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Regulator functions applied to two- and three-nucleon forces are a necessary ingredient in many-
body calculations based on chiral effective field theory interactions. These interactions have been
developed recently with a variety of different cutoff forms, including regulating both the momen-
tum transfer (local) and the relative momentum (nonlocal). While in principle any regulator that
suppresses high momentum modes can be employed, in practice artifacts are inevitable in current
power counting schemes. Artifacts from particular regulators may cause significant distortions of
the physics or may affect many-body convergence rates, so understanding their nature is important.
Here we characterize the differences between cutoff effects using uniform matter at Hartree-Fock and
second-order in the interaction as a testbed. This provides a clean laboratory to isolate phase-space
effects of various regulators on both two- and three-nucleon interactions. We test the normal-
ordering approximation for three-nucleon forces in nuclear matter and find that the relative size of
the residual 3N contributions is sensitive to the employed regularization scheme.

I. INTRODUCTION

Chiral Effective Field Theory (χEFT) [1, 2] has be-
come the method of choice for input Hamiltonians and
other operators needed for ab initio calculations of few-
and many-body nuclear systems [3–24]. χEFT respects
the low-energy symmetries of QCD and promises to
be model-independent, systematically improvable in an
order-by-order expansion, and have controlled uncertain-
ties from omitted terms. χEFT is not uniquely speci-
fied and there are different competing implementations.
Hereafter, when we use the term χEFT, we are referring
specifically to the Weinberg power counting scheme with
no explicit ∆-isobar [1, 2].

As with any quantum field theory, the presence of
loops requires the introduction of a regularization scheme
and scale. Nonperturbativeness of the nucleon-nucleon
(NN) system, as manifested by the shallow deuteron
bound state and large singlet S-wave scattering length,
implies the need to resum certain classes of diagrams.
For the power counting prescription introduced by Wein-
berg [25, 26], the NN potential is truncated at a specified
order in the chiral expansion and then iterated, e.g., in
the Lippmann-Schwinger equation. An analogous pro-
cedure is used for many-body forces, e.g., three-nucleon
(3N) forces, which are constructed in the chiral expansion
and iterated, e.g., in the Faddeev equations [27]. Ultra-
violet (UV) divergences arise both in the construction of
the nuclear potential and in its iteration. For the latter,
cutoff regularization is applied in all current applications
of χEFT.
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In implementing the cutoff regularization we specify a
function, called a regulator, that suppresses the nuclear
potentials above a regularization scale Λ, called the cut-
off. The regulator is treated as an intrinsic part of the
potential and not a separate entity associated only with
divergent loops. Regulators by construction separate un-
resolved UV physics from explicit infrared (IR) physics,
whereupon the UV physics is implicitly incorporated via
the Lagrangian low-energy constants (LECs). We require
that the regulator be sufficiently smooth (i.e., not a step
function), so that it can be used in basis transformations,
but this leaves much freedom in the functional form.

The inclusion of long-range pions in the iteration for
Weinberg power counting means that χEFT is not fully
renormalized order by order [28]. That is, there remains
a residual cutoff dependence in the theory at each order.
The residual scale and scheme dependences are what we
call “regulator artifacts” (note that regulator artifacts
also include regularization dependencies due to break-
ing symmetries e.g., Lorentz invariance). To achieve full
model-independence in an EFT, the predictions of the
theory must demonstrate an insensitivity to the choice
of regulator and cutoff scale. But in contrast to other
field theories (e.g., QED), the individual contributions in
chiral EFT do not vary logarithmically but much more
rapidly with the cutoff. Thus, special attention must be
paid to the scheme and scale being adopted. The present
work seeks to make the impact of these choices and asso-
ciated regulator artifacts more transparent (see Ref. [29]
for a discussion of regulator dependence for lattice EFT).

As many-body methods have become increasingly ac-
curate, the focus has shifted back to the chiral Hamilto-
nian. Better understanding of renormalization in Wein-
berg power counting and being able to quantify uncer-
tainties will be crucial to future precision tests of χEFT.
Below, we highlight various issues involving regulators
arising in current applications.
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• There needs to be adequate suppression of the
short-range parts of the long-range (pion) poten-
tials. Regularization of the singular structure in
pion exchanges demonstrates some of these sub-
tleties [30–32], e.g., spurious bound states if the
cutoff is chosen too high. The functional form of
the regulator is also found to impact artifacts in
the form of residual cutoff dependence [33].

• In addition to cutting off UV physics, regulators
should avoid distorting the long-range (IR) parts of
the nuclear potentials [33] as these parts of the force
are assumed to be rigorously connected to QCD
through chiral symmetry.

• Some many-body methods, such as Auxiliary Field
Diffusion Monte Carlo (AFDMC) and Green’s
Function Monte Carlo (GFMC), need local poten-
tials and local regulators to avoid large statistical
uncertainties [34–36].

• Regulators can impact the convergence of many-
body methods at finite density. A common many-
body approximation used with 3N forces is to
normal-order them with respect to a finite den-
sity reference state [37]. This leads to density-
dependent 0-, 1-, and 2-body terms plus a residual
3-body part. The residual contribution is usually
assumed to be small (in some cases there has been a
numerical check) and discarded for computational
efficiency (e.g., see Ref. [4]).

The regulator choice has effects on each of these issues.
To assess the regulator dependence in χEFT, we pro-

pose studying these interactions perturbatively in a uni-
form system. Applying many-body perturbation theory
(MBPT) is particularly clean and simple in this case, and
allows the effects of the regulator to be isolated without
worrying about complications such as finite size effects.
We confine ourselves to the regulator’s impact on the
Hartree-Fock (HF) and second-order energy to demon-
strate effects for the IR and UV parts of the interaction.
We also restrict our attention in this paper to the LO NN
and N2LO 3N interaction terms derived in χEFT at, re-
spectively, order ν = 0 and ν = 2 in the chiral expansion.
These are sufficiently rich for the present investigation.
We assume natural sizes for all LEC coefficients and do
not fit the forces to experimental data (e.g., phase shifts).

With one exception at 3N second-order, we work with
pure neutron matter (PNM), which is more perturbative
and simpler to analyze than symmetric nuclear matter
(SNM). In doing so, we build on recent results by Tews
et al. in Ref. [38], where it was found that the HF energy
in PNM for the N2LO 3N forces has a large dependence
on the choice of the regulator function. We emphasize
that we do not resolve here the question of how regula-
tor artifacts are absorbed by the implicit renormalization
that occurs when constructing realistic interactions; our
intent is to describe the origin of these artifacts and stim-
ulate further investigations.

When studying the effects of the regulators on the en-
ergy, we make extensive use of decomposing the NN/3N
contributions into their direct and exchange components.
While the individual pieces in this decomposition are not
physical, it is useful to isolate effects of the regulator on
the different sectors of the potential. As an example, cer-
tain parts of the N2LO 3N forces (the c4, cD, cE terms)
vanish in a system of only neutrons [39]. However, the
vanishing for the cD, cE components is presupposed on a
complete cancellation between the different 3N antisym-
metric components. Some regulator choices alter this
cancellation by regulating direct and exchange terms dif-
ferently, resulting in non-zero cD, cE contributions even
in a pure neutron system1.

In all cases, our strategy is to analyze the effects of
introducing the regulator by considering the interaction
phase space, which provides the dominant influence on
the energy integrand at a given order in MBPT (and the
other parts of the integrand are readily approximated).
Except for the simple case of NN HF, the analytic reduc-
tion of MBPT integrals is quite cumbersome and the re-
sulting expressions not enlightening. Instead, we propose
analyzing momentum-space histograms that are Monte
Carlo samplings of the relevant momenta. These his-
tograms denote where the primary strength is located in
the energy integrands. How they are constructed will be
explained in Section III below.

The plan of the paper is as follows. In Section II we re-
view the chiral interactions at LO and N2LO for the NN
and 3N forces, respectively, and define a range of regula-
tors that have been chosen for calculations in each sector.
In Section III we analyze the energy contributions at first
and second order in MBPT using different combinations
of forces and regulators. Section IV then concludes with
a summary and future issues that need to be examined.

II. NN/3N CHIRAL FORCES AND
REGULATORS

A. LO NN Forces

π

CS, CT

FIG. 1. The leading order chiral NN forces [1, 2].

1 The c4 term vanishes due to its isospin structure and not due to
an antisymmetric cancellation. As a result the c4 term is always
zero in PNM.
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The NN forces at leading-order (LO) in the chiral ex-
pansion [1, 2] are sufficiently general for our first look at
regulator artifacts in that they contain both long-range
and short-range pieces. At lowest order, there are two in-
dependent contact terms with LECs CS , CT and a static
one-pion exchange (OPE) diagram (see Fig. 1), so the
potential in momentum space can be written:

V NN
LO = V NN

c + V NN
π , (1a)

where

V NN
c = CS + CT (σ1 · σ2) , (1b)

V NN
π (q) = − g2

A

4F 2
π

(σ1 · q) (σ2 · q)

q2 +m2
π

τ1 · τ2 . (1c)

In terms of incoming (outgoing) single-particle momenta
p1,p2 (p′1,p

′
2), the momentum transfer q and the rela-

tive momentum k (for later use) are

q ≡ p1 − p′1 = p′2 − p2 , k ≡ p1 − p2

2
. (2)

For all calculations in this paper, the axial coupling con-
stant gA = 1.267 is used along with CS = 1.0 MeV−2.

Because nucleons are fermions, our potentials need to
be antisymmetric under particle exchange. To this end,
we define the antisymmetrizer A12

A12 ≡ (1− P12), (3)

where P12 is the exchange operator for particles 1 and 2.
At HF and 2nd order, expressions with an even number of
exchange operators are dubbed “direct” diagrams while
expressions with an odd number of exchange operators
are called “exchange” diagrams.

