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Initial state fluctuations in collisions between light and heavy ions

Kevin Welsh, Jordan Singer, and Ulrich Heinz∗
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In high energy collisions involving small nuclei (p+p or x+Au collisions where x=p, d, or 3He) the
fluctuating size, shape and internal gluonic structure of the nucleon is shown to have a strong effect
on the initial size and shape of the fireball of new matter created in the collision. A systematic study
of the eccentricity coefficients describing this initial fireball state for several semi-realistic models
of nucleon substructure and for several practically relevant collision systems involving small nuclei
is presented. The key importance of multiplicity fluctuations in such systems is pointed out. Our
results show large differences from expectations based on conventional Glauber model simulations
of the initial state created in such collisions.

PACS numbers: 25.75.-q, 12.38.Mh, 25.75.Ld, 24.10.Nz

I. INTRODUCTION AND OVERVIEW

Ultra-relativistic heavy-ion collisions at the Relativis-
tic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) have provided strong evidence for fluid
dynamic behavior of the hot and dense matter created in
the collision [1]. Recently similar flow-like features have
also been observed in collisions between small and large
nuclei (p+Au/Pb, d+Au, 3He+Au [2–13]), and even in
very high multiplicity p+p collisions at the LHC [9, 14–
18]. While hydrodynamic models have been very success-
ful in achieving a quantitatively accurate description of
essentially all soft hadron data (momentum spectra and
two-particle correlations of both unidentified charged and
identified hadrons with transverse momenta below about
2 GeV) obtained from the collisions between heavy nuclei
(Au+Au, Pb+Pb, Cu+Cu and Cu+Au), a similar con-
vergence between theory and experiment has not yet been
achieved in collisions involving small nuclei. In these sit-
uations, it appears that uncertainties about the internal
structure of the nucleon and, related to that, about the
fluctuating initial conditions for the spatial distribution
of energy and entropy created in the collision degrade sig-
nificantly the predictive power of the available dynamical
evolution models.

Event-by-event fluctuations of the initial density dis-
tribution of highly excited matter created in collisions
between large nuclei reflect mostly the stochastic fluctu-
ations of the positions of the nucleons inside the colliding
nuclei at their point of impact [19, 20]. The resulting
density fluctuations have a natural length scale of a nu-
cleon radius. Spatial inhomogeneities and anisotropies of
the initial density distribution can be quantified by the
complex eccentricity coefficients

En ≡ εneinΦn = −
∫
rdrdϕ rneinϕs(r, ϕ)∫
rdrdϕ rns(r, ϕ)

(n ≥ 2) (1)

associated with the initial entropy density profile in the
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(r, ϕ) plane perpendicular to the beam direction.1 For
collisions between large nuclei, nucleon substructure has
no significant effect on these eccentricities even though it
renders the density profiles more spiky on sub-nucleonic
length scales [22, 23]. Such a substructure exists, how-
ever, since the distribution of strongly interacting matter
inside a nucleon at the time when the nucleons collide
is inhomogeneous, due to quantum fluctuations of the
quark and gluon fields that participate in the interaction
between the colliding nucleons. These result in spatial
inhomogeneities in the transverse plane of the amount
of beam energy lost by the colliding nucleons and de-
posited in the collision zone. We show here that this
sub-nucleonic structure and its event-by-event fluctua-
tions have a strong effect on the mean and variance of the
initial-state eccentricity coefficients which, when propa-
gated through a hydrodynamic evolution model, affect
the means and variances of the final anisotropic flow co-
efficients Vn = {einφ} (where φ denotes the azimuthal
angle around the beam direction of emitted particles and
{. . . } denotes the average over all particles of interest
from a single event).

In this paper we model two sources of nucleon sub-
structure, both of them based on the insight [24] that at
very high collision energies the production of new matter
near midrapidity is dominated by the interaction between
low-x gluons (where x is the fraction of the proton light-
cone momentum carried by the gluon) in the projectile
and target nuclei, and that its spatial distribution in the
transverse plane therefore tracks the transverse distri-
bution of the glue in the colliding nuclei at the time of
impact. The two specific pictures we explore here are the
following:

(i) We can consider the three valence quarks in the
nucleon as large-x sources of low-x gluon fields. In this

1 We model the initial entropy rather than energy deposition. Af-
ter thermalization, the two are related by the equation of state
of the medium. In [21] it was shown that the differences between
eccentricities defined with entropy and energy density weights
are small.
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picture, the low-x gluon field clouds surrounding the va-
lence quarks create a spatially inhomogeneous gluon field
distribution inside the nucleon, distributed around three
valence quark centers [25] whose positions at the time
of impact fluctuate from event to event. This model in-
volves two sub-nucleonic length scales, the width σq of
the distribution in the transverse plane of the valence
quark positions and the width σg of the gluon field lumps
carried by each valence quarks. These length scales are
constrained by the condition that their squares must add
up to the mean squared nucleon radius (see below). In
addition to the quantum fluctuations in the spatial po-
sitions of the colliding patches of glue, we allow for fluc-
tuations in the amount of energy lost by the colliding
nucleons and deposited near midrapidity when their glu-
ons interact. These fluctuations are fit to the measured
multiplicity distribution in p+p collisions.

