This is the accepted manuscript made available via CHORUS. The article has been published as:

Magnetic moment and lifetime measurements of Coulombexcited states in ^\{106\}Cd

N. Benczer-Koller, G. J. Kumbartzki, K.-H. Speidel, D. A. Torres, S. J. Q. Robinson, Y. Y. Sharon, J. M. Allmond, P. Fallon, I. Abramovic, L. A. Bernstein, J. E. Bevins, H. L. Crawford, Z. E. Guevara, A. M. Hurst, L. Kirsch, T. A. Laplace, A. Lo, E. F. Matthews, I. Mayers, L. W.

Phair, F. Ramirez, and A. Wiens
Phys. Rev. C 94, 034303 — Published 6 September 2016 DOI: 10.1103/PhysRevC.94.034303

FIG. 1: Singles particle spectrum. At the beam energy of 410 MeV light particles dominate. The carbon peak is a result of Coulomb scattering of the beam projectiles in the carbon layer of the target.

II. THE EXPERIMENT

The experiment was performed at the Lawrence Berkeley National Laboratory (LBNL) 88-Inch cyclotron.

The experiment was primarily designed to measure g factors of low-lying states in ${ }^{110} \mathrm{Sn}$ via an α-particle transfer to the ${ }^{106} \mathrm{Cd}$ beam nuclei [5]. In this experiment additional data on ${ }^{106} \mathrm{Cd}$ have been obtained.

The multilayer target, front to back, consisted of 0.636 C, 8.34 Gd, 1.10 Ta, and $5.40 \mathrm{Cu}\left(\mathrm{mg} / \mathrm{cm}^{2}\right)$. The beam energy was 410 MeV , close to the Coulomb barrier of ${ }^{106} \mathrm{Cd}$ on ${ }^{12} \mathrm{C}(390 \mathrm{MeV})$. The Coulomb excitation of the beam particles in the first target layer is established by measuring γ rays in coincidence with forward-scattered carbon ions.

The target was mounted between the pole tips of a liquid nitrogen-cooled magnet. The gadolinium layer of the target was magnetized by a field of 0.07 T . Its direction was reversed every 150 s during the measurements. The particle detector was a $300 \mathrm{~mm}^{2} \mathrm{Si}$ surface-barrier detector (Canberra PIPS) placed 25 mm downstream of the target at 0° to the beam direction. The beam was stopped in a $5.6 \mathrm{mg} / \mathrm{cm}^{2}$ thick copper foil, placed in front of the particle detector. Only the carbon ions and light particles resulting from reactions reached the detector. The carbon particles were well separated in the $300 \mu \mathrm{~m}$ thick detector, as is shown in Fig. 1.

The γ rays were observed in four clover HPGe detectors from the ORNL and LBNL inventories. These were located 125 mm away from the target at angles of $\theta= \pm 60^{\circ}$ and $\pm 120^{\circ}$ with respect to the beam direction. At that distance the individual elements of the clover detectors subtended angles of $\pm 8^{\circ}$ with respect to the center of the clover enclosure.

The preamplifier output signals of all detectors were digitized using a PIXIE-4 system [8]. Their time stamps and energies were written to disk. The data handling and analysis were performed as described in greater detail in

FIG. 2: Coincidence γ spectra gated on the carbon peak in Fig. 1. The spectra show the Doppler-broadened and shifted lines including the distinct lineshapes observed in a backwardand in a forward-positioned detector segment at the indicated angle θ with respect to the beam direction.

FIG. 3: Partial level scheme indicating the states in ${ }^{106} \mathrm{Cd}$ that were excited in this experiment. The energies are taken from NNDC [7]. The lifetime column shows the newly determined meanlives.

Ref. [9].
Particle- γ coincidence spectra gated on the ${ }^{12} \mathrm{C}$ peak, obtained at a beam energy of 410 MeV , are shown in Fig. 2.

