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The EM field pattern created by spectators in relativistic heavy-ion collisions plants a seed of
positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to
the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system,
and causes photons emitted in upper- and lower-hemispheres to have different preferences in the
circular polarization. Similar helicity separation for massive particles, due to the global vorticity,
is also possible. In this paper, we lay down a procedure to measure the variation of the circular
polarization w.r.t the reaction plane in relativistic heavy-ion collisions for massless photons, as well
as similar polarization patterns for vector mesons decaying into two daughters. We propose to
study the yield differentially and compare the yield between upper- and lower-hemispheres in order
to identify and quantify such effects.

PACS numbers: 25.75.Ld

I. INTRODUCTION

In a non-central relativistic heavy-ion collision, an
ultra-strong magnetic field will be produced inside the
participant zone by energetic spectator protons [1]. On
average, the magnetic field is perpendicular to the so-
called “reaction plane” (RP) that contains the impact
parameter and the beam momenta. This strong mag-
netic field, coupled with quantum anomalies, will cause a
series of novel non-dissipative transport effects that could
survive the expansion of the fireball and be detected in
experiments. For a review on these subjects, see Ref. [2].
Furthermore, the initial magnetic helicity of the collision
system can be quite large, and bears opposite signs in
the upper- and lower-hemispheres. It was recently real-
ized [3–6] that owing to the chiral anomaly, the helic-
ity can be transferred back and forth between the mag-
netic flux and fermions as the collision system evolves,
so that the magnetic helicity could last long enough to
yield photons with opposite circular polarizations in the
hemispheres above and below the RP [3, 7, 8]. A similar
asymmetry in photon polarization can also result from
the initial global quark polarization [9] which could ef-
fectively lead to a polarization of photons [7]. This local
imbalance of photon circular polarization could be ob-
served in experiments, e.g., by studying the polarization
preference w.r.t the RP for photons that convert into
e+e− pairs. In this paper, we discuss a few practical
thoughts of carrying out such a measurement, first for
photons and then for vector mesons.

II. PHOTONS

Photon circular polarization can be measured with
dedicated polarimeters [10], by studying the count rate
asymmetries with a local magnet. Such a setup is infea-
sible for large-scale heavy-ion experiments like the Rela-
tivistic Heavy Ion Collider or the Large Hadron Collider,
as the local magnet will complicate the magnetic field
that is used for the track detection of charged particles.
Nevertheless, one can still probe photon circular polar-
ization by tracking e+e− pairs from photon conversion.

A photon will not decay by itself. However, when a
photon is near an atomic nucleus, its energy can be con-
verted into an electron-position pair. Panels a) and b)
in Fig. 1 show the typical conversion process for left and
right circularly polarized photons, respectively. Here ζ is
the angle of the electron relative to the positron, when
both are projected onto the plane perpendicular to the
motion direction of the photon. Owing to the opposite
circular polarizations, the preferred direction orderings
between the emitted electron and positron are opposite
in the two cases.
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FIG. 1: A left (a) or right (b) circularly polarized photon is
converted into to an electron-positron pair with the help of
the recoil of an atomic nucleus.
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The cross-section for the pair production by completely
circularly polarized high-energy photons is given as [11,
12]

dσ ∝ 1± a · sinζ, (1)

where the + and − signs are for right and left circularly
polarized photons, respectively. a (∈ [0, 1]) is a positive
quantity dependent on the photon energy and the ener-
gies and momenta of its two daughters, as well as the
atomic number Z of the recoiling nucleus.

In the presence of the magnetic helicity effect, the
yields of left and right circularly polarized photons can
each be parametrized as a sine wave modulation w.r.t.
the RP, which is similar to the directed flow (v1) [13]
that is modulated by a cosine wave. Furthermore, the
sine coefficients have the same magnitude and opposite
signs for left and right circularly polarized photons. With
this parametrization scheme, the effect of the magnetic
helicity aforementioned is strongest in the direction per-
pendicular to the RP (along the direction of the magnetic
field), and weakest in the RP, and so is the difference in
yield between the two groups of photons. The cross-
sections for right and left circularly polarized photons
can be written separately as

dσR ∝ (1 + a · sinζ)(1 + b · sinφ) (2)

dσL ∝ (1− a · sinζ)(1− b · sinφ), (3)

where φ is the photon’s azimuthal angle relative to the
RP, and b (∈ [0, 1]) represents the magnitude of the mod-
ulation. The total cross-section is the sum of dσR and
dσL:

dσ ∝ 1 +Hsinζsinφ, (4)

where H ≡ ab, and H ∈ [0, 1].
ζ, φ are both experimentally measurable quantities,

so in principle H can be obtained from the cross-section
measurement. A finite H implies a finite b or a finite
effect of modulation w.r.t the RP due to the external
magnetic field. Note that only the modulation w.r.t RP
carries the information of the asymmetry between left
and right circularly polarized photons, so other sources of
photons (mostly from hadron decays) do not contribute
toH as long as they are produced symmetrically w.r.t RP
in terms of the left-right circular polarization. Generally
speaking, photons can have other finite Fourier coeffi-
cients, e.g., v1 and v2 [13], but they do not couple with
H as long as we assume those coefficients are the same
for left and right circularly polarized photons.