(ii) We can try to directly account for gluon field quan-
tum fluctuations inside a nucleon, without tying them
explicitly to valence quark sources, or inside the clouds
carried around by the valence quarks in model (i), by
following the ideas of [26] based on the Color Glass Con-
densate picture of low-x gluon fields inside nucleons and
nuclei [27]. In this approach, the sub-nucleonic gluon
field fluctuations are characterized by an amplitude and
a single transverse correlation length which are both pre-
dicted by the model [26]. The transverse correlation
length depends on the gluon saturation momentum Qs of
the model whose value is controlled by the longitudinally
projected gluon density in the transverse plane. Qs is on
average largest in the center of the nucleon or nucleus and
falls off towards its edge, so it is a local quantity that de-
pends on the position in the transverse plane. In Ref. [23]
a numerical algorithm was developed to modulate locally
the smooth average transverse density distribution of the
colliding nuclei or nucleons, with a stochastic fluctuation
factor whose statistical properties reflect the mean ampli-
tude and transverse correlation length of these gluon field
fluctuations. However, that implementation cannot han-
dle a local variation of the transverse correlation length
a(r) ∼ 1/Qs(r); it works instead with a constant value
for Q̄s that reflects the average saturation momentum of
the incoming nuclei. We will use the same approximation
here. The corresponding average transverse correlation
length ā ∼ 1/Q̄s is of sub-nucleonic size and of the order
of 0.3 fm (0.2 fm) for top RHIC (LHC) energies.

We focus in this paper on the mean values of mag-
nitudes of the initial ellipticity ε2 and triangularity ε3,
which are known to be approximately linearly related to
the elliptic and triangular flows, v2 and v3, of the finally
emitted hadrons. The linear relation between εn and
vn for n= 2, 3 was checked numerically in hydrodynamic
simulations for collisions between large nuclei and found
to hold to good approximation over a wide range of col-
lision centralities, except for very peripheral collisions.
We will not perform any hydrodynamic simulations in
this work, leaving such studies for a future publication,
but will draw some conclusions based on the results for

the eccentricity coefficients that assume that this linear
relation also holds in collisions involving small projectile
and/or target nuclei. This assumption will be tested in
upcoming work.

As will be demonstrated below, we find very significant
effects of sub-nucleonic fluctuations on the eccentricities
of the initially produced matter distribution in collisions
involving small nuclei (in particular in p+p collisions).
However, the effects arising from quark subdivision of
nucleons as described in model (i) and from implement-
ing fluctuating gluon field substructure on protons as de-
scribed in model (ii) are found to be characteristically
different. Quark-subdivision, as implemented in model
(i), allows for effective radius fluctuations of the proton,
similar to the model studied in [28], while model (ii) does
not. This difference has significant effects on the initial
eccentricities. This will be demonstrated in Sec. II. Fol-
lowing this demonstration, we will therefore focus in the
rest of the paper on the predictions of model (i), taking
into account only the fluctuating quark substructure of
nucleons, using a smooth Gaussian distribution for the
gluon cloud associated with each valence quark (i.e. ig-
noring additional gluon field fluctuations of these gluon
clouds).

The surprising experimental results from p+Pb colli-
sions at the LHC mentioned above have recently led to in-
tense theoretical interest in proton substructure and sub-
nucleonic density fluctuations. In addition to the works
already mentioned, we should refer the reader to the re-
cent revival of the wounded quark Glauber model [29–31]
and the recent study of the effect of proton shape fluc-
tuations on coherent and incoherent diffraction in e+p
collisions [32]. Quark substructure of nucleons has also
recently been suggested as an explanation [33] of the so-
called “hollowness” effect [34] (a depletion of inelastic
collision strength in zero impact parameter relative to
somewhat off-central p+p collisions at high energies) ex-
tracted from an analysis of high-energy p+p collisions
at the LHC. We will comment below on similarities and
differences with other published work at the appropriate
places.