The low-lying levels of ${ }^{106} \mathrm{Cd}$ that were identified in this experiment are shown in Fig. 3.

A. Precession measurement

The g factor of the 2_{1}^{+}state in ${ }^{106} \mathrm{Cd}$ was measured previously by the transient field technique (TF) [6]. Its value was used as a check on the experiment and also
served to calibrate the transient field strength.

TABLE I: The kinematic information related to the transient field measurement at a beam energy of $410 \mathrm{MeV} .<E>_{\text {in }}$, $<E>_{\text {out }},<v / v_{0}>_{\text {in }}$ and $\left\langle v / v_{0}>_{\text {out }}\right.$ are the average energies, in MeV , and velocities, in units of $v_{0}=e^{2} / \hbar$, the Bohr velocity, of the excited probe ions as they enter into, and exit from, the gadolinium layer. $T_{\text {eff }}$ is the effective time the transient field acts on the ions traversing the ferromagnetic layer.

Nucleus	$<E>_{\text {in }}<E>_{\text {out }}$	$<v / v_{0}>_{\text {in }}<v / v_{0}>_{\text {out }}$	$T_{\text {eff }}(\mathrm{fs})$		
${ }^{106} \mathrm{Cd}$	232	46	9.4	4.2	715

In a TF measurement the spin precession of the aligned nuclei traversing the magnetized ferromagnetic layer causes a rotation of the angular distribution of the decay γ radiation. The precession angle is derived from counting-rate changes in the stationary γ detectors when the polarizing magnetic field at the target, which is perpendicular to the detection plane of the γ detectors, is reversed. The so-called rate effect ϵ, as described in many publications (e.g. [10]), is calculated from peak intensities in the spectra of four γ detectors. Together with the logarithmic slope, $S\left(\theta_{\gamma}\right)=\left(1 / W\left(\theta_{\gamma}\right)\right) \cdot d W / d \theta_{\gamma}$ of the angular correlation relevant for the precession, the precession angle

$$
\Delta \theta=\frac{\epsilon}{\mathrm{S}\left(\theta_{\gamma}\right)}=g \cdot \frac{\mu_{\mathrm{N}}}{\hbar} \cdot \int_{t_{\text {in }}}^{t_{\mathrm{out}}} B_{\mathrm{TF}}(v(t), Z) \cdot e^{-t / \tau} \mathrm{dt}
$$

is obtained. In the above expression g is the g factor of the excited state and μ_{N} is the nuclear magneton. B_{TF} is the effective transient field acting on the nucleus during the time interval $\left(t_{\text {out }}-t_{\text {in }}\right)$ spent by the ions in the gadolinium layer. The exponential factor accounts for the nuclear decay during the transit time of the ions through the gadolinium layer. The relevant kinematic information for the transient-field calculation is summarized in Table I.

The angular correlations for the states were also derived from the precession data. The peak intensities of the $2_{1}^{+} \rightarrow 0_{1}^{+}$and $4_{1}^{+} \rightarrow 2_{1}^{+}$transitions in the spectra of each clover crystal, summed over both field directions and corrected for relative efficiencies, were fitted to the angular-correlation function

$$
W\left(\theta_{\gamma}\right)=1+A_{2} \cdot Q_{2} \cdot P_{2}\left(\cos \theta_{\gamma}\right)+A_{4} \cdot Q_{4} \cdot P_{4}\left(\cos \theta_{\gamma}\right)
$$

Here the $P_{k}\left(\cos \theta_{\gamma}\right)$ are the Legendre polynomials, the A_{k} are the experimental angular-correlation coefficients, which depend on the multipolarity of the γ-ray transition, and the Q_{k} are attenuation coefficients accounting for the finite solid angle of the γ detectors. Representative fits are shown in Fig. 3 of Ref. [5].