The static OPE potential can also be separated in mo-
mentum space into two different terms, long-range (LR)
and short-range (SR)2,

V NN
π (q) = V NN

π,LR(q) + V NN
π,SR(q) , (4a)

where

V NN
π,LR(q) = − g2

A

12F 2
π

[
q2 S12(q̂)

q2 +m2
π

− m2
πσ1 · σ2

q2 +m2
π

]
τ1 · τ2 ,

(4b)

V NN
π,SR(q) = − g2

A

4F 2
π

σ1 · σ2

3
τ1 · τ2 . (4c)

The tensor operator S12(q̂) defined as,

S12(q̂) ≡ 3(σ1 · q̂)(σ2 · q̂)− σ1 · σ2 , (4d)

2 The terminology long-range and short-range is somewhat a mis-
nomer here. It is used for convenience to distinguish the contact
part of the OPE potential. The long-range part of the OPE still
has ‘short-range’ components, i.e., a 1/r3 term in the tensor.

where q̂ denotes the momentum transfer unit vector and
q ≡ |q|. The above separation corresponds to subtracting
off the short-range contact part of the OPE potential.

By taking the Fourier transform of Vπ(q) in (1c), we
can express the OPE potential in coordinate space:

V NN
π (r) = V NN

π,LR(r) + V NN
π,SR(r) , (5a)

where

V NN
π,LR(r) =

g2
A

4F 2
π

m2
π

12π

e−mπr

r

×
[(

1 +
3

mπr
+

3

(mπr)2

)
S12(r̂) + σ1 · σ2

]
τ1 · τ2 ,

(5b)

V NN
π,SR(r) = − g2

A

12F 2
π

δ3(r)σ1 · σ2 τ1 · τ2 . (5c)

Here r denotes the magnitude of the relative distance
and r̂ is its unit vector. As before, the potential can
be separated into a short-range contact part along with
long-range central and tensor contributions.

In the following, we work exclusively with the long-
range part of the OPE potential. That is to say, by OPE
we are referring only to V NN

π,LR(q) in (4b) for momentum

space and V NN
π,LR(r) in (5b) for coordinate space. Includ-

ing the contact part of OPE is superfluous for our pur-
poses as its behavior under regularization is the same
as for the CS , CT terms. Furthermore, absorbing the
OPE delta function into the leading-order contact avoids
mixing contact regularization effects with the remaining
central and tensor parts of the OPE potential. Explicitly
separating out the delta function from the OPE potential
is standard practice for potentials regulated in coordinate
space.

For energies to be finite at second-order in MBPT, a
regularization scheme must be introduced. For a general
local NN potential, there will only be one independent
momentum that needs to be regulated after taking mo-
mentum conservation into consideration. Regulators in
general can either be local or nonlocal. By definition, lo-
cal regulators (and potentials) are functions purely of the
relative distance r in coordinate space or the momentum
transfer q in momentum space. Nonlocal regulators (and
potentials) have additional dependencies other than just
r or q.

One popular choice is a nonlocal regulator, which we
call momentum space nonlocal (MSNL), defined to ex-
ponentially regulate the relative momentum magnitude
k [32, 39, 40],

fNN
MSNL(k2) = exp

[
−
(
k2/Λ2

NN

)n]
, (6)

where ΛNN is the NN cutoff in momentum space and
n is a fixed integer. For current NN calculations, typ-
ical values include n = 1 − 3 and ΛNN = 450 −
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600 MeV [33, 39, 41]. The relative momentum magni-
tudes both before and after the interaction are regulated
to satisfy hermiticity, so the potential assumes the form:

V NN(k,k′) =⇒ fNN
MSNL(k2) V NN(k,k′) fNN

MSNL(k′2) ,
(7)

where k (k′) denotes the relative momentum before (af-
ter) the interaction. These regulators are symmetric un-
der individual nucleon permutation so that direct and
exchange pieces of the antisymmetric potential are regu-
lated identically. Under a partial wave decomposition of
the potential, all waves are also cut off in the same way.
Figure 2 shows the effect of different values of n (e.g., on
a diagonal potential in Eq. (7)), which can be compared
to the n→∞ limit of a step function at k = ΛNN.

FIG. 2. Examples of different choices of n, from 1 to 8, in the
nonlocal regulator exponential of Eq. (6). The x-axis is the
magnitude of the relative momentum scaled by the cutoff and
the y-axis is the regulator function squared.

A different approach is to use a local regulator, which
we call momentum space local (MSL), that depends on
the momentum transfer magnitude q, as in Ref. [30],

fNN
MSL(q2) = exp

[
−
(
q2/Λ2

NN

)n]
, (8)

such that,

V NN(q) =⇒ V NN(q)fNN
MSL(q2) , (9)

where we have written the NN potential in local form
as a pure function of q. As the regulator in (8) is not
symmetric under single-particle permutation, the direct
and exchange parts of the potential are not regulated
in the same way. Likewise, different partial waves will
experience different cutoff artifacts.

An alternative local approach is to regulate in coordi-
nate space on the magnitude of the relative distance r
with some coordinate space cutoff R0. Depending on the
exponent n, these regulators may have oscillatory behav-
ior when transformed to momentum space and display

TABLE I. Summary table for various regulator combinations
in the NN sector defined in the text, with equation references
to the regulators in parenthesis. OPE refers to (4b) in mo-
mentum space and (5b) in coordinate space. Contacts refers
to both the CS , CT terms along with the OPE contact in (4c)
and (5c).

Scheme Type OPE Contacts

MSNL nonlocal nonlocal (6) nonlocal (6)

MSL local local (8) local (8)

EKM semi-local local (14) nonlocal (6)

CSL local local (10) local (12)

different behavior from local momentum space regula-
tors. For the coordinate-space regulated OPE, these dif-
ferent regularization schemes have the least effect in high
partial waves because one is cutting off short-distance
(small r) parts of the potential. A fully local choice used
in some quantum Monte Carlo calculations, which we la-
bel CSL, is to use [42],

fNN
CSL(r2) =

(
1− exp

[
−
(
r2/R2

0

)n])
, (10)

to regulate the long-range part of the OPE potential,

V NN
π,LR(r) =⇒ V NN

π,LR(r) fNN
CSL(r2) , (11)

which cuts off the short distance (small r) parts of the
OPE potential [33]. The short-range contacts and short-
range OPE are regulated by replacing the Dirac delta
function with a smeared delta function [36, 42],

δ(r)→ δR0(r) = αne
−(r2/R2

0)n , (12)

where αn is a normalization coefficient, chosen such that∫
d3r δR0

(r) = 1 . (13)

It is also possible to mix local and nonlocal forms.
One semi-local choice developed by Epelbaum, Krebs,
and Meißner, which we label EKM, is to use [33]

fNN
EKM(r2) =

(
1− exp

[
−
(
r2/R2

0

)])n
, (14)

for the long-range OPE potential,

V NN
π,LR(r) =⇒ V NN

π,LR(r) fNN
EKM(r2) , (15)

and use (6) on the short-range contacts (and short-range
OPE). The EKM long-range regularization is sufficient to
make the previously used spectral function regularization
of the highly singular TPE potential unnecessary for n ≥
4 [33]. Current NN implementations use R0 = 0.8 −
1.2 fm as typical cutoffs [43].

The different NN regulator schemes used in this pa-
per are summarized in Table I. We note that the
momentum-space regulator functions MSNL and MSL
are constructed such that they approach one as their
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momentum arguments go to zero. This is not true for
the coordinate-space local regulators used in EKM and
CSL. However, these regulators preserve the strength of
the OPE potential at the pion pole, as has been typically
required for form factors used with phenomenological po-
tentials (e.g., see Ref. [44]).

B. N2LO 3N Forces

π π π

c1, c3, c4 cD cE

FIG. 3. The N2LO chiral 3N forces [1, 2].

The N2LO 3N forces [27, 45] (see also [46]) in the ∆-
less χEFT consist of a long-range TPE with ci coefficients
determined from πN scattering, a single-pion exchange
with a short-range contact cD, and a pure contact cE
term (see Fig. 3):

V 3N
N2LO = V 3N

2π + V 3N
D + V 3N

E , (16a)

V 3N
2π =

1

2

(
gA

2Fπ

)2 ∑
i 6=j 6=k

(σi · qi) (σj · qj)
(q2
i +m2

π)
(
q2
j +m2

π

)Fαβijkταi τβj ,
(16b)

Fαβijk = δαβ
[
−4c1m

2
π

F 2
π

+
2c3
F 2
π

qi · qj
]

+
∑
γ

c4
F 2
π

εαβγτγkσk · (qi × qj) , (16c)

V 3N
D = − gA

8F 4
π

cD
Λχ

∑
i 6=j 6=k

(σj · qj) (σi · qj)
q2
j +m2

π

τi · τj , (16d)

V 3N
E =

cE
2F 4

πΛχ

∑
j 6=k

(τj · τk) , (16e)

where the subscripts i, j, k are particle indices.3 For all
calculations in this paper, ci = 1.0 GeV−1, cD = 1.0,
cE = 1.0.

As in the 2-body sector we define an antisymmetrizer
A123 to ensure that our 3N potential is antisymmetric
under particle exchange,

A123 ≡ (1− P12)(1− P13 − P23) . (17)

3 Note that the Λχ appearing in the 3N potentials is distinct from
ΛNN and Λ3N. Λχ denotes the estimated breakdown scale of
χEFT while ΛNN and Λ3N come purely from regulating the EFT.

Depending on the number of exchange operators in our
energy expressions, we have “direct”, “single-exchange”,
and “double-exchange” diagrams.

