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Isoscalar giant resonances in 94Mo have been studied with inelastic scattering of 240 MeV α 

particles at small angles including 0°. All of the expected EWSR for the isoscalar E0 resonance 

was found (112%). A significant portion of the EWSR was found for the isoscalar E1 (83%), E2 

(61%), and the high energy octupole E3 (46%) resonances. The strength distributions are 

compared with the predictions from HF-RPA calculations with the KDE0v1 Skyrme-type 

interaction. 

PACS numbers: 25.55.Ci, 24.30.Cz, 27.60.+j 

I. INTRODUCTION 

 

Giant Resonances (GR) are the broad resonances that occur at excitation energies between 10 

and 30 MeV. They correspond to the collective motion of nucleons within the nucleus and have 

modes classified according to their multipolarity L, spin S, and isospin T quantum numbers. The 

Isoscalar Giant Monopole Resonance (ISGMR) is interesting because its excitation energy is 

directly related to the incompressibility of the nucleus KA (1), where ݎۃଶۄ is the mean square 

radius and m is the mass of the nucleus  [1,2]. 

ெோீܧ  ൌ √ሺ ℏଶܭ஺݉ݎۃଶۄሻ (1)

 



KA can be used to obtain the incompressibility of nuclear matter KNM by comparison to 

calculations using mean fields, where the value for KNM is deduced from the interaction that best 

reproduces the experimental data on the strength functions of the giant resonance. At present, the 

best value for KNM is 240±20  MeV  [3]. 

 

Isoscalar giant resonances in the Mo isotopes were first observed by Moalem et al. who 

identified the Giant Quadrupole Resonance (GQR) in all stable Mo isotopes using inelastic 

scattering of 110 MeV 3He [4]. Duhamel et al.  [5] investigated the GQR and GMR in 92Mo 

using inelastic scattering of 152 MeV α particles. Youngblood et al. studied the isoscalar giant 

resonances in 90,92,94Zr and 92,96,98,100Mo [6--8] using inelastic scattering of 240 MeV α particles 

at small angles including 0°. Ref.  [6] focused on the E0 strength distribution, which showed 

high and low-energy components separated by 7-9 MeV in these Zr and Mo isotopes. The higher 

energy second peak is not predicted by the HF-RPA calculations that reproduce the ISGMR 

energies in the other nuclei. For the nuclei with A ≠ 92, 80-90% of the strength is in the lower 

energy peak located at 15.7 to 17.2 MeV. In the A = 92 nuclei, there is considerably more 

strength in the higher energy peak than in the higher energy peak of the A ≠ 92 nuclei. This 

enhancement of the strength in the higher energy region for 92Zr and 92Mo results in KA values 

for these two nuclei that are 8σ and 4σ above those obtained with interactions that predict KA 

values in agreement with those for the other Zr and Mo isotopes [6]. The excellent peak-to-

continuum ratio  [9--12] of data obtained with 240 MeV α particles allows identification of the 

GDR, GQR, and High Energy Octupole Resonance (HEOR) strength distributions in the range 

9≤Ex≤36 MeV. The strength distributions for these resonances in the Zr  [8] and Mo [7] isotopes 



were investigated and compared to the results of spherical Hartree-Fock – based random-phase-

approximation (HF-RPA) calculations [13] with KDE0v1 Skyrme-type effective interaction [14]. 

 

In this paper we report E0, E1, E2, and E3 multipole strength distributions obtained for 94Mo and 

compare them to HF-RPA calculations with the KDE0v1Skyrme-type interaction. 

 

II. EXPERIMENTAL PROCEDURE 

 

The experimental technique has been described thoroughly in Refs.  [9,10] and is summarized 

briefly below. Beams of 240 MeV α particles from the Texas A&M K500 super-conducting 

cyclotron bombarded a self-supporting 94Mo foil of 4.8 mg/cm2 enriched to more than 95% in the 

desired isotope, located in the target chamber of the multipole-dipole-multipole spectrometer. 