The (in)efficiency as a function of φ angle can be easily
compensated in experiments, as long as the RP distri-
bution and the azimuthal angle distribution of photons
in the laboratory frame are flattened, which is a com-
mon procedure when analyzing anisotropic flow [13]. We
also assume that the efficiency as a function of ζ can
be measured by usual Monte Carlo studies with individ-
ual experiment setups. Taking the difference in yield-
probability between the upper hemisphere and the lower

hemisphere,

∆Y γup−down =

∫ π

0

dσdφ−
∫ 2π

π

dσdφ

∝ 4Hsinζ (5)

and the difference between the left hemisphere and right
hemisphere (separated by φ = π/2) would be zero owing
to the symmetry of the system:

∆Y γleft−right =

∫ 3π
2

π
2

dσdφ−
∫ π

2

−π
2

dσdφ

= 0, (6)

which can be regarded as a consistency check in experi-
ments. Note that when there is no signal, ∆Y γup−down =

∆Y γleft−right = 0, and a finite efficiency ε(ζ) will not cause

an artificial, finite ∆Y γup−down.
In heavy-ion collider experiments, photons are usually

reconstructed at secondary vertices where they strike de-
tector materials and emit e+e− pairs. The photon sample
is inevitably contaminated by combinatorial background
formed by random e+e− pairs. However, the background
contribution should be symmetric w.r.t both φ = 0 and
φ = π/2 plane, and be canceled in this procedure by tak-
ing the difference in yield between up and down (or left
and right) hemispheres. The same argument also holds
for the study of vector mesons discussed below.

III. VECTOR MESONS

Unlike photons that can be only transversely polarized
(with the spin direction either parallel or anti-parallel to
the momentum direction), vector mesons can be both
longitudinally and transversely polarized. Below, we de-
scribe a procedure to measure a potential difference, if a
similar effect exists, between left and right circular polar-
izations for vector mesons, as well as a way to study the
variation of such a difference w.r.t the RP. The procedure
is applicable to vector mesons decaying into two daugh-
ters, such as ω, φ, J/ψ etc, and applicable to virtual
photons decaying into two leptons by firstly fluctuating
into vector mesons. The earlier the particle is produced,
the better it experiences the magnetic helicity that hap-
pens at the very early time (a few fm/c) of the collision.
In addition, the lighter the particle, the easier for it to be
polarized by the magnetic field. In the end what particle
to choose for this study is a balanced decision between
the particle’s production time, mass, the purity of the
data sample, and the statistics available. The latter two
factors vary from one experiment to another. Note that
although here we mentioned the magnetic helicity, the
system can have helicity separation originated from vor-
ticity [9, 14, 15], which may have an effect on massive
particles.

The polarization of vector mesons can be studied with
the distribution of its decay products in azimuthal and



3

polar angles (for example, for J/ψ particle see [16–18])
in a chosen coordinate system (frame). The four popu-
lar choices of frame are the particle rest frame [16], the
Gottfried-Jackson frame [16, 19], the center-of-mass he-
licity frame [16], and the Collins-Soper frame [20]. How-
ever, no discussion is given in [16, 17] to distinguish the
left and right circular polarizations, both belonging to
transverse polarization.

Our discussion will be limited to the center-of-mass
helicity frame only. In the helicity frame [16], the orien-
tation of the polar axis is set to be the opposite of the
direction of motion of the interaction point (the flight di-
rection of the quarkonium itself in the center-of-mass of
the colliding beam). The illustration of the helicity frame
and the definition of polar angle (β) is given in Fig. 2.
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FIG. 2: Illustration of the helicity frame (left), in which b1 and
b2 are beam directions in the quarkonium rest frame, and the
orientation of the polar axis (ZHX) is set to be the opposite
of the direction of motion of the interaction point. The polar
angle (β) is defined as the angle between the polar axis and
the positive lepton (right).

As a side remark, the definition of transverse and lon-
gitudinal polarization for vector mesons is is commonly
used, but counterintuitive. The definition is originated in
analogy to a photon which is said to be transversely po-
larized with spin projection Jz = ±1, owing to the fact
that the EM field carried by a photon oscillates in the
transverse plane with respect to its momentum, while its
spin is aligned along the momentum. longitudinal polar-
ization means Jz = 0. We respect this convention in this
paper.