For calculations to be finite past first order in perturba-
tion theory, we again need to introduce a regularization
scheme for our 3-body potentials. For a local 3N poten-
tial, there will in general be 2 independent momenta after
momentum conservation. One commonly used choice is
a nonlocal regulator completely symmetric in the single-
particle momenta,

f3N
MSNL(p1,p2,p3) =

exp

[
−
(
p2

1 + p2
2 + p2

3 − p1 · p2 − p1 · p3 − p2 · p3

3Λ2
3N

)n]
,

(18)

which we call MSNL. Like its 2-body nonlocal coun-
terpart, this regulator retains its functional form under
permutation of the nucleon indices and thus regulates
each antisymmetric piece of the 3-body potential in the
same way. The nonlocal regulator can be equivalently
written in terms of the magnitudes of the 3-body Jacobi
momenta,

f3N
MSNL(k2, j2) = exp

[
−
(
k2 + 3

4j
2

Λ2
3N

)n]
, (19)

where we define the Jacobi momenta j,k with respect to
the 1, 2 particle subsystem,

j =
2

3

(
p3 −

p2 + p1

2

)
, k =

p2 − p1

2
. (20)

To satisfy hermiticity, again we regulate on both the in-
coming and outgoing Jacobi momenta,

V 3N(j′,k′; j,k) =⇒
f3N

MSNL(k′2, j′2) V 3N(j′,k′; j,k) f3N
MSNL(k2, j2) . (21)

Common choices for the 3N MSNL regulator include n =
2 − 3 and Λ3N = 400 − 600 MeV [15, 45, 47]. Usually
Λ3N is chosen to be equal to ΛNN, but the necessity for
this has not been established.

Another choice, which we dub MSL, is the Navratil
local regulator defined as [48],

f3N
MSL(q2

i ) = exp

[
−
(

q2
i

Λ2
3N

)n]
, (22)

where e.g., q1 = p1 − p′1 is the momentum transfer in
terms of individual nucleon three-momenta with p1 (p′1)
being the momenta before (after) the interaction. The
3N potential expressed in local form after regularization
becomes,

V 3N(qi,qj) =⇒ f3N
MSL(q2

i ) V 3N(qi,qj) f
3N
MSL(q2

j ) , (23)

where the subscripts i, j refer to momentum transfers
between different single-particle momenta. Like the lo-
cal momentum space regulator in (8), the Navratil lo-
cal regulator is not symmetric under individual nucleon
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permutations. As such, the different parts of the fully
antisymmetric 3N potential are all regulated differently.
This also results in ambiguities in deciding how to reg-
ulate different parts of the long-range 3N forces depend-
ing on if the regulator momentum labels i, j match the
spin-isospin labels in the 3N potential [38, 48, 49]. Tak-
ing the potential V 3N

D with LEC cD as an example, we
denote below two different regularization structures fol-
lowing Ref. [48],

f3N
MSL(q2

i )
(σj · qj) (σi · qj)

q2
j +m2

π

τi · τj f3N
MSL(q2

j ) , (24a)

f3N
MSL(q2

k)
(σj · qj) (σi · qj)

q2
j +m2

π

τi · τj f3N
MSL(q2

j ) . (24b)

The momentum transfer labels in the regulators match
the spin-isospin indices in (24a), whereas only one index
is matched in (24b). In this paper, for the purposes of
calculation, we adopt the convention of Eq. (24b).

III. RESULTS

To explore the regulator dependence in χEFT,
we study the uniform system (infinite, homogeneous,
isotropic matter) in MBPT. The uniform system has the
desirable feature that certain non-perturbative aspects of
nuclear systems in free-space, e.g., the fine-tuning of the
NN S-waves, are rapidly damped at finite density [50].
In this paper, with the exception of 3N second-order, we
work exclusively with PNM up to the first two orders in
MBPT. This is because PNM is simpler and more per-
turbative than SNM and serves as a testbed without the
complications of including isospin. In test cases, we have
found similar trends in these two limiting systems.

In the following, we look first at the NN forces at HF
and second-order in MBPT, then we examine 3N forces
in the same sequence. Examining both the HF and the
second-order energy allows the probing of different parts
of the nuclear potentials with a regulator scheme. The
HF energy has the feature of being computable with-
out a regulator and serves as a touchstone for examining
scheme/scale dependence. As all HF momenta are on-
shell, regulator effects here are described as IR effects.
The second-order energy is divergent in the absence of
regularization, hence artifacts from the regulator here are
called UV effects.

A. NN Forces at HF

For a 2-body interaction, the HF energy per particle
in terms of single-particle momenta is given by

ENN
HF

N
=

1

2ρ

∑
σ1,σ2

∑
τ1,τ2

∫
d3p1

(2π3)

∫
d3p2

(2π)3

× n(p1)n(p2)〈12|A12V
NN
LO |12〉 , (25)

where

|1〉 ≡ |p1σ1τ1〉, (26a)

n(p1) ≡ Θ( kF − |p1|), (26b)

ρ is the nucleon number density, σi (τi) is the spin
(isospin) operator for the ith particle, and V NN

LO are
the LO chiral NN forces with a particular regularization
scheme.

Evaluating the HF energy using the different regula-
tor schemes in Table I yields the curves in Fig. 4 for the
CS and OPE terms. At this stage we have already sep-
arated the direct and exchange parts of the potential,
〈12|V NN

LO |12〉 and 〈12|V NN
LO |21〉 respectively, to illustrate

differences in regulator behavior on energy calculations.
Note that there is no direct OPE energy as spin-isospin
dependent interactions at HF vanish when performing
spin-isospin traces. Calculations are presented here for
soft cutoffs of ΛNN = 2.0 fm−1 and R0 = 1.2 fm to
better highlight regulator artifacts at high density. Per-
forming calculations at a more common ΛNN = 2.5 fm−1

or R0 = 0.9 fm does not alter our qualitative discussion
below (see supplemental material). The regulator situ-
ation at HF is particularly simple and our analysis in
this section serves as a proof of principle of how our var-
ious diagnostic tools can explain the systematics of the
energy.

The unregulated direct CS HF energy in Fig. 4(a) is ex-
actly reproduced for the MSL and CSL regulator schemes
because q = 0 for the direct diagram. In contrast, the
MSNL result is suppressed. The exchange CS HF energy
shows a different hierarchy where, in order of absolute
magnitude, one finds MSNL > CSL ∼ MSL.

The exchange CS HF energies in Fig. 4(b) imply that
the CSL contact regulator in (12) has similar behavior to
the MSL regulator in (8) for the cutoffs ΛNN = 2.0 fm−1

and R0 = 1.2 fm. In the special case of n = 1 with a no-
derivative contact, a straightforward Fourier transform
connects these two regulators, i.e.,

F
[
V NN
CS fNN

MSL(q2)
]

= CS

∫
d3q

(2π)3
eiq·r e−q

2/Λ2
NN

= CSα1 e
−r2/R2

0 (27)

where R0 = 2/ΛNN and α1 = (R3
0 π3/2)−1. Only for

this special case will the regulators be directly related.
At larger n, the relations become more complicated hy-
pergeometric functions and the correspondence between
ΛNN and R0 is no longer clean. We plot the choice of
n = 2 for contact CSL and MSL in Fig. 5(a) to illus-
trate this different behavior. The oscillatory nature of
the Fourier transformed regulator implies that no simple
redefinition of ΛNN or R0 will completely equate the two
regulators.

For the exchange OPE, the hierarchy in energy values
in Fig. 4(c), in decreasing order of magnitude, is MSNL
> MSL > CSL > EKM. The significant deviation in the
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FIG. 4. Neutron matter calculations of the HF energy per particle for the direct (a) and exchange (b) terms for CS and the OPE
exchange term (c) using the regularization schemes in Table I. The CT calculation has similar behavior to the CS exchange
term. The EKM scheme uses the same regularization as the MSNL scheme for the contact terms. The trends in SNM (not
shown) are comparable to those in PNM. The calculations use n = 2, ΛNN = 2.0 fm−1, and R0 = 1.2 fm.
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FIG. 5. Plot (a) shows the MSL regulator in (8) and CSL contact regulator in (12) for n = 2, R0 = 1.2 fm, ΛNN = 2.0 fm−1.
Plot (b) shows the MSL regulator in (8) and CSL/EKM OPE regulator in (10) or (14) for n = 1, R0 = 1.2 fm, ΛNN = 2.0 fm−1.
The regulator function is plotted as a function of the momentum transfer magnitude |q|. The S12 operator, which vanishes for
HF, was set to zero before performing the Fourier transform for EKM/CSL. Hence the OPE EKM/CSL regulator functional
form as plotted is valid for HF only.

MSL, EKM, and CSL OPE energies compared to unreg-
ulated HF can be traced to the regulation of the small
r parts of the OPE potential. The energy density of
uniform nuclear matter is dominated by the low partial
waves (e.g., S,P,D waves). The MSL, CSL, and EKM
regulators, in (8), (10), and (14) respectively, by con-
struction cut off the potential at small r and will thus
affect these low partial waves to a greater extent than
the MSNL scheme.

The energy trends in the graphs of Fig. 4 are directly
linked to the interaction phase space, as we now demon-
strate. This is most apparent for a sharp regulator, for
which five of the six integrals in (25) can be done ana-
lytically for pure S-wave or contact potentials. Dropping

prefactors, we find the phase space is proportional to the
dimensionless integrand [51, 52],(

k

kF

)2
(

2− 3
k

kF
+

(
k

kF

)3
)
freg , (28)

where freg refers generically to any regularization scheme.
We have also suppressed the overall dependence on kF

and the potential. Making the MSNL regulator in (6)
sharp results in,

fNN
MSNL(k2) −−−−→

n→∞
Θ

(
ΛNN − k

kF

)
(29)

while making the MSL regulator in (8) sharp gives dif-
ferent results for direct and exchange terms due to regu-
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FIG. 6. Phase space of the Hartree-Fock exchange term reg-
ulated with the sharp MSL regulator of (30). The magnitude
of the dimensionless integrand in (28) is plotted as a func-
tion of k/ kF. The colored regions indicate the phase space
included for different values of kF/ΛNN.

lating in the momentum transfer,

fNN
MSL(q2) −−−−→

n→∞
1 Direct,

fNN
MSL(q2) −−−−→

n→∞
Θ

(
ΛNN − 2k

kF

)
Exchange . (30)

Therefore, for a sharp cutoff chosen above the Fermi
surface kF, the HF phase space will be unaltered by the
MSNL regulator. In contrast, the exchange term regu-
lated in the sharp MSL scheme gets cut off as soon as
kF/ΛNN > 0.5 (i.e., the effective cutoff in the MSL ex-
change case is half that in the MSNL case). This is shown
in Fig. 6, where the colored region indicates the integra-
tion region for different values of kF/ΛNN. For example,
for kF/ΛNN = 1.0 all the phase space above k/ kF = 0.5
has been completely removed by the sharp MSL regula-
tor while for kF/ΛNN = 0.5, the full phase space is still
extant. As a result, in regions where the Fermi momen-
tum is small compared with the cutoff, we expect little
deviation between the unregulated, MSNL, and MSL HF
energy.