The horizontal and vertical acceptance of the spectrometer was 4°. Ray tracing was used to 

reconstruct the scattering angle. The vertical acceptance was ±2°. The focal plane detector 

measured position and angle in the scattering plane, covering Ex≈ 8 MeV to Ex > 55 MeV 

(depending on scattering angle). The out-of-plane scattering angle was not measured. Position 

resolution of approximately 0.9 mm and scattering angle resolution of about 0.09° were 

obtained. Cross sections were obtained from the charge collected, target thickness, dead time, 

and known solid angle. The target thicknesses were measured by weighing and checked by 

measuring the energy loss of the 240 MeV α beam in each target. The cumulative uncertainties in 

target thickness, solid angle, etc., result in about a ±10% uncertainty in absolute cross sections. 

24Mg spectra were taken before and after each run, and the 13.85±.02 MeV L=0 state  [15] was 

used as a check on the calibration in the giant resonance region. 



 

Data were taken with the spectrometer at 0.0° (0.0° < θ < 2.0°) and at 4.0° (2.0° < θ < 6.0°). 

Sample spectra obtained for 94Mo are shown in Figure 1. 

 

  

FIG. 1. Inelastic α spectra obtained for 94Mo are shown. The lines are examples of continua 
chosen for analyses. The bump in the spectra between 45 and 60 MeV is due to (α,5Li) and 
(α,5He) reactions with subsequent decay into α particle and a nucleon. 
 

III. MULTIPOLE ANALYSIS 

 

Single-folding DWBA calculations (as described in Refs. [9,10,16]) were carried out with 

PTOLEMY [17]. Optical model parameters obtained for 240 MeV α scattering on 90Zr [18] were 

used and are shown in TABLE I. In addition to the experimental uncertainties indicated in the 

tables for the EWSR, a variation of optical parameters has been shown to change the DWBA 

cross-sections [18] by 10-15%. 

  



 

TABLE I. Optical Model potential and Fermi mass density parameters used in DWBA 
calculations for 94Mo are shown, rc0 is the Coulomb radius parameter. 

V (MeV) W (MeV) ri (fm) ai (fm) rc0 c a 

40.2 40.9 0.786 1.242 .960 5.0264 .515 

 

Calculations were performed with a Fermi mass distribution, ߩሺݎሻ ൌ ଴ߩ ቂ1 ൅ ݁ೝష೎ೌ ቃିଵ
, with c and 

a shown in Table I [19]. The calculations for the transition densities, sum rules, and DWBA 

calculations were discussed thoroughly in Refs. [9,10,16,20]. 

 

A continuum of events consisting of various reactions such as multipole excitation, multistep 

excitation, pickup-breakup, and knock-out reactions as well as possibly some background from 

slit scattering is present in the data. In the analysis of the data, this continuum is represented by a 

straight line at high excitation joined to a Fermi shape at low-excitation to model the particle 

decay threshold. The inelastic α spectra obtained at several angles are each divided into a peak 

and continuum.  

 

The peak and continuum cross-sections are then divided into bins by excitation energy. To obtain 

the multipole components for each bin, the experimental angular distributions of the peak and 

continuum cross-sections are compared to the single-folding DWBA calculations done with 

PTOLEMY, and then the strengths of the isoscalar L=0-4 contributions are varied in order to 

minimize χ2. The Isovector Giant Dipole Resonance (IVGDR) contributions are calculated and 

held fixed in the fits. The experimental and calculated angular distributions are illustrated in 

Figure 2 for selected energy bins for the GR peak and continuum. The uncertainty for each 



multipole is determined by incrementing or decrementing the strength of that multipole, 

adjusting the strengths of other multipoles by fitting to the data, and continuing until the new χ2 

is 1 unit larger than the χ2 from the best fit. 

 

 

FIG. 2. 94Mo differential cross sections for three excitation ranges of the GR peak and the 
continuum are plotted vs. center-of-mass scattering angle. Each bin is 480 keV wide and the 
average energies for each bin are shown. The lines through the data points indicate the multipole 
fits. The contributions of each multipole are shown. The statistical errors are shown but are 
mostly smaller than the data points. 



