is both accurate (R208

ch = 5.504 fm) and precise (∆R208
ch = 0.045 fm)

as compared with the enormously precise experimental value of R208
exp = 5.5012(13) fm. These values emerged from

derived half-density radius and surface diffuseness of c=6.655(81) fm and a=0.514(66) fm, respectively. Finally, when
compared against the entire experimental charge form factor, the two-parameter symmetrized Fermi function provides
an excellent description of the data over several diffraction maxima.

So how accurately could one constrain the density dependence of the symmetry energy if the weak-charge radius
of 208Pb could be measured with a precision of about 0.04 fm? Based on a limited set of accurately calibrated RMF
models, we estimated that a ±0.04 fm determination of R208

wk would translate into an overall constraint on the slope of
the symmetry energy of about 15 MeV. That is, if the symmetry energy is soft leading to a thin neutron skin, then L
was predicted to lie in the L≈(48−63) MeV range. Although these RMF models are hindered by their own limitations
and theoretical biases, more comprehensive studies using a large set of both non-relativistic and relativistic energy
density functionals are consistent with these results. In fact, they often suggest even more stringent limits! One should
underscore, however, that one may be able to constrain the density dependence of the symmetry energy by exploiting
the correlation between the slope of the symmetry energy L and the measured weak form factor of 208Pb at the
momentum transfer of the PREX experiment. Whether this correlation remains as strong as the one between L and
the neutron-skin thickness is currently under investigation [57]. Hence, a second measurement of the weak form factor
may have its greatest appeal among the nuclear structure community. First, it will provide much better constraints on
the poorly known—yet fundamental—neutron density of 208Pb. Indeed, as displayed in Fig. 2, knowledge of only one
point yields a significant spread in the model predictions. Second, the additional measurement not only permits the
accurate determination of the overall form factor over a considerable range of momentum transfers but, in addition,
provides calibrating anchors for hadronic measurements that will be instrumental in probing the density distribution
of exotic nuclei at future radioactive beam facilities. And while we recognize that achieving a ±0.04 fm (or better)
precision represents an enormous experimental challenge, the strong impact of a second measurement of the weak
form factor of 208Pb on nuclear structure, and potentially on the physics of neutron stars, may be worth the effort.
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