FIG. 4: Simultaneous LINESHAPE fit of the $2_{1}^{+} \rightarrow 0_{1}^{+} \gamma$ line (panel A) and $4_{1}^{+} \rightarrow 2_{1}^{+} \gamma$ line (panel B) in ${ }^{106} \mathrm{Cd}$ as observed in a clover segment at 68°. The shaded area represents the feeding intensity from the $4_{2}^{+} \rightarrow 4_{1}^{+} \gamma$ line of 610.8 keV seen in graph A.

B. Lifetimes

On average, the cadmium ions exit the carbon foil with a velocity of $6.86 \% \mathrm{c}$. In Fig. 2 the γ lines of the $2_{1}^{+} \rightarrow 0_{1}^{+}$, $4_{1}^{+} \rightarrow 2_{1}^{+}$and $4_{3}^{+} \rightarrow 4_{1}^{+}$transitions show prominent lineshapes, while the $2_{2}^{+} \rightarrow 2_{1}^{+}$and $3_{1}^{-} \rightarrow 2_{1}^{+}$transitons are fully shifted and Doppler broadened. The shifted $2_{2}^{+} \rightarrow 0_{1}^{+}$transition is mostly hidden in the 1745.8 keV γ line of the $3_{1}^{-} \rightarrow 2_{1}^{+}$transition. The $4_{2}^{+} \rightarrow 4_{1}^{+}, 610.8$ keV , and $4_{2}^{+} \rightarrow 2_{1}^{+}, 1471.9 \mathrm{keV}$, transitions exhibit sharp γ lines indicating no decay in flight. Therefore, the meanlife of the 4_{2}^{+}state can be estimated to be longer than 10 ps , in contrast to the NNDC report of $t_{1 / 2} \leq 2 \mathrm{ps}$.

Each of the 16 HPGe crystals in the 4 clovers can be used for the DSAM lifetime analysis. The LINE-

FIG. 5: LINESHAPE fit of the $811.1 \mathrm{keV} 4_{3}^{+} \rightarrow 4_{1}^{+} \gamma$ line and the $861.2 \mathrm{keV} 4_{1}^{+} \rightarrow 2_{1}^{+} \gamma$ line in ${ }^{106} \mathrm{Cd}$ as observed in a clover segment at 112°.

TABLE II: Experimental results for states in ${ }^{106} \mathrm{Cd}$. Also included are the slopes for full clovers and the precession angles. $\Delta \theta(g=1)$ was calculated using the Rutgers parametrization [11]. The literature values of the meanlives are taken from the National Nuclear Data Center (NNDC) data base [7].

$\begin{aligned} & \hline \mathrm{E}_{\text {Beam }} \\ & (\mathrm{MeV}) \\ & \hline \end{aligned}$	I_{i}	$\begin{gathered} E_{\gamma} \\ (\mathrm{keV}) \\ \hline \end{gathered}$	τ (ps)		$\begin{gathered} \Delta \theta(g=1) \\ (\mathrm{mrad}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline\left\|S\left(60^{\circ}\right)\right\| \\ & \left(\mathrm{mrad}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \Delta \theta \\ (\mathrm{mrad}) \end{gathered}$	g	
			This work	NNDC ${ }^{\text {a }}$				This work	Others
400	2_{1}^{+}	632.6	7.0(3)	10.49(12)	98.5	1.76 (3) ${ }^{\text {b }}$	39.14(94)	+0.398(22)	$+0.393(31)^{\text {c }}$
410	4_{1}^{+}	861.2	2.5(2)	1.26(16)	85.7	0.66(3)	19.6(40)	+0.23(5)	
	2_{2}^{+}	1084.2	0.28(2)	0.45(7)					
		1716.5							
	4_{2}^{+}	$\begin{array}{r} 610.8 \\ 1471.9 \end{array}$	> 10	≤ 2.9					
	4_{3}^{+}	811.1	1.1(1)						
	3_{1}^{-}	1745.8	0.16(1)						

${ }^{a}$ The NNDC publications quote half-lives
${ }^{b}\left|S\left(67^{\circ}\right)\right|$
${ }^{c}$ Ref. [6]