 

Analyses are done several times using different assumptions about the continuum in order to 

estimate the uncertainties due to the choice of continuum. Typical choices for the continuum can 

be seen in Figure 1. For purposes of estimating the uncertainties, the continuum could have a 

linear slope at high excitation that does not quite match the experimental data, could be lowered 

so that it is always below the data, could have a different low energy cutoff and slope, or can 

have slope and or amplitude which is altered at selected angles. 

 

These separate analyses are then combined into an average distribution. Errors were calculated 

by adding the errors from the multipole fits (30-60% of the total uncertainty) in quadrature with 

the standard deviations between the different fits (generally between 1-4% of the total 

uncertainty) and the systematic experimental uncertainty.  

 

IV. DESCRIPTION OF MICROSCOPIC CALCULATIONS 

 

Microscopic mean-field based Random Phase Approximation (RPA) theory provides a 

description of collective states in nuclei  [3,21]. A description of the spherical HF-based RPA 

calculations of the strength functions and centroid energies of the isoscalar (T=0) giant 

resonances in nuclei can be found in Ref. [7] and is summarized below. 

 

The strength or response function can be obtained from the RPA states |݊ۧ with corresponding 

energy ܧ௡: 

 ܵሺܧሻ ൌ ∑ ܧሺߜ|ଶۄ݊|ܨ|0ۃ| െ ௡ሻ௡ܧ , (2)



where F is the single particle scattering operator ܨ ൌ ∑݂ሺ݅ሻ. The ISGMR energies (݉௞ ൌ׬   :are given by (ܧሻ݀ܧ௞ܵሺܧ

௖௢௡ܧ  ൌ ට ௠భ௠షభ  ܧ௖௘௡ ൌ ݉ଵ݉଴ ܧ௦௖௔௟ ൌ ඨ݉ଷ݉ଵ (3)

where, Econ is the constrained energy, Ecen is the centroid energy, and Escal is the scaling model 

energy. The Energy Weighted Sum Rule (EWSR), m1, is calculated using the Hartree-Fock 

ground state wave function. 

 

The fully self-consistent mean field calculation of the response function uses an effective two-

nucleon interaction which is obtained from a fit to the ground states properties of nuclei. The 

effective interaction determines the HF mean-field. The RPA calculation includes all of the 

components of the two-body interaction using a large configuration space and was done using 

the numerical approach of Refs.  [13,22]. The calculations of the strength functions and centroid 

energies of the isoscalar (T=0) giant resonances in the nuclei were done using an occupation 

number approximation for the single particle orbits of open shell nuclei. For the single-particle 

scattering operator ܨ ൌ ∑ ݂ሺݎ௜ሻ ௅ܻ଴௜  we used ݂ሺݎሻ ൌ  ଶ for the monopole (L=0) and quadrupoleݎ

(L=2), ݂ሺݎሻ ൌ ሻݎଷ for the Octopole (L=3), and ݂ሺݎ ൌ ଷݎ െ ହଷ  was used for the dipole ݎۄଶݎۃ

(L=1). The form of the dipole scattering operator takes into account the contribution from 

spurious states  [23,24]. The KDE0v1 Skyrme-type effective interaction was used. In an external 

test of 240 Skyrme-type effective interactions [25,26], the KDE0v1 was the only one to pass 

constraints relating to experimental data on properties of nuclear matter and nuclei.The 

appropriate experimental excitation energy ranges were used: 9-40 MeV for the ISGMR and 

ISGQR, 9-20 MeV for the low-component of the ISGDR, 20-36 MeV for the high-component of 



the ISGDR, and 14-40 MeV for the HEOR. The calculated distributions are shown superimposed 

on the experimental results in Figure 3. The smearing width (Γ)  for the calculated distributions 

for the E0-E3 multipoles are shown in Table II and are FWHM. The smearing widths were 

chosen so that the visual rendering of the calculation would provide a good comparison with the 

experimental strength distribution. The energy moments are included in Tables III and V. The 

theoretical strengths are calculated over a range of 0 to 100 MeV and contain 100% of the 

EWSR for E0-E3.  