A. Asymmetry in yield w.r.t RP for left and
right-circular polarization only

Without loss of generality, let’s assume the vector me-
son under discussion is a J/ψ particle decaying into a
e+e− pair. In the helicity frame, the polar angle dis-
tributions of positrons for left-handed, longitudinal and

right-handed J/ψ can be written as [21]

PTl ∝
1

4
(1− cosβ)2 (7)

PL ∝
1

2
sin2β (8)

PTr ∝
1

4
(1 + cosβ)2. (9)

If one assumes the left-right symmetry and introduces
λβ ∈ [−1, 1], with λβ = 1(−1) representing the complete
transverse (longitudinal) polarization, the polarization-
summed cross-section can be expressed as

Ppol sum ∝
1 + λβ

2
(PTl + PTr ) +

1− λβ
2

PL (10)

∝ 1 + λβcos2β, (11)

with which we have recovered the formula to describe
J/ψ polarization in the polar angle in Refs. [16, 17].

Now we relax the assumption of the left-right symme-
try, and introduce x = Asinφ, where φ is J/ψ’s azimuthal
angle relative to the RP, and A (∈ [0, 1]) represents the
asymmetry in the emission of left and right circularly
polarized J/ψ w.r.t RP,

Ppol sum ∝
1 + λβ

2
(
1− x

2
PTl +

1 + x

2
PTr ) +

1− λβ
2

PL. (12)

With this definition, when x is 1 (-1), J/ψ’s are pro-
duced 100% with right (left) circular polarization. After
normalization in β space, Ppol sum is written in full form
as :

Ppol sum =
3

32
[5 + λβ + 4A(1 + λβ)sinφcosβ

+(3λβ − 1)cos2β] (13)

Taking into account the modulation w.r.t. the RP due
to the elliptic flow (v2) [13], the final probability in yield
becomes

y(φ, β) =
1

2π
(1 + 2v2cos2φ)Ppol sum. (14)

In Fig. 3, y(φ, β) is shown for three different A values.
For a given β, a finite A value will distort the originally
(when A = 0) symmetric J/ψ production w.r.t. φ = 0.
In principle, the J/ψ yield measured in (φ, β) spaces, if
fitted with Eq.(14), can be used to extract A.

Taking the difference in probability between the upper
and lower hemispheres,

∆Y
J/ψ
up−down =

∫ π

0

y(φ)dφ−
∫ 2π

π

y(φ)dφ

=
A

4π
(3− 2v2)(1 + λβ)cosβ. (15)
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FIG. 3: Probability distribution y(φ, β) for A = 0 (top), A =
0.5 (middle) and A = 1 (bottom). For all three cases, λβ and
v2 are -0.1 and 0.1, respectively.

Note that Eq.(15) shows that ∆Y
J/ψ
up−down could still be

finite even if the transverse and longitudinal polarizations
have equal possibility (λβ = 0). Again the difference
between the left and right hemispheres (separated by φ =
π/2) is

∆Y
J/ψ
left−right =

∫ 3π
2

π
2

y(φ)dφ−
∫ π

2

−π
2

y(φ)dφ

= 0. (16)

When the detection efficiency is finite, Eq.(14) can be
simply multiplied by ε(β)ε(φ), where ε(β) and ε(φ) are
efficiency functions of β and φ, respectively. With a fi-

nite efficiency, ∆Y
J/ψ
up−down does not take the simple form

of Eq.(15) any more. However, similar to the case of
photons, a finite efficiency ε(β) will not cause an arti-

ficial, finite signal in ∆Y
J/ψ
up−down. Here we assume that

the (in)efficiency as a function of φ angle can be easily

compensated in experiments, as long as the RP distribu-
tion and the azimuthal angle distribution of particles of
interest in the laboratory frame are flattened, which is a
common practice when analyzing anisotropic flow [13].

B. Additional asymmetry in yield w.r.t RP
between longitudinal and transverse polarizations

A more general physics case would not exclude the pos-
sibility that the portions of the longitudinal and trans-
verse polarizations also vary w.r.t. the RP. To take this
effect into account, one can introduce the RP dependence
of λβ in Sec. III A as:

λβ(φ) = λ0β(1 + 2u sinφ). (17)

The corresponding ∆Y
J/ψ
up−down becomes

∆Y
J/ψ
up−down =

3− 2v2
8π

[2A(1+λ0β)cosβ+λ0βu(1+3cos2β)]

(18)

and ∆Y
J/ψ
left−right remains zero owing to the symmetry

w.r.t φ = π/2 plane.

IV. DISCUSSION AND SUMMARY

We have shown that for massless photons, as well as
vector mesons decaying into two daughters, the difference
in the circular polarization preference between upper-
and lower-hemispheres could be feasibly measured. We
propose a scheme to carry out the measurement that
quantifies the effect. In practice, there are other compli-
cations that need to be considered in experiments. For
example, π0 decays may dominate the photon produc-
tion, effectively diluting the signal. In the end it is a
competition between the strength of the signal and the
dilution effect. Similar dilution effects can happen to vec-
tor mesons due to the background contamination. The
correction for dilution depends on the detailed experi-
mental setup, which varies from one experiment to an-
other, and is beyond the scope of this paper.
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