SHAPE [12] code was used. In the first step, using a Monte Carlo simulation and Ziegler's stopping powers [13], energy-loss cascades were calculated for the reaction kinematics in the multilayer target. In the second step, the cascades relevant for each detector geometry were selected. The Doppler-broadened shapes of the γ lines were then fitted to the corresponding data sets. Sample fits are shown in Figs. 4 and 5. The results in Table II are averaged results of fits to lines in forward and backward detectors. The errors were enlarged to reflect uncertainties in feeding and the spread of the fit results in various detectors.

All the lifetimes reported in this paper have been measured for the first time by the DSAM lineshape technique and disagree with the literature values [7] determined from Coulomb-excitation cross-section B(E2) measurements. Notably, the meanlife of the 2_{1}^{+}state is shorter by 33%, while the meanlife of the 4_{1}^{+}state is twice the literature value. The meanlife of the 2_{2}^{+}state is shorter by 38% and the meanlife of the 4_{2}^{+}state is much longer. The meanlives of the 4_{3}^{+}and the 3_{1}^{-}states have not been measured previously.

C. Magnetic moments

The Coulomb excitation of the 2_{1}^{+}state in ${ }^{106} \mathrm{Cd}$ would be best measured below the Coulomb barrier of projectile and target nuclei. At a beam energy of 400 MeV , the adopted $g\left(2_{1}^{+}\right)$value of $+0.393(31)$ (Ref. [6]) was reproduced using the Rutgers parametrization [11]. In runs at 410 MeV with various beam intensities, this g factor was taken to monitor the magnetization, which is a sensitive function of the beam-spot temperature. Indeed, a strong correlation between the beam current, represented by the measured singles particle rate, and the precession rate effect of the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition in ${ }^{106} \mathrm{Cd}$ was observed [14].

The g factor of the 4_{1}^{+}state in ${ }^{106} \mathrm{Cd}$ was measured for
the first time. This state has a short lifetime and is fed by another 4^{+}state. The literature value $[7]$ is $\tau\left({ }^{106} \mathrm{Cd} ; 4_{1}^{+}\right)$ $=1.26(16) \mathrm{ps}$ which leads to the value $g\left({ }^{106} \mathrm{Cd} ; 4_{1}^{+}\right)=$ $+0.27(6)$ quoted in Ref. [5]. A lineshape analysis of the current data yielded a new meanlife of $2.5(2) \mathrm{ps}$, and a g factor $g\left({ }^{106} \mathrm{Cd} ; 4_{1}^{+}\right)=+0.23(5)$. The results are summarized in Table II.

III. DISCUSSION AND THEORY

In the present work, large-scale shell-model (LSSM) calculations were carried out for ${ }_{48}^{106} \mathrm{Cd}_{58}$. The G-matrix interaction jj45pna was used. This interaction is included in the shell-model code $N u$ Shell X [15] and can be used for proton numbers below $Z=50$ and neutron numbers above $N=50$.

A ${ }_{28}^{78} \mathrm{Ni}_{50}$ core was employed. The two proton valence holes below the $Z=50$ magic number were always permitted to be anywhere in the $f_{5 / 2}, p_{3 / 2}, p_{1 / 2}$ and $g_{9 / 2}$ orbital space. Two different spaces were considered for the eight valence neutrons beyond the $N=50$ core. Space 1 included the $g_{7 / 2}, d_{5 / 2}, d_{3 / 2}$ and $s_{1 / 2}$ neutron orbitals. Space 2 encompassed only the $g_{7 / 2}, d_{5 / 2}$ and $d_{3 / 2}$ orbitals. The shell-model calculations show that in both spaces the occupancies of the various orbitals are essentially the same for each of the $0_{1}^{+}, 2_{1}^{+}$, and 4_{1}^{+}states in ${ }^{106} \mathrm{Cd}$. The proton holes are largely in the $g_{9 / 2}$ orbital and the neutrons are primarily in the $d_{5 / 2}$ and the $g_{7 / 2}$ orbitals.