 

 

TABLE II. The Lorentzian smearing width (Γ) for the calculated distributions are shown. 
 E0 E1 E2 E3 

Γ (MeV) 6.5 5.0 10.0 13.0 

 

 

V. DISCUSSION 

 

The E0-E3 multipole distributions obtained for 94Mo are shown in Figure 3. Two peak fits are 

shown for the E0 and E1 distributions, and a single Gaussian fit is shown for E2 and E3. The 

parameters for these fits and for the moment ratios (m1/m0 and √(m3/m1)) are shown in  

 

 

 
 
 
 
 



 
 
 
 
 
 
 

TABLE III. 

 

 

 

 

 

 

FIG. 3. Strength distributions obtained for 94Mo are shown by the histograms. Error bars 
represent the uncertainty based on the fitting of the angular distributions and different choices for 
the continuum, as described in the text. Gaussian fits to the E0 and E1 distributions for the 
individual peaks (blue and purple) and their sum (red) are shown. The green lines are the 
strength distributions obtained with the HF-RPA calculations using the KDE0v1 interaction, 
smeared using the widths in Table II to more closely represent the data as discussed in the text. 



The orange lines are the HF-RPA strength distributions without smearing and with the strength 
scaled to fit on the figure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE III. Parameters for energy moments obtained for isoscalar multipoles in 94Mo are shown. 
The moments from the KDE0v1 calculation results are over the experimental energy range 

9≤Ex≤40 MeV. 
 Moments 2ܧ 1ܧ 0ܧ E3 

Exp. KDE0v1 ݉ଵ (Frac. EWSR) 1.12 േ.ଵଶ.ଵଽ .95 0.83േ.ଶ଴.ଷହ 0.77േ.ଵ଴.ଵଵ . 45 േ .10 ݉ଵ ݉଴⁄ (MeV) 17.57േ.ଷ଴ଵ.ଵସ 18.06 24.57േଵ.ହଽଷ.ସଵ 16.12േ.ଷଽ.଺଺ 21.10േ.ଵ଻.ଷଵ 

rms width (MeV) 5.68േଵ.ଽଷହ.ହଷ 4.40 8.02േଵ.଼ଵଷ.଼ଽ 7.61േଵ.଴ସଵ.଻ସ 6.64േ.ଷ଴.ହଷ ඥ݉ଷ ݉ଵ⁄  (MeV) 19.62േଵ.ଵହଷ.ହସ 19.39 28.20േଶ.ଵଵସ.଺ଵ 19.56േଵ.ଵଶଵ.ଽଶ 24.03േ.ଶ଼.଻ଷ ඥ݉ଵ ݉ିଵ⁄  (MeV) 17.06േ.ଵଽ.଻ହ 17.67 23.09േଵ.ଷଵଶ.଼ସ 15.48േ.ଶ଺.ସସ 19.84േ.ଵ଻.ଶଷ 

 

 
TABLE IV. Parameters obtained for Gaussian fits for isoscalar multipoles in 94Mo are shown. 

 Gaussian fits 



 2ܧ peak 1 E0 peak 2 0ܧ

Centroids (MeV) 16.51േ.ଶଵ.ଵଽ 23.59േ.଻଺.଻଼ 14.55 േ .13 

FWHM (MeV) 5.73േ.ଷ଺.ଷଽ 5.87േଵ.ଵସଵ.଴଺ 5.28 േ .17 

Frac. EWSR 0.82±.06 0.21±.05  0.59±.03  

 Gaussian fits 1ܧ Low Peak 1ܧ High Peak E3 

Centroids (MeV) 15.07േ.ଵଽ.ଶଶ 26.50േ.ସଶ.ସସ 24.60±.46 

FWHM (MeV) 3.19േ.ଶଶ.ଷ଺ 5.99േ.ସଽ.ସହ 9.24േ.ହ଴.ହଷ 

Frac. EWSR 0.12±.02  0.45±.05  0.39±.03  

 