The rest of this paper is organized as follows: In Sec. II
we introduce our model implementation of three types
of quantum fluctuations in the production of new mat-
ter near midrapidity in nuclear collisions: fluctuations
of nucleon positions within the colliding nuclei, quark-
subdivision of nucleons with fluctuating quark positions,
and gluon field fluctuations inside the gluon clouds char-
acterizing a nucleon or its valence quarks. In all three
cases we also implement the observed multiplicity fluc-
tuations in nucleon-nucleon collisions, ensuring that the
multiplicity distributions measured in p+p collisions are
correctly reproduced. We discuss the concept and oper-
ational definition of collision centrality in p+p collisions
and, for each of the three models, study the characteristic
features of the initially produced entropy density profiles
as well as the centrality dependence of their ellipticity
and triangularity in such collisions.
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II. INITIAL STATE MODELS FOR COLLISIONS
INVOLVING SMALL NUCLEI

A. Quantum fluctuations on the nucleon level

1. Fluctuating nucleon positions

Ignoring sub-nucleonic degrees of freedom, fluctuations
on the nucleon level in the initial density profile arise from
two sources: quantum fluctuations of the nucleon posi-
tions within a nucleus at the time of impact (discussed
in this subsection), and fluctuations in the beam energy
fraction lost per colliding nucleon and deposited near
midrapity. Beam energy loss and midrapidity energy
deposition are processes that occur only when the den-
sity distributions of strongly interacting matter carried
by projectile and target nucleons overlap in the trans-
verse plane; in this sense, the distribution in the trans-
verse plane of energy density deposited near midrapidity
is the result of a position measurement of the nucleons
inside the colliding nuclei at the time of nuclear impact.
Since the ground state wave function of the colliding nu-
clei is not an eigenstate of the positions of its constituent
nuclei, the result of this position measurement fluctuates
stochastically from event to event. These fluctuations
give rise to peaks and depressions in the deposited energy
density whose positions fluctuate from event to event.
The height of the peaks fluctuates additionally due to
fluctuations in the “intensity” of each nucleon-nucleon
collision, arising from quantum fluctuations in the quark
and gluon field strengths that make up the strongly inter-
acting matter of each nucleon. These latter fluctuations
manifest themselves as multiplicity fluctuations in p+p
collisions (i.e. as fluctuations in the multiplicity of newly
produced particles created in such collisions).

We use the Monte Carlo Glauber model to sample,
event by event, the distribution of nucleon positions in-
side the nuclei. For large nuclei, such as Au or Pb, the po-
sitions of their constituent nucleons are sampled indepen-
dently from a Woods-Saxon distribution, imposing a min-
imum inter-nucleon distance (“hard core diameter”) of
0.9 fm [35, 36] to account for repulsive two-nucleon corre-
lations [37]. The parameters of the Woods-Saxon distri-
bution of the nucleon centers are renormalized [36, 38, 39]
relative to the measured Woods-Saxon nuclear density
distribution, to account for the finite size of the nucleons
with an assumed Gaussian nucleon density distribution2

ρn(~r) =
e−~r

2/(2B)

(2πB)3/2
. (2)

The probability of two nucleons (one from the projectile,
the other from the target nucleus), whose trajectories are
separated in the transverse plane by an impact parameter

2 We use the notation ~r for 3-dimensional vectors and r for 2-
dimensional vectors in the transverse plane.

b, to suffer an inelastic collision is determined by the
nucleon-nucleon overlap function (normalized to unity)

Tnn(b) =

∫
d2r Tn(r)Tn(r−b) =

e−b
2/(4B)

4πB
, (3)

where

Tn(r) =

∫ ∞
−∞

dz ρn(r, z) =
e−r

2/(2B)

2πB
, (4)

is the nucleon thickness function in the transverse plane
(also normalized to 1), obtained by integrating the nu-
cleon density distribution along the beam direction z.
For a pair of nucleons with transverse positions ri and
rj the collision probability is taken to be [40]

Pij ≡ P (rij) = 1− e−σggTnn(|ri−rj |), (5)

where σgg ∝ B is the gluon-gluon cross section, with the
proportionality constant fixed such that P (b) is normal-
ized to the total inelastic nucleon cross section σinel

NN
[40]:∫

d2b P (b) = σinel
NN

. (6)

A good fit to measurements is obtained by setting [36]

B
(√
s
)

=
σinel

NN
(
√
s)

8π
, (7)

which implies that the nucleon density (2) grows with
increasing collision energy in proportion to the inelastic
nucleon-nucleon cross section. We use

√
B= 0.408 fm for

RHIC collisions at
√
s= 200 GeV and

√
B= 0.516 fm for

LHC collisions at
√
s= 5020 GeV.

We note that computing the nucleon-nucleon collision
probability with a Gaussian nucleon thickness function
(4) differs from the popular prescription (see, for exam-
ple, Ref. [41]) of using disk-like nucleons that scatter with
unit probability when the disks overlap ever so weakly
but cannot scatter at all for transverse separations of
more than the disk diameter. Our prescription allows
for a non-zero chance of two centrally colliding nucleons
to pass through each other unfazed and for a small but
non-zero probability of inelastic collision even for impact
parameters that are significantly larger than the equiva-
lent disk diameter. This matters in very peripheral nu-
clear collisions, but much more so for the “centrality”
dependence of p+p and light-on-heavy collisions, as will
be discussed below.

For small nuclei such as