In the $B(E 2)$ calculations, two different sets of effective charges $\left(e_{p}, e_{n}\right)$ were utilized: $(1.75 e, 0.75 e)$, and $(2.0 e, 1.0 e)$. In Table III the two corresponding calculated $B(E 2)$ results are presented.

Two sets of nucleon g-factors were used in each of the two spaces for the g-factor calculations. The first set involved the bare g factors $\left[g_{l p}=1, g_{s p}=5.581, g_{l n}=\right.$ $\left.0, g_{s n}=-3.826\right]$. The second set included effective nucleon g factors $\left[g_{l p}=1.1, g_{s p}=4.186, g_{l n}=-0.1, g_{s n}=\right.$
$-2.870]$. In each case the two calculated g-factor results are presented in Table III, first with bare and then with effective nucleon g factors.

TABLE III: Large-scale shell-model results for ${ }^{106} \mathrm{Cd}$. The configurations used in the calculations for Space 1 and Space 2 are identified in the text. The two results quoted for the $B(E 2)$'s correspond to different choices of effective charges, $\left(e_{p}, e_{n}\right)$ as discussed in the text. Similarly, the two results for the calculated g factors correspond to choices of either bare or effective nucleon g factors, as described in the text.

	Exp't	Space 1	Space 2
$E\left(2_{1}^{+}\right)$	632.6 keV	493	685
$E\left(4_{1}^{+}\right)$	1493.8 keV	1216	1357
$B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$	$0.115(8) e^{2} b^{2}$	0.061	0.052
		0.097	0.083
$B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$	$0.069(4) e^{2} b^{2}$	0.083	0.055
$g\left(2_{1}^{+}\right)$	$+0.398(22)$	+0.132	0.087
		$+0.211^{b}$	$+0.371^{a}$
$g\left(4_{1}^{+}\right)$	$+0.23(5)$	$+0.339^{a}$	$+0.253^{b}$
		$+0.214^{b}$	$+0.204^{b}$

${ }^{a}$ Calculation done with bare nucleon g factors
${ }^{b}$ Calculation done with effective nucleon g factors

Table III shows that the calculated excitation energies $E\left(2_{1}^{+}\right)$and $E\left(4_{1}^{+}\right)$in Space 2 are closer to the experimental values.

Experimentally, the $g\left(2_{1}^{+}\right)$is about twice the $g\left(4_{1}^{+}\right)$. However, the present shell-model calculations always predict values that are very close to each other.

The larger $g\left(2_{1}^{+}\right)$value is best predicted with the bare nucleon g factors in Space 2. The smaller $g\left(4_{1}^{+}\right)$value is well accounted for in both spaces with the effective nucleon g factors. The calculation using effective g factors always leads to predicted ${ }^{106} \mathrm{Cd} g$-factor values that are about 70% of those predicted by the calculations using bare g factors.

In Ref. [6] tidal wave calculations predict for ${ }^{106} \mathrm{Cd}$ $g\left(2_{1}^{+}\right)=+0.314$ and $g\left(4_{1}^{+}\right)=+0.327$.

The corresponding calculated $B(E 2)$ values, with any one set of $\left(e_{p}, e_{n}\right)$ values, are always larger in Space 1 (which includes the $s_{1 / 2}$ orbital). For the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition the results of the $B(E 2)$ calculations even with $e_{p}=2.0$ and $e_{n}=1.0$ are only about $(70-80) \%$ of the experimental value. For the $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$the calculated results agree with the experimental value best for $e_{p}=1.75, e_{n}=0.75$. Similar large effective charges were used in this region $[3,16]$. Another calculation with smaller $\left(e_{p}, e_{n}\right)=(1.5,0.5)$ led to $B(E 2)$ results much smaller than the experimental ones and are not included in Table III.