TABLE V. Parameters obtained for energy moments from the KDE0v1 calculation are shown. 
The results are over the experimental energy ranges (E1 low range: 9≤Ex≤20 MeV, E1 high 

range: 20≤Ex≤40 MeV, E2: 9≤Ex≤40 MeV, and E3: 14≤Ex≤40 MeV ) 
 

 
KDE0v1 1ܧ Low Range 1ܧ High Range E2 E3 ݉ଵ ݉଴⁄  (MeV) 14.29 29.05 16.54 25.98 

rms width (MeV) 3.31 4.49 5.05 5.63 ݉ଵ (Frac. EWSR) 0.13 0.77 0.86 0.64 

 

 

A. E0 Strength 

 



In the E0 strength distribution,  112േଵଶଵଽ% of the sum rule was identified in the energy range 

analyzed, 9≤Ex≤40 MeV. As in other A≈90 nuclei  [6--8], the strength is separated into high and 

low energy components. The low-energy component is fit well with a Gaussian centered at 16.51 

MeV. This peak contains about 82% of the EWSR. The high-energy component is at 23.59 MeV 

and contains approximately 21% of the EWSR. The energies and strengths of the components 

follow the general trend seen for the other Mo isotopes studied in Refs.  [6,7]. The energies 

obtained for the 4 Mo isotopes from Refs.  [6,7] and for 94Mo from the two peak fits are plotted 

versus A in Figure 4. Lines representing 74 ⁄భయܣ  and 109 ⁄భయܣ  are shown as a reference on the low 

and high plots. The low energy peak is possibly decreasing faster than A-1/3, while the high 

energy peak shows no systematic change in energy. As was observed in the other Mo isotopes 

[6,7], the results of the HF-RPA calculation for the E0 strength calculation show a single, 

slightly asymmetrical peak concentrated in a narrow band just above the narrow peak in the data. 

Although the distributions are not in agreement, the centroid, scaled, and constrained energy 

moments are in agreement within the errors. 

 



 

FIG. 4. The centroids of the Gaussians obtained from the fits to the E0 distributions for the Mo 
isotopes are plotted vs. A. The (red) lines show 74A-1/3 and 109A-1/3 in the upper and lower plots 
respectively. 
 

 

 

 

 

 

 

 

B. E1 Strength 

 



Much of the expected E1 EWSR (83േଶ଴ଷହ%ሻ was identified in the range 9-40 MeV. The strength 

is divided into 1ℏω and 3ℏω [27--29] components. The high energy component is the 

compression mode, and its energy is related to KA. The low energy component is mostly in the 

range 9≤Ex≤20 MeV, and the high energy component is mostly in the range 20≤Ex≤36 MeV [7].  

The high and low peaks are fit well with Gaussians. The low energy component is at 15.07േ.ଵଽ.ଶଶ  
MeV and contains 12% of the EWSR, and the high energy component is at 26.50േ.ସଶ.ସସ MeV and 

contains 45% of the EWSR. The sum of the strength in these two components is less than the 

83% observed over the 9 – 40 MeV range. In the E1 strength distribution for energies above 30 

MeV (Figure 3), the strength has large error bars which extend to the x-axis, and in this region 

the strength may effectively be zero. The results of the HF-RPA calculations for the E1 strength 

(broadened with a Lorentzian shape with Γ = 5.0 MeV) are shown superimposed on the data in 

Figure 3. The calculated strength is in a broad peak with some strength at low excitation and 

indications of several components and structure at ≈27 and 32 MeV. The strength rises to a 

maximum near 30 MeV, roughly 4 MeV greater than the high peak from the experimental 

strength, and then tails past 40 MeV. In the low energy range (9≤Ex≤20 MeV) there is a weak 

peak near the experimental one and also another one below it. The calculation and the data do 

not agree, but the amount of strength predicted in the low energy range is nearly the same as the 

experimental value obtained from the Gaussian fit of the low peak.  In the high energy range 

(20≤Ex≤40 MeV), the calculation for the peak position is greater than the experimental one by ≈2 

MeV and predicts more strength than identified in the experimental data. In Figure 5, the 

centroids of the Gaussian fit to the low and high energy peaks and the strength in the low and 

high peaks for the isotopes from Ref.  [7] and for 94Mo is plotted vs A. For the Mo isotopes, the 



calculated positions of the low and high energy peaks tend to not be in agreement with the 

experimental position.  