Although at HF the phase space in (28) can be ana-
lytically derived, the situation is considerably more com-
plicated at second-order and in the 3-body sector. In
anticipation of this, we develop a new way to visualize
the regulator phase space occlusion using a diagnostic
based on Monte Carlo sampling. To understand regula-
tor effects and the hierarchy of energy values, we propose
creating plots of the HF integrand in (25) and plotting
it against the relative momentum magnitude as is done
in Fig. 7. These histogram plots will be the main analy-
sis tool for regulator effects on the potential both at HF

and at higher orders in perturbation theory. They are
created by randomly generating single-particle momenta
p1,p2 by Monte Carlo sampling and then calculating the
scaled HF energy integrand I1,

I1 = |freg|
k2

k2
F

P 2

k2
F

n(P/2 + k) n(P/2− k)

×


1, Contact

m2
π

q2 +m2
π

, OPE
(31)

where freg refers to a regularization scheme in Table I, P
is the total momentum, P = p1 + p2, and the integrand
is weighted by a contact or OPE interaction4. The value
of the integrand I1 is then binned for the corresponding
relative momentum magnitude k (normalized by kF) and
the process is repeated. After a sufficiently high number
of momenta are generated, the final plot is normalized
by the total number of iterations. The scaling of the
momentum magnitudes k and P by kF is done here for
convenience.

These histograms can be interpreted as the phase space
available to the system at HF in MBPT now weighted
by momenta and the interaction V NN. The interaction
weighting is included to demonstrate how different inter-
actions weight different parts of the phase space and how
this interplays with differing regularization schemes.

We use these plots for three key purposes:

1. to show that the hierarchy in computed MBPT en-
ergy values matches the volumes of the weighted
phase space,

2. to illuminate where in the phase space different reg-
ulators act, i.e., where the contribution to the en-
ergy integral becomes small,

3. to demonstrate how different interactions interplay
with the regularization schemes.

Addressing these points in order, we first note that the
volume of weighted phase space tracked for different reg-
ulator choices in Fig. 7 exactly matches the hierarchy
in energy values of Fig. 4. For example, the CS di-
rect energy in Fig. 4(a) is unaltered for the CSL and
MSL regulator schemes while the MSNL scheme shows
an increasing suppression for increasing kF. Looking at
Fig. 7(a), the direct CS histograms show an increasing
loss of phase space at large |k|/ kF for the MSNL scheme
as kF increases while the MSL and CSL phase spaces
are unaltered. A corresponding matching of weighted
phase space volume to energy calculations exists for the
exchange CS and OPE terms as well. Increasing the inte-
ger n in the MSNL and MSL regulators (i.e., making the

4 The term in (4b) proportional to the S12 operator is zero at HF
after preforming spin traces.
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FIG. 7. (color online) Momentum histograms of the 2-body HF integrand for the LO NN forces at kF = 1.0, 1.4, and 1.8 fm−1.
The integrand magnitude I1 in (31) for the direct CS (a), exchange CS (b), and exchange OPE (c) is plotted as a function of the
dimensionless k/ kF. The integrand magnitude I1 is also scaled by a factor of 1000. All graphs are evaluated at ΛNN = 2.0 fm−1,
R0 = 1.2 fm, with n = 2.
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FIG. 8. (color online) Momentum histograms of the 2-body HF integrand for the exchange CS term at n = 4, 8, 16. The
integrand magnitude I1 in (31) is plotted as a function of k/ kF. The integrand magnitude I1 is also scaled by a factor of
1000. As the exponent n in the regulator is increased, the full phase space is recovered for the MSNL regulator, while the
MSL regulator approaches a theta function, in agreement with (29) and (30). All graphs are evaluated at kF = 1.8 fm−1,
ΛNN = 2.0 fm−1.
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FIG. 9. Ratio of the regulated HF OPE energy in PNM to the
unregulated one, as a function of kF. Unlike the momentum
space regulators, the long-range CSL and EKM regulators do
not reproduce the full HF energy in the low-density limit. The
calculations use n = 2, R0 = 1.2 fm, and ΛNN = 2.0 fm−1.

regulators sharper) for the CS exchange term at a fixed
density results in the plots in Fig. 8. As n increases,
one recovers the full space for the MSNL scheme and the
sharp cutoff limit for the MSL scheme in agreement with
(29) and (30).

Secondly, we see that the primary regions that get sup-
pressed in the weighted phase space, for both the contact
and OPE plots, are regions of large |k|/ kF. This is ex-
pected given the form of the MSNL regulator in (6), that

all local regulators will suppress large q, and that there
is a simple relation between q and k at HF,

q = 0 Direct,

q = 2k Exchange . (32)

As such, how the phase space is cut off for this class of
regulators is mostly universal at HF. Note also the inter-
esting behavior in Fig. 7(c) in the OPE case in that both
the CSL and EKM phase spaces go to zero at some value
of |k|/ kF at larger densities ( kF = 1.8 fm−1) and then
increase again. This reflects the oscillatory nature of the
Fourier-transformed regulator (see Fig. 5(b)). Fig. 5(b)
also reveals that the EKM/CSL regulator function does
not approach 1 for |q| → 0 (while preserving the strength
of the OPE potential at the pion pole, as noted at the
end of Sec. II A). This can be seen in the modification
of the phase space in Fig. 7(c) at low k/ kF. As a con-
sequence, the ratio of the regulated to unregulated HF
OPE energy, plotted in Fig. 9, does not go to 1 at low
kF for the EKM/CSL regulators.

Thirdly, we can compare the weighted phase space dis-
tribution to see the effect of the different interactions,
contact vs. OPE5. The CS and OPE plots are very simi-
lar to one another suggesting that the regulators are pri-
marily determining the distribution. The key difference
between the two is the shifting of the maximum OPE
phase space distribution towards smaller k (cf. the dis-
tribution peak in CS and OPE in Fig. 7 (b) and (c)). This

5 Note that in scaling the momentum magnitudes k and P by kF in
I1, larger kF will tend to shrink the distribution when weighting
by the OPE interaction.
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FIG. 10. Neutron matter calculations of the second-order energy for the CS–CS direct (a) and exchange (b) terms along with
the OPE–OPE direct (c) and exchange (d) terms using different regulators. The calculations are done at ΛNN = 2.0 fm−1,
R0 = 1.2 fm, and n = 2.

shifting of the peak of the OPE phase space distribution
results in less suppression for the regulated energy values,
as can be seen in comparing the OPE and CS exchange
energies in Fig. 4 (b) and (c).

B. NN Forces at Second-Order

For a 2-body interaction at second-order in MBPT, the
energy per particle in terms of single-particle momenta

is,

ENN
SO

N
=

1

4ρ

[ 4∏
i=1

∑
σi

∑
τi

∫
d3pi
(2π)3

]
n(p1)n(p2)n̄(p3)n̄(p4)

× 〈12|A12V
NN
LO |34〉〈34|A12V

NN
LO |12〉

εp1 + εp2 − εp3 − εp4

× (2π)3δ3(p1 + p2 − p3 − p4) , (33)

where

n̄(pi) ≡ Θ(|pi| − kF) , (34a)

and

εpi =
~2p2

i

2m
. (34b)
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FIG. 11. (color online) Momentum histograms for the integrand magnitude I2 in (37) at kF = 1.8 fm−1, n = 2, and
ΛNN = 2.0 fm−1. The integrand magnitude I2 is also scaled by a factor of 1000. The y-axis gives the particle relative
momentum while the x-axis gives the hole relative momentum. Colors indicate the integrand magnitude for a particular k, k′

pair. The horizontal black line indicates the cutoff ΛNN while the sloping black line separates out the inaccessible region due
to Pauli blocking.

For simplicity we use a free spectrum, but we do not
expect a different choice to change our discussion. It is
also useful to define a new relative momentum,

k′ =
p3 − p4

2
, (35)

where p3,p4 correspond to single-particle momenta with
magnitudes above the Fermi momentum kF.

The momentum transfer for a particular matrix ele-
ment is defined differently depending on which part of
the antisymmetrizer A12 acts in the matrix element:

1 =⇒ 〈12|V |34〉 : q = p1 − p3 = k− k′ ,

P12 =⇒ 〈21|V |34〉 : q′ = p1 − p4 = k + k′ . (36)

using the relative momenta definitions in (2) and (35). As
such, the second-order direct term will have only q (or
q′) dependence while the exchange term will have both q
and q′ dependence due to the different particle order in
the two matrix elements. Both k and k′ are independent
momenta implying that it is not generally possible for

both q and q′ to simultaneously have small magnitudes.
Therefore, we expect that local regulators, which act to
cut off large momentum transfers, will have suppressed
energies (and phase spaces) for exchange terms relative
to the direct terms.

The second-order energy values for the CS–CS topol-
ogy and the OPE–OPE topology are given in Fig. 10.
(Diagrams with mixed vertices such as CS–OPE will mix
regulator effects; we do not consider them here.) The
CT –CT term has similar behavior to the CS–CS term.
In contrast to NN HF energy values in Fig. 4, here the
contact CSL regulator in Fig. 10(a) and (b) deviates from
the MSL scheme at large kF. We attribute this to the os-
cillating functional form of the CSL regulator in Fig. 5(a);
the particle states at large kF probe the ‘ringing’ of the
CSL contact regulator function at large |q|. We also note
the large scheme dependence seen in the second-order
OPE–OPE energy values, especially with respect to the
coordinate space regulators.