The need for large $\left(e_{p}, e_{n}\right)$ effective charges to explain the $B(E 2)$ data indicates the presence of some collectivity in ${ }^{106} \mathrm{Cd}$. Yet that collectivity is limited since this nucleus is only two proton holes away from the $Z=50$ magic number.

It should be noted that simple collective models do not account for several properties of ${ }^{106} \mathrm{Cd}$, as is detailed below.

The observed ratio of the excitation energies $E\left(4_{1}^{+}\right) / E\left(2_{1}^{+}\right)$is 2.36 ; the pure vibrational model predicts 2.00 for this ratio while the pure rotational model predicts 3.33. The vibrational model predicts a degenerate $0_{2}^{+}, 2_{2}^{+}, 4_{1}^{+}$triplet at an excitation energy of twice $E\left(2_{1}^{+}\right)$ or at 1266 keV . Experimentally, no low-lying 0_{2}^{+}was observed in this experiment, the 4_{1}^{+}state lies at 1493.8 keV and the 2_{2}^{+}state is at 1716.5 keV .

The observed ratio $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right) / B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ $=0.599(54)$. This ratio is predicted to be 2.00 in the vibrational model and 1.43 in the rotational model.

Collective models predict identical values for $g\left(2_{1}^{+}\right)=$ $g\left(4_{1}^{+}\right)=Z / A=+0.453$. Greiner [17] suggested corrections which reduce these values. The measured $g\left(2_{1}^{+}\right)$in the present work can be explained by Greiner's approach but the $g\left(4_{1}^{+}\right)$is still too low. A ratio of $g\left(2_{1}^{+}\right) / g\left(4_{1}^{+}\right)=$ $1.70(39)$ was observed here for ${ }^{106} \mathrm{Cd}$. The highest theoretical value for $g\left(2_{1}^{+}\right) / g\left(4_{1}^{+}\right)=1.24$, was obtained from the LSSM calculation in Space 2 with effective nucleon g factors.

IV. SUMMARY

The meanlives of the 4_{3}^{+}and 3_{1}^{-}states in ${ }^{106} \mathrm{Cd}$ were measured for the first time. The current investigation also remeasured the meanlives of the $2_{1}^{+}, 2_{2}^{+}, 4_{1}^{+}$and 4_{2}^{+} levels in ${ }^{106} \mathrm{Cd}$. In all these four cases, the new values disagree significantly with the literature values.

The current experiments also measured for the first time the $g\left(4_{1}^{+}\right)$value in ${ }^{106} \mathrm{Cd}$ and fully reproduced the literature value of the $g\left(2_{1}^{+}\right)$. The g factor of the 4_{1}^{+} state is about 59% that of the 2_{1}^{+}state. This large difference cannot be explained by simple collective models, or within the framework of a tidal wave model [6]. These models predict $g\left(4_{1}^{+}\right)$values that are very close to $g\left(2_{1}^{+}\right)$. The shell model Space 2 calculations, with effective nucleon g factors, do yield $g\left(2_{1}^{+}\right)>g\left(4_{1}^{+}\right)$in agreement with experiment. But while these calculations are in agreement with the experimental $g\left(4_{1}^{+}\right)$value they underpredict the $g\left(2_{1}^{+}\right)$value. Overall, unlike some heavier Cd isotopes, ${ }^{106} \mathrm{Cd}$ is somewhat better described in the shell model based on specific single proton and neutron orbitals near the doubly-magic $N=Z=50$ shell closure. The experimental discrepancies in the lifetimes should be resolved by future Coulomb excitation and dedicated DSAM measurements.