 

 

FIG. 5. The centroids of the Gaussian fits to the low and high energy peaks in the ISGDR 
distributions for each of the Mo isotopes from Ref.  [7] and 94Mo from this work are plotted vs. 
A in the top panels. The strength in the low and high peak is plotted in the lower panels. 
  
 

C. E2 Strength 



 

The E2 peak is located at (݉ଵ/݉଴ሻ 14.56±.09 MeV and 61±9% of the E2 EWSR was identified. 

The peak was fitted with a Gaussian and m1/m0, RMS width, and the Gaussian parameters are 

given in  

Table IV. The Gaussian energy is approximately 1.5 MeV less than m1/m0 because of the 

inclusion of the apparently random strength at high excitation in the calculation of the energy 

moments. In the Mo isotopes studied in Ref.  [7], the E2 strength distribution was slightly 

asymmetric on the low energy side. Moalem et al. [4] measured the GQR in 94Mo with inelastic 

scattering of 110 MeV 3He. Our result for %EWSR, Gaussian energy, and width agree within the 

errors with their work. Figure 6 compares the Gaussian centroid energy of the GQR in the Mo 

isotopes obtained from the four experiments  [4,5,7], the GQR measurement of 92Mo with 

inelastic scattering of 120 MeV α particles by Duhamel et al. [5], and the m1/m0 obtained from 

the calculation with the KDE0v1 interaction. The calculated distribution shows a peak that is 

located at a higher energy by approximately 1 MeV, but it does show a similar amount of tailing 

on the high excitation side. 



 

FIG. 6. The centroid of the Gaussian fit to the E2 strength in each of the Mo isotopes from Ref.  
[7] (blue diamonds) and 94Mo from this work (light blue circle) is plotted vs. A.  
 

 

D. E3 Strength 

 

In the Harmonic Oscillator Shell Model description of the Giant Resonances, the E3 resonance is 

split into a 1ℏω low energy octupole (LEOR) containing 25% of the E3 EWSR and 3ℏω high 

energy octupole (HEOR) containing 75% of the EWSR [30]. Coupling these modes with the 

octupole/octupole residual reaction gives an LEOR with approximately 35% of the EWSR and 

HEOR with 65% EWSR [30]. The low-energy cutoff for the measured data lies in the middle of 

the higher region of the LEOR. The HF-RPA calculation with KDE0v1 interaction puts the 

LEOR at about 8 MeV, which is below the 9 MeV cutoff. The HEOR is predicted to be located 

at about 29 MeV. The experimental strength for the HEOR is in a broad peak centered at 24.6 



MeV and contains 39% of the E3 EWSR. The calculated energy is 25.98 MeV. As was noted in 

Ref [7] , the calculated energies for the HEOR are sensitive to the effective mass. Using a larger 

effective mass would lower the predicted energy. 

 

VI. SUMMARY 

 

We have obtained distributions for isoscalar E0, E1, E2, and E3 strength in 94Mo and compared 

these to spherical Hartree-Fock-RPA calculations using the KDE0v1 Skyrme type interaction. 

The E0 strength has a high energy tail similar to that in the A≠92 Mo nuclei which is not present 

in heavier nuclei. The source of this tail is not understood. The position of the high energy part of 

the isoscalar dipole is about 2.5 MeV below that from the HF-RPA calculation. Position, strength 

and width of the E2 distributions agree within errors with those obtained by Moalem et al., but 

are ≈1 MeV below those obtained with the HF-RPA calculations. The HEOR strength lies in a 

broad peak centered at 24.6 MeV, approximately 2 MeV below that obtained with the HF-RPA 

calculations. 

 

Microscopic calculations beyond the mean-field approximation, which include nuclear structure 

effects, may be necessary to obtain the correct energies and strength distributions. Additionally, 

using microscopic transition densities in analyses of the experimental cross-section data may 

improve agreement between experiment and theory. 
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