Having established the utility of the phase space his-
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tograms for Hartree-Fock, we use them as diagnostics
at second-order to study where the action of the regula-
tor becomes important for the MSL and MSNL schemes.
Representative examples are given in Fig. 11. Because
the choice of scheme dominates the phase space distribu-
tion, for simplicity, we consider the integrand magnitude
weighted only by the regulator functions (cf. with (31) at
NN HF),

I2 = |freg| n(P/2 + k) n(P/2− k)

n̄(P/2 + k) n̄(P/2− k) . (37)

Weighting by the more complicated full energy integrand
does not alter the qualitative features of the histograms
(see supplemental material and discussion below).

As in NN HF, single-particle momenta p1,p2,p3,p4

are randomly generated (subject to the momentum con-
servation constraint) and the corresponding energy in-
tegrand I2 is calculated. The resulting magnitude is
then binned in the histogram. The plots are now two-
dimensional, with color serving as a third degree of free-
dom to indicate the integrand magnitude I2. Hole and
particle relative momentum are plotted on the x- and
y-axis respectively, both normalized with respect to kF.
After all momenta are generated, the plots are then nor-
malized by the total number of k′, k pairs generated. Ad-
ditionally, a black horizontal line indicates the position
of the cutoff and the sloping black line near the bottom
of the plot separates out the inaccessible region due to
Pauli blocking.

A key distinction from NN HF for these second-order
phase space plots is that the unregulated k′ can range up
to arbitrarily high momenta. Thus, while the HF plots
in the previous section display a universal profile, the
unregulated second-order phase space is infinite in extent
and all regulated representations are inherently scheme
and scale dependent. However, we do expect regulator
dependencies to be less important in the lower density
limit (see supplemental material).

As the density is raised and kF starts to approach ΛNN,
scheme artifacts will become more apparent. For kF =
1.8 fm−1 and ΛNN = 2.0 fm−1, we plot the second-order
histograms in Fig. 11 for the direct/exchange terms in
the MSL and MSNL schemes.

Looking first at the MSNL histograms in Fig. 11(c)
and (d), we see that the distributions of the direct and
exchange terms are equivalent. This reflects the permu-
tation symmetry of the nonlocal regulator in (6); direct
and exchange terms are cut off in equivalent ways. We
also note that the center of the MSNL distribution is at
k ≈ 0.55 kF. This is similar to the center of the distri-
bution at NN HF (cf. Fig. 7) and at lower densities (see
supplemental material). This implies that as the den-
sity is raised, the phase space for the MSNL terms are
primarily cut off at large k′.

Different behavior is seen for the MSL scheme in
Fig. 11(a) and (b). The phase space for the exchange
term is suppressed compared to the phase space for the
direct term as anticipated above. The exchange term’s

phase space comes primarily from regions below the cut-
off and is much more constrained in magnitude. In con-
trast, a substantial portion of the direct term’s phase
space comes from relative momenta k′ which are above
the cutoff ΛNN. Furthermore, it is seen in each case that
the central profile of the phase space is shifted away from
k ≈ 0.55 kF. In the direct term, the center is shifted to-
wards large k,k′ reflecting the potential cancellation be-
tween k and k′. In the exchange term, the center is
shifted towards small k,k′.

We make equivalent plots of the full integrand mag-
nitude for the CS–CS and OPE–OPE histograms in the
supplemental at kF = 1.8 fm−1. These do not display
any qualitative differences compared to Fig. 11. This
again emphasizes that the regulators are primarily de-
termining the phase space distribution.

We do not address the large scheme dependence seen
for the second-order OPE–OPE energy values between
the coordinate space regulators. Our histogram approach
is not easily adapted to the use of the long-range coordi-
nate space regulator functions at second-order and can-
not offer intuition about which parts of the phase space
are most relevant.

C. 3N Forces at HF

For a 3-body interaction, the HF energy per particle
in terms of the single-particle momenta is given by

E3N
HF

N
=

1

6ρ

∑
σ1σ2σ3

∑
τ1τ2τ3

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3p3

(2π)3

n(p1)n(p2)n(p3)〈123|A123V
3N
N2LO

|123〉 , (38)

where V 3N
N2LO

includes a regularization scheme. The an-

tisymmetrizer in (17) leads to three different classes of
terms depending on the number of exchange operators
Pij : one term with no exchange operators, three terms
with a single exchange operator, and two terms with
two exchange operators. These components are respec-
tively dubbed the direct, single-exchange, and double-
exchange terms. Note that in this decomposition, single-
exchange and double-exchange by our convention refer
to all the terms with the associated exchange operators
(e.g., single-exchange energies include contributions from
P12, P13, and P23). Evaluating these different compo-
nents with the MSNL regulator in (18) and the MSL
regulator in (22) give the energies in Fig. 12 for the
contact cE term. The MSL scheme is equivalent to no
regulator for the direct term while single-exchange and
double-exchange terms are increasingly suppressed. The
MSNL scheme has a similar relative effect on all contri-
butions with respect to unregulated HF. Trends for the
finite range ci, cD pieces are similar (see supplemental
material). For both the MSNL and MSL schemes, the
cE term dominates the energy per particle for natural
choice of LECs.
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FIG. 12. Plots (a), (b), and (c) show the energy per particle of the cE term for the direct, single-exchange, and double-exchange
topologies respectively in neutron matter with Λ3N = 2.0 fm−1 and n = 4.

As before, we analyze momentum histograms to de-
scribe the 3N HF phase space. Single-particle momenta
p1,p2,p3 are randomly generated using Monte Carlo
sampling and the 3N HF integrand magnitude,

I3 =|freg| k2 j2 P 2 n(P/3− j/2− k)

× n(P/3− j/2 + k) n(P/3 + j) , (39)

is then calculated for the Jacobi momenta k,j defined
in (20). The integrand magnitude is then binned in
a histogram with the moduli of the associated Jacobi
momenta, normalized by kF, plotted on the y- and x-
axes. The sampling process is then repeated and the
final distribution is normalized by the total number of
Monte Carlo iterations. As in Sec. III B, the resulting
histograms are two-dimensional with color intensity de-
noting integrand magnitudes. Note that in (39) we do
not weight the distribution by the different interactions
ci, cD, cE . Such weighting is superfluous for our purposes
as all the weightings generate similar plots (see supple-
mental material). As all the momenta in HF are on-shell,
the phase space here is unambiguously well-defined, re-
gardless of the cutoff or regulator. As in NN HF, unregu-
lated 3N HF serves as a touchstone to assess scale/scheme
dependence via deviations from the unregulated result.

In Fig. 13 we plot representative examples of the full
3N HF phase space for the MSL and MSNL6 scheme.
The color shows the integrand magnitude I3 for the given
regularization scheme while the contour lines indicate the
same distribution with no regulator attached to the po-
tential (freg ≡ 1). As at NN second-order, the distribu-
tion of points in the weighted phase space is primarily
determined by the choice of regulator function.

We make a few general comments:

6 We only plot the direct term for the MSNL scheme in Fig. 13(a)
as the single-exchange and double-exchange terms have the same
distribution of points with rescaled magnitudes.

• The hierarchy in energy values matches the vol-
umes of the different phase spaces i.e., MSL direct
> MSNL > MSL single-exchange > MSL double-
exchange.

• The MSL direct term is unaltered as the direct di-
agram has qi = 0 for all momentum transfers.

• The central profile of the MSNL term is slightly
shifted towards smaller k. This reflects the regula-
tor cutting into the hole phase space with exponen-
tial suppression of large k, j. Note that the factor
of 3

4 in (19) means that large k will cause more
suppression compared to large j.

• The center of the MSL single-exchange histogram is
shifted towards small j and k. It also has an asym-
metric shape extending out to large |k|/ kF. This
results from the different parts of the 3N interac-
tion not being regulated identically for the different
single-exchange components.

• The MSL double-exchange histogram is also shifted
to small j and k but to a larger extent than the MSL
single-exchange term. As in the single-exchange
case, asymmetric features originate from the dif-
ferent momentum transfer possibilities for the two
different double-exchange components.

D. 3N Forces at Second-Order

For MBPT at finite density, there exist two types of
diagrams resulting from 3-body forces at second-order
[39, 53, 54]. These can be found by normal-ordering
the free-space second-quantized 3-body operators with
respect to a finite density reference state.7 The first

7 We do not consider the second-order diagram with normal-
ordered one-body interactions from the 3-body force because the
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FIG. 13. (color online) Momentum histogram representing the 3N HF phase space for kF = 1.8 fm−1, Λ3N = 2.0 fm−1, and
n = 4. The integrand magnitude I3 in (39) is plotted in color for a given j, k pair normalized by kF. The integrand magnitude
I3 is also scaled by a factor of 100. Plot (a) shows the MSNL phase space for the direct term while (b), (c), and (d) show the
MSL direct, single-exchange, and double-exchange spaces respectively. The other MSNL terms have an equivalent distribution
as the MSNL direct term absent magnitude rescaling. The contour lines indicate the same histogram calculation but with no
regulator (freg ≡ 1).

diagram is called normal-ordered or density-dependent
(DD), and is found by closing a single-particle line at
each 3-body vertex resulting in an effective 2-body in-
teraction. The other diagram, called the residual (RE)
diagram, has three particles above and three holes be-
low the Fermi surface and is a true 3-body term. Both
diagrams are shown in Fig. 14.

diagram vanishes at zero temperature. The 0-body term is also
not considered.