V. ACKNOWLEDGMENTS

The authors thank the Berkeley 88-Inch Cyclotron staff for their help in setting up the experiment and providing the cadmium beam. The target was prepared by P. Maier-Komor at the Technische Universität

Münich, Germany. The authors are grateful to L. Zamick for many discussions and suggestions about the theoretical interpretation of the g factor results. K.H.S. acknowledges support by the Deutsche Forschungsgemeinschaft under SP190/18-1. D.A.T., Z.E.G., and F.R. acknowledge support by Colciencias under contract 110165842984-2015. Y.Y.S. acknowledges a Stock-
ton University Research and Professional Development award. The work has been supported in part by the U.S. National Science Foundation and by the US Department of Energy, Office of Science, Office of Nuclear Physics under contracts No. DE-AC02-05CH11231 and DE-AC5207NA27344 and DE-AC05-00OR22725(ORNL).
[1] P. E. Garrett, K. L. Green, and J. L. Wood, Phys. Rev. C 78, 044307 (2008).
[2] P. E. Garrett and J. L. Wood, Journal of Physics G: Nuclear and Particle Physics 37, 064028 (2010), URL http://stacks.iop.org/0954-3899/37/i=6/a=064028.
[3] A. Ekström, J. Cederkäll, D. D. DiJulio, C. Fahlander, M. Hjorth-Jensen, A. Blazhev, B. Bruyneel, P. A. Butler, T. Davinson, J. Eberth, et al., Phys. Rev. C 80, 054302 (2009), URL http://link.aps.org/doi/10. 1103/PhysRevC. 80.054302.
[4] A. E. Stuchbery, S. K. Chamoli, and T. Kibédi, Phys. Rev. C 93, 031302 (2016), URL http://link.aps.org/ doi/10.1103/PhysRevC.93.031302.
[5] G. J. Kumbartzki, N. Benczer-Koller, K.-H. Speidel, D. A. Torres, J. M. Allmond, P. Fallon, I. Abramovic, L. A. Bernstein, J. E. Bevins, H. L. Crawford, et al., Phys. Rev. C 93, 044316 (2016), URL http://link.aps. org/doi/10.1103/PhysRevC.93.044316.
[6] S. K. Chamoli, A. E. Stuchbery, S. Frauendorfer, J. Sun, Y. Gu, R. F. Leslie, T. P. Moore, A. Wahlke, M. C. East, T. Kibédi, et al., Phys. Rev. C 83, 054318 (2011).
[7] D. D. Frenne and A. Negret, Nuclear Data Sheets 109, 943 (2008), ENDSF: http://www.nndc.bnl.gov/nndc/ ensdf/.
[8] X-Ray Instrumentation Associates: http://www.xia.
com/.
[9] G. J. Kumbartzki, N. Benczer-Koller, S. Burcher, A. Ratkiewicz, S. L. Rice, Y. Y. Sharon, L. Zamick, K.H. Speidel, D. A. Torres, K. Sieja, et al., Phys. Rev. C 89, 064305 (2014).
[10] N. Benczer-Koller and G. J. Kumbartzki, J. Phys. G: Nucl. Part. Phys. 34, R321 (2007).
[11] N. K. B. Shu, D. Melnik, J. M. Brennan, W. Semmler, and N. Benczer-Koller, Phys. Rev. C 21, 1828 (1980).
[12] J. C. Wells and N. R. Johnson, Computer code LINESHAPE (1999), PD-LNL version.
[13] F. J. Ziegler, J. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, vol. 1 (Pergamon, Oxford, 1985).
[14] G. J. Kumbartzki, Journal of Physics: Conference Series 724, 012027 (2016), URL http://stacks.iop.org/ 1742-6596/724/i=1/a=012027.
[15] B. A. Brown and W. D. M. Rae, Nuclear Data Sheets 120, 115 (2014).
[16] D. A. Torres, G. J. Kumbartzki, Y. Y. Sharon, L. Zamick, B. Manning, N. Benczer-Koller, G. Gürdal, K.-H. Speidel, M. Hjorth-Jensen, P. Maier-Komor, et al., Phys. Rev. C 84, 044327 (2011).
[17] W. Greiner, Nucl. Phys. 80, 417 (1966).