For the DD diagram, we treat the interaction coming
from the 3N sector as an effective 2-body force, so our
previously defined formula for the second-order NN en-
ergy in (33) applies,

E3N
DD

N
=

1

4ρ

[ 4∏
i=1

∑
σi

∑
τi

∫
d3pi
(2π)3

]
n(p1)n(p2)n̄(p3)n̄(p4)

× 〈12|A12V
3N

N2LO|34〉〈34|A12V
3N

N2LO|12〉
εp1 + εp2 − εp3 − εp4

× (2π)3δ3(p1 + p2 − p3 − p4) , (40)
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FIG. 14. The residual (left) and normal-ordered (right)
second-order diagrams arising from 3-body forces. The NO2B
approximation discards the residual term while keeping the
normal-ordered digram.

where here we have added an overline to the potential to
indicate this normal-ordering prescription with respect
to the third particle,

〈12|V 3N

N2LO|45〉 =
∑
σ3,τ3

∫
d3p3

(2π)3
n(p3)

× 〈123|(1− P13 − P23)V 3N
N2LO|453〉 . (41)

For the second-order 3N RE diagram, the energy per
particle is given by

E3N
RE

N
=

1

36ρ

[ 6∏
i=1

∑
σi

∑
τi

∫
d3pi
(2π)3

]
× n(p1)n(p2)n(p3)n̄(p4)n̄(p5)n̄(p6)

×
〈123|A123V

3N
N2LO|456〉〈456|A123V

3N
N2LO|123〉

εp1
+ εp2

+ εp3
− εp4

− εp5
− εp6

× (2π)3δ3(p1 + p2 + p3 − p4 − p5 − p6) . (42)

Calculations from different many-body methods (e.g.
coupled-cluster) have indicated that the DD diagram is
larger than the RE diagram [37]. As such, the RE dia-
gram is usually excluded in the normal-ordered 2-body
(NO2B) approximation for reasons of computational ef-
ficiency. If this approximation is to be well-founded, the
contribution of the DD term to the energy density should
be much larger than the RE term. That is, the ratio of
the contribution of the DD diagram to the RE diagram,

R3N
SO ≡

E3N
DD

E3N
RE

, (43)

must be much greater than one. The assessment of the
NO2B approximation has practical consequences for cal-
culations of finite nuclei and for calculating theoretical
error bars. There are also implications for power count-
ing at finite density and the general organization of the
many-body problem.

Here we take a simplest first look at the ratio R3N
SO us-

ing only the cE 3N contact term. As a benchmark, the
ratio R3N

SO can be evaluated using dimensional regular-
ization. Assuming the subtraction point is of the same
order as kF, the ratio is found to be R3N

SO ≈ 2 [55].

For cutoff regularization, we find a significant scale and
scheme dependence for R3N

SO . Evaluating R3N
SO for the cE

term in SNM8 using the MSL and MSNL regulator re-
sults in the points in Fig. 15(a). Here the ratio is plotted
against the Fermi momentum kF scaled by the cutoff
Λ3N. Including all the N2LO 3N interactions in PNM re-
sults in the plot in Fig. 15(b). The qualitative and semi-
quantitative features of Fig. 15(a) and (b) are similar,
establishing that the inclusion of the finite-range forces
and isospin does not appreciably alter this picture.

First, R3N
SO in Fig. 15(a) exhibits an obvious scale

dependence for both schemes. Staying in a particular
scheme at a fixed density, changing the cutoff causes one
to move left or right on this plot. At a large cutoff Λ3N

compared to kF, the particle phase space is not suffi-
ciently cut off and dominates over the hole phase space.
The RE diagram has one fewer hole and one extra parti-
cle compared to the DD diagram and so consequently, a
small kF/Λ3N amplifies the importance of the RE term.
Looking at Fig. 15(a) at kF/Λ3N ≈ 0.3, the diagram ra-
tio R3N

SO is O(1) for the MSNL scheme and already less
than 1 for the MSL scheme.

Second, there is a scheme dependence for R3N
SO ; for kF

near the cutoff Λ3N, the relative importance of the dif-
ferent 3N diagrams in the two schemes differs by almost
an order of magnitude. This difference between the two
schemes can be understood by examining the effect of the
regulator on the different 3N antisymmetric components.
As before, we use momentum histograms to highlight the
action of the regulator on the phase space.

The relevant integrand magnitudes for the second-
order 3N energy, including only Pauli blocking and the
regulators, is,

I4,DD = |freg| n(p5) n(p6) n(P/2 + k)

× n(P/2− k) n̄(P/2 + k′) n̄(P/2− k′) , (44)

for the DD term and,

I4,RE = |freg| n(P/3 + j) n̄(P/3 + j′)

× n(P/3− j/2− k) n(P/3− j/2 + k)

× n̄(P/3− j′/2− k′) n̄(P/3− j′/2 + k′) , (45)

for the RE term. However, now the relevant space is 4-
dimensional due to the different momenta moduli which
can vary when plotting I4. We arbitrarily choose to plot
I4 as a function of the two relative momenta moduli k,
k′ for the DD histogram and the two particle Jacobi mo-
menta moduli k′, j′ for the RE histogram to better illus-
trate the effect of the regulator. The histograms for the
different antisymmetric components of the DD term are
plotted in Fig. 16 for the MSNL and MSL schemes. As
can be seen, the distribution is similar to the 2nd order

8 The cE term vanishes in PNM for the MSNL scheme so here we
switch to using SNM.



17

cE SNM - R3N
SO

MSNL
MSL

(a)

n = 4

R
at

io

0.01

0.1

1

10

100

kF / Λ3N

0 0.2 0.4 0.6 0.8 1

PNM - R3N
SO

MSNL
MSL

(b)

n = 4
Λ3N = 2.0 fm-1

R
at

io

0.01

0.1

1

10

100

kF [fm-1]
0 0.25 0.5 0.75 1 1.25 1.5 1.75

FIG. 15. Plot (a) shows the ratio R3N
SO in (43) for the 3N contact term evaluated in SNM. Plot (b) shows the same ratio R3N

SO

only now including all 3-body interactions in PNM. The trend in the ratio is very similar to plot (a). Both calculations are
done with Λ3N = 2.0 fm−1 and n = 4.
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FIG. 16. (color online) Momentum histograms for the 3N second-order normal-ordered term where colors indicate the integrand
magnitude I4,DD in (44). The integrand magnitude I4,DD is also scaled by a factor of 104. Plots done for the MSNL (a) term
and the MSL direct (b) and MSL exchange (c) terms. The direct/exchange MSNL histograms are equivalent due to regulator
permutation symmetry. Plotted for kF = 1.6 fm−1, Λ3N = 2.0 fm−1, n = 4. The dashed line indicates the location of the
cutoff Λ3N.

NN histograms (cf. Fig. 11). The MSNL integrand is cut
off at large k′ (squeezed from above) while the MSL in-
tegrand to some extent includes k′ above the cutoff Λ3N.
This similarity in structure is expected in that the DD
term is an effective 2-body interaction. The key differ-
ence between the NN second-order and the DD case is the
magnitude of the DD MSNL term compared with the DD
MSL term. That is, the magnitude of the MSNL term in
the DD case is enhanced compared with the MSL term.

Now we examine the residual histograms in Fig. 17.
The MSNL scheme in Fig. 17(a) has no k′ points above
the cutoff and few j′ points above Λ3N, a difference com-

ing from the factor of 3/4 in the regulator in (19). Due
to regulator permutation symmetry, the different MSNL
antisymmetric terms (direct, single-exchange, double-
exchange) have equivalent distributions. In contrast, the
direct MSL term in (b) shows a distinct enhancement
coming from small momentum transfers qi, qj in (23).
Note also that the range of the direct MSL distribution
extends far above the cutoff Λ3N. Going to the other
MSL antisymmetric pieces in Fig. 17(c) and (d), we see
increasing suppression.

Therefore, we can explain the difference in the ratio
R3N

SO between the two schemes in Fig. 15(a). Relative to
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FIG. 17. (color online) Momentum histograms for the 3N second-order residual term where colors indicate the integrand
magnitude I4,RE in (45). The integrand magnitude I4,RE is also scaled by a factor of 106. Plots done for the MSNL (a) term
and the MSL direct (b), single-exchange (c), and double-exchange (d) terms. The different MSNL antisymmetric histograms
are equivalent due to regulator permutation symmetry. Plotted for kF = 1.6 fm−1, Λ3N = 2.0 fm−1, n = 4. The dashed lines
indicate the location of the cutoff Λ3N.

the MSNL scheme, the suppression of the DD MSL terms
and the enhancement of the direct RE MSL term doubly
act to keep R3N

SO small for the MSL scheme.

E. Fierz Rearrangements

When constructing the pure 3-body contact coming
in at N2LO, there are six different possible spin-isospin
structures which satisfy all the relevant symmetries of

the low-energy theory [45],

V 3NF
con =

∑
i 6=j 6=k

[
β1 + β2σi · σj + β3τi · τj

+ β4 (σi · σj) (τi · τj) + β5 (σi · σj) (τj · τk)

+ β6 ([σi × σj ] · σk) ([τi × τj ] · τk)
]
. (46)

Using Fierz rearrangements it can be shown that, up
to numerical prefactors, only one of the above opera-
tor structures is linearly independent. As such, it is
only necessary to include one of the six operator struc-
tures in χEFT when fitting LECs and doing calculations.
The typical choice made in current applications is to use
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FIG. 18. The ratio for the 3N HF energy in (47) of the cE contact term in SNM calculated with two different operator
structures. The numerator (denominator) was calculated with the operator corresponding to β1(β3) in (46).

τi · τj corresponding to β3 in (46). However, a compli-
cation enters when the regulator is no longer symmetric
under individual nucleon permutation e.g., the MSL reg-
ulator in (22) [38, 49]. The Fierz relations establishing
equivalence between the different operator structures are
spoiled when the antisymmetric pieces of the 3N interac-
tion are regulated differently. This ambiguity of the 3N
contact operator for local regulators has recently been
explored in Ref. [56].

This point can be seen in our perturbative approach
to the uniform system. In Fig. 18, we plot a calculation
of the ratio of the 3N HF energy for the operator choices
corresponding to β1 and β3 in (46):

EHF
1 /EHF

τi·τj . (47)

Using the MSNL regulator, or no regulator at all, the
ratio of the two different HF energy calculations in (47)
is constant with respect to density. This reflects the pure
numerical prefactor between the different operators one
gets upon Fierz rearrangement. However, when using
the MSL regulator, the ratio between the two calcula-
tions is now density-dependent. It is an open question to
what extent this Fierz ambiguity is resolved by including
three-nucleon contributions at higher orders in the chi-
ral expansion when using regulators that do not respect
permutation symmetry.

IV. SUMMARY AND OUTLOOK

Recent progress in nuclear many-body methods has
led to increasingly precise ab initio calculations of ob-
servables over a growing range of nuclei. This in turn
has shifted focus to the input χEFT Hamiltonian in the

quest for more accurate calculations and a systematic un-
derstanding of theoretical uncertainties. A major source
of variation among Hamiltonians currently considered
stems from the regularization scheme chosen, because
χEFT implemented using Weinberg power counting is
not renormalizable order by order. As such there remains
residual cutoff dependences in the theory to all orders and
regulator artifacts, which are scheme dependencies that
remain after implicit renormalization, are inevitable.

In this work, we characterized the impact of various
NN and 3N regulator choices by analyzing perturbative
energy calculations in the uniform system at Hartree-
Fock and second-order using the leading NN/3N chiral
interactions. This allows us to test both long-range and
contact potentials, and both the on-shell and off-shell
parts.

We find significant scale and scheme dependence for
perturbative energy calculations at finite density using
chiral forces and the scheme choices outlined in Table I.
In particular, we have identified characteristic regulator
artifacts resulting from the differing regulator functional
forms. To uncover the origins of the differing behavior
of energy calculations, we adopted an approach based
on analyzing the phase space available at each order in
MBPT using a Monte Carlo sampling of momenta. In
all cases, it is this phase space that serves as a guide-
post to the effect of different schemes. The momentum
histograms in section III are used to show:

• the extent and shape of the phase space;

• the connection between the size of the phase space
and the total computed energy;

• which parts of the phase space are suppressed by
the regulator;
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• how the regulator cuts off the phase space.

We anticipate that this histogram diagnostic will have
wider applications, such as in assessing finite-density
power counting or in guiding the implementation of long-
range chiral forces in nuclear density functionals via the
density matrix expansion [8, 57–61].

Here we summarize some of our observations from
Sec. III about scale and scheme dependencies:

• In special cases where the regulators can be directly
related to one another, scheme dependence trans-
lates simply to a different effective cutoff. For ex-
ample, the MSNL (6) and MSL (8) schemes at NN
HF can be put into equivalence (32) due to the
relation between momentum transfer and relative
momentum. Likewise, the MSL and CSL contact
(12) regulator for n = 1 allows ΛNN and R0 to be
directly related (27) to each other. But in general
regulators cannot be put into a direct correspon-
dence.

• Coordinate space regulators (usually) lead to os-
cillatory behavior when Fourier transformed (see
Fig. 5). In contrast to the smooth cutoff behavior
of the momentum space regulators, this manifests
as zero points in the interaction phase space, see
CSL/EKM in Fig. 7(c).

• Our primary analysis tool are phase space his-
tograms, which are used to understand the effect
of the regulator at different orders of MBPT. The
analytic form of the energy integrand in MBPT is
only easily found at NN HF. The expression in (28)
and the plot in Fig. 6 shows this analytic form plot-
ted for the HF exchange term with the n→∞ limit
for the MSNL and MSL schemes as given in (29)
and (30). Our histogram approach reproduces this
picture in the sharp regulator limit as demonstrated
in Fig. 8. Likewise, examining the NN HF energy
per particle calculations in Fig. 4, we find an exact
matching in the energy hierarchy to the phase space
volume for the histograms in Fig. 7. The same ob-
servation can also be made for the MSL and MSNL
NN second-order energies (Fig. 10) and histograms
(Fig. 11) along with the 3N HF energy (Fig. 12)
and histograms (Fig. 13).

• The qualitative scale dependence of all the regula-
tors is similar, with softer cutoffs (i.e., those with
smaller ΛNN, Λ3N, and larger R0) generating larger
energy differences at a fixed density. In regions
where the Fermi momentum kF is small compared
to the cutoff, scheme artifacts are generally small.
However, finite range coordinate space regulators
(CSL/EKM) have modifications that persist even
at small q (Fig. 5) leading to differences at small
kF (Fig. 7(c) and Fig. 9). Note that to highlight
scheme effects, in this paper we worked at soft
cutoffs of ΛNN = 2.0 fm−1, R0 = 1.2 fm, and

Λ3N = 2.0 fm−1. Calculations with harder cut-
offs present quantitative smaller artifacts but are
qualitatively similar (see supplemental material).

• At higher densities, regulators cut into the hole
phase space and at second-order (and beyond) the
regulators squeeze the particle phase space, mak-
ing artifacts more apparent. This can be seen in
the NN HF histograms of Fig. 7 where scheme dif-
ferences become larger as kF increases. Likewise in
the NN second-order histograms, large differences
exist at large kF between different schemes (Fig. 11
and Figs. 21, 22). The corresponding effects are
seen for 3N HF (Fig. 13) and at 3N second-order
(Figs. 16, 17).

• The behavior of the regulator under permutation
symmetry, the interchanging of nucleon labels i, j
due to the exchange operator Pij , affects how the
different parts of the potential are affected i.e., di-
rect vs. exchange. Stark differences in behavior
can occur when the regulator does not respect per-
mutation symmetry. Certain regulator schemes re-
spect (MSNL) or do not respect (MSL) permuta-
tion symmetry. At the NN HF level, the phase
space histograms can clearly demonstrate this fact
(cf. Fig. 7(a) and (b) at kF = 1.8 fm−1 for MSL
and MSNL). The direct/exchange components in
the MSL scheme are very different but they are
identical in the MSNL scheme. This manifests at
second-order as well, as can be seen in comparing
Fig. 11(a) and (b) for the MSL scheme along with
(c) and (d) for the MSNL scheme. 3-body contri-
butions at HF and second-order also display these
differences between antisymmetric components in
different schemes in Figs. 13, 16, and 17.

• Additionally, how regulators behave under permu-
tation symmetry can affect Fierz rearrangements
between operator structures. In particular, when
constructing the N2LO 3N contact term, six differ-
ent possible operator structures exist which respect
the relevant symmetries of χEFT, see (46). How-
ever, upon Fierz rearrangement, only one operator
is shown to be linearly independent. As a result,
different operator structures can be related to one
another and differ only by a pure numerical pref-
actor. However, these rearrangements depend on
relations between different antisymmetric compo-
nents of the operators. For regulators which do
not respect permutation symmetry (e.g., the MSL
scheme), these Fierz rearrangements are no longer
automatic. In Sec. III E, we show that the Fierz
relation is spoiled for two operator choices in a 3N
HF energy calculation using the MSL scheme (see
Fig. 18).

• Approximations of many-body perturbation the-
ory (MBPT) also exhibit scheme and scale depen-
dence. For 3N forces, a common technique is to
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normal-order the free-space second-quantized oper-
ators with respect to a finite density ground state.
At second-order in MBPT, this results in an effec-
tive 2-body term (called the normal-ordered term)
and a remaining 3-body piece (called the resid-
ual term). The residual term is a true 3-body
term and is computationally expensive to calculate.
In the NO2B approximation, the residual term is
discarded and the computationally simple normal-
ordered term is retained. Such an approximation is
only valid if the contribution of the normal-ordered
term to the energy is greater than the residual i.e.,
if the ratio of the former to latter is greater than
one.

In Sec. III D, we demonstrated that the ratio of
the normal-ordered term to the residual term has
a distinct scheme and scale dependence. The scale
dependence comes from changing the extent and
importance of the hole/particle phase space as the
cutoff is changed. As the cutoff is raised, the par-
ticle phase space increases and the residual term
dominates. We use our momentum histograms to
understand the scheme dependence for the MSNL
and MSL schemes. In the MSL scheme, the direct
residual term is enhanced due to small momen-
tum transfers qi,j (Fig. 17(b)) while the normal-
ordered terms are suppressed compared to the
MSNL scheme (Fig. 16). This residual term en-
hancement and normal-ordered term suppression in
the MSL scheme results in very different ratios for
local and nonlocal schemes, as seen in Fig. 15.

• While we have emphasized the dominant role of the
phase space, there are also quantitative differences
in calculations due to the role of the interaction
and how it interplays with the chosen scheme. For
example, the 3N c1 term weights states lower in the
Fermi sea (see supplemental material and Fig. 27).
Consequently, c1 scheme dependence and regulator
artifacts are less pronounced than compared with
c3, cD, and cE .

A critical but open question is the ultimate impact of the
regulator artifacts. For example, it has been seen that
two-pion exchange regulator artifacts can affect the chi-

ral power counting in uniform matter [62]. However, re-
cent research has indicated that these artifacts are better
controlled using certain coordinate-space local regulators
(e.g., see Table VII in [33], which illustrates insensitiv-
ity to the functional form and cutoff of the regulator).
Whether local regulators are the only way to control fi-
nite range artifacts, and avoid distorting analytic struc-
tures, remains an open question.

If χEFT is to be model independent and follow the chi-
ral power counting, regulator artifacts at one order must
be absorbed at higher order consistent with the power
counting. But how the regulator dependence is absorbed
(if it is) by implicit renormalization is not manifest. Fur-
thermore, a systematic comparison of uncertainties due
to truncation of the chiral expansion and truncation in
MBPT still needs to be explored.

The significant regulator artifacts observed here and
for two-pion exchange motivate exploration of a wider
range of functional forms for regulators, such as those
commonly used for the functional renormalization group
(RG) [63] and nuclear low-momentum RG evolution (e.g.,
see Ref. [64]). For example, there are regulators with
an independent dimensional scale parameter to set the
smoothness of the cutoff, instead of relying on a super-
Gaussian suppression. This may provide greater control
over artifacts. The analysis tools introduced here are
being applied to these alternatives in an ongoing investi-
gation.
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Appendix A: NN Energy Values at Harder Cutoffs

In this appendix we show plots for the energy per par-
ticle at NN HF using more common cutoffs of ΛNN =
2.5 fm−1 and R0 = 0.9 fm for position space regula-
tors. The antisymmetric terms for the energy per par-
ticle for NN HF are given in Fig. 19. These can be
compared to the energy calculations at the softer cutoffs
ΛNN = 2.0 fm−1, R0 = 1.2 fm in Fig. 4. Note that energy
values between the different schemes are more similar
here compared with the ΛNN = 2.0 fm−1 case; i.e., reg-
ulator artifacts for ΛNN = 2.5 fm−1 are less pronounced
at a given kF.

Appendix B: NN Second-Order I2 Plots

In Sec. III B, the histogram plots are weighted by the
phase space I2 in (37) rather than the full integrand mag-
nitude. The full second-order energy integrand I2,full is
given by,

I2,full = |freg|
k2 k′2 P 2

(k′2/m− k2/m)

× n(P/2 + k) n(P/2− k) n̄(P/2 + k′) n̄(P/2− k′)

×


1, Contact ,∣∣∣∣q2 S12(q̂)−m2

πσ1 · σ2

q2 +m2
π

∣∣∣∣ , OPE ,
(B1)

where the first (second) term in brackets corresponds to
weighting by the contact (OPE) interaction and all spin
terms are summed over. In Fig. 20 we plot two examples
of this full second-order phase space at a low density kF =
0.5 fm−1 with a cutoff ΛNN = 2.0 fm−1. In Fig. 20(a)
and (b), we show the MSL direct CS–CS term and the
MSL direct OPE–OPE term respectively. Here we have
only plotted the MSL direct terms because the equivalent
MSNL plots are nearly identical (scheme artifacts are
small). Likewise, the exchange plots have an equivalent
distribution, but with smaller magnitudes.

The circular shapes in the color in Fig. 20 are inter-
preted as no correlation in the selection of k and k′ at
lower densities. This can be manifested by rewriting (33)
using relative and center-of-mass coordinates.

Looking at Figs. 21 and 22, we see the histogram plots
for the CS–CS and OPE–OPE terms respectively. The
integrand magnitude I2,full of the two terms in (B1) are
given by the color intensity for a given k′,k pair. Com-
paring with Fig. 11, it is seen that there is little qualita-
tive difference between plotting just the phase space (I2)
or the full energy integrand (I2,full) absent magnitude
rescaling. Thus, it is the regularization scheme which pri-
marily drives the distribution of points in the histograms.

Appendix C: Finite Range Interactions at 3N HF

In Sec. III C, only the HF energy per particle for the cE
term was given. Here, we show plots for the energy per
particle for the finite range pieces as well. Fig. 23 shows
the c1, c3, and cD single-exchange contributions while
Fig. 24 shows the double-exchange contributions to the
energy per particle. The direct terms for the finite range
interactions vanish at HF from tracing over spin-isospin.
Comparing with Fig. 12, there is little qualitative differ-
ence in the scheme hierarchy for the different interactions
(but see App. E).

Appendix D: 3N HF I3 Plots

Here, we demonstrate that weighting by the finite
range interaction c1 does not qualitatively change the
phase space histograms. In Fig. 25, we plot the integrand
magnitude I3 in (39) including a c1 weighting term from
(16) analogously to what is done in (B1) for NN second-
order. The integrand magnitude is plotted as a function
of the moduli of the Jacobi momenta defined in (20).
Comparing to Fig. 13, the two plots are seen to be qual-
itatively the same.

Appendix E: 3N HF Interaction Terms

In this appendix, we illustrate how different regular-
ization schemes interplay with the form of the different
N2LO 3N interactions. As seen in the 3N HF energy
per particle plot of Fig. 12, a clear hierarchy is estab-
lished for the antisymmetric components of the MSNL
and MSL schemes (MSL > MSNL for the direct term
but MSNL > MSL for the exchange terms). Although,
Fig. 12 only shows the cE term, this hierarchy is generic
for the finite range interactions as well. In Fig. 26, we
plot the ratio of the energy per particle in PNM for the
different schemes,

E3N
MSNL / E

3N
MSL , (E1)

that is the ratio of the HF energy per particle of the
MSNL scheme to the MSL scheme. As can be seen,
there are two different trends in the above ratio for the
exchange terms, one for c1 and one for c3, cD, and cE .

To see the origin of this difference, we count powers
of the momentum transfer in (16b) and (16d) and find
one-dimensional variants of the c1, c3, cD interactions in
Fig. 27 ignoring spin-isospin,

f(q) =



q2

(q2 +m2
π)

2 c1

q4

(q2 +m2
π)

2 c3

q2

(q2 +m2
π)

cD

. (E2)
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FIG. 19. Neutron matter calculations of the HF energy per particle for the direct (a) and exchange (b) terms for CS and
the OPE exchange term (c) using the regularization schemes in Table I. The CT calculation has similar behavior to the CS
exchange term. The trends in SNM (not shown) are comparable to those in PNM. The calculations use CS = 1.0 MeV−2,
n = 2, ΛNN = 2.5 fm−1, and R0 = 0.9 fm.
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FIG. 20. (color online) Momentum histograms representing the second-order NN phase space for the MSL direct CS–CS term
(a) and OPE–OPE term (b) at kF = 0.5 fm−1, n = 2, and ΛNN = 2.0 fm−1. The exchange and MSNL plots have a similar
distribution. The y-axis gives the particle relative momentum while the x-axis gives the hole relative momentum both scaled
by kF. Colors indicate the I2,full magnitude for a particular k, k′ pair. The integrand magnitude I2,full is also scaled by a factor
of 106. The horizontal black line indicates the cutoff ΛNN and the sloping black line separates out the inaccessible region due
to Pauli blocking.

These 1-D functions f(q) are plotted in Fig. 27. It can be
seen that the functional form of the c3, cD terms is mono-
tonically increasing in the momentum transfer q. Taking
a large q expansion of the c3, cD terms in (E2), where the
contribution of the interaction is largest, reveals that c3,
cD should scale as q0 = 1 or like the scalar term cE . This
exactly matches the ratio behavior as seen in Fig. 26.

In contrast, the c1 interaction of Fig. 27 reaches a peak

near q ≈ 0.7 fm−1, in the vicinity of the pion mass. This
implies that the major contribution to the energy inte-
grals with the c1 term will come from this region as op-
posed to the large |q| area as one would expect for c3, cD.
As the MSL regulator cuts off in the momentum transfer,
we correspondingly expect to see less suppression in the
energy values involving the c1 term.



25

MSL CS-CS Direct

ΛNN

(a)

0 0.5 1 1.5 2 2.5 3 3.5

Int. Mag. x 106

|k
'|/

k F

0

0.5

1

1.5

2

|k| / kF

0 0.2 0.4 0.6 0.8 1

MSL CS-CS Ex.

ΛNN

(b)

0 0.5 1 1.5 2 2.5 3 3.5

Int. Mag. x 106

|k
'|/

k F

0

0.5

1

1.5

2

|k| / kF

0 0.2 0.4 0.6 0.8 1

MSNL CS-CS Direct

ΛNN

(c)

0 0.5 1 1.5 2 2.5 3 3.5

Int. Mag. x 106

|k
'|/

k F

0

0.5

1

1.5

2

|k| / kF

0 0.2 0.4 0.6 0.8 1

MSNL CS-CS Ex.

ΛNN

(d)

0 0.5 1 1.5 2 2.5 3 3.5

Int. Mag. x 106

|k
'|/

k F

0

0.5

1

1.5

2

|k| / kF

0 0.2 0.4 0.6 0.8 1

FIG. 21. (color online) Momentum histograms representing the second-order NN phase space for the CS–CS term. The
MSL direct (a) and exchange (b) terms are shown along with the MSNL direct (c) and exchange (d) terms. Plots done at
kF = 1.8 fm−1, n = 2, ΛNN = 2.0 fm−1. The y-axis gives the particle relative momentum k′ (35) while the x-axis gives the
hole relative momentum k (2) both scaled by kF. Colors indicate the I2,full magnitude in (B1) for a particular k, k′ pair. The
integrand magnitude I2,full is also scaled by a factor of 106.
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FIG. 22. (color online) Momentum histograms representing the second-order NN phase space for the OPE–OPE term. The
MSL direct (a) and exchange (b) terms are shown along with the MSNL direct (c) and exchange (d) terms. Plots done at
kF = 1.8 fm−1, n = 2, ΛNN = 2.0 fm−1. The y-axis gives the particle relative momentum k′ (35) while the x-axis gives the
hole relative momentum k (2) both scaled by kF. Colors indicate the I2,full magnitude in (B1) for a particular k, k′ pair. The
integrand magnitude I2,full is also scaled by a factor of 1000.
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FIG. 23. Plots (a), (b), and (c) show the energy per particle for the single-exchange c1, c3, and cD terms respectively in neutron
matter with n = 4, Λ3N = 2.0 fm−1, ci = 1 GeV−1, cD = 1.
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FIG. 24. Plots (a), (b), and (c) show the energy per particle for the double-exchange c1, c3, and cD terms respectively in
neutron matter with n = 4, Λ3N = 2.0 fm−1, ci = 1 GeV−1, cD = 1.
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FIG. 25. (color online) Momentum histogram representing the 3N HF phase space for the c1 term. Plots (a) and (b) show the
MSL single-exchange and double-exchange terms respectively. Plots (c) and (d) show the MSNL single-exchange and double-
exchange terms respectively. Plotted for kF = 1.8,Λ3N = 2.0 fm−1, and n = 4. Colors indicate the integrand magnitude I3 in
(39) with a c1 weight term from (16). The integrand magnitude I3 is also scaled by a factor of 105. Note the change in color
scale between the plots.
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FIG. 26. Ratio of the 3N HF energy, (E1), calculated with the MSNL regulator in (19) to the same energy with the MSL
regulator in (22) for the individual 3N interaction terms in PNM. Ratio is plotted for the direct (a), single-exchange (b),
and double-exchange (c) terms of the antisymmetric 3N force. The calculations use ci = 1.0 GeV−1, cD = 1.0 , cE = 1.0 ,
Λ3N = 2.0 fm−1, and n = 4.
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FIG. 27. Plot of the functions f(q) in (E2) which are one-
dimensional variants of the finite range 3N interactions ignor-
ing spin-isospin. The functions are plotted as a function of
the 1-D momentum transfer q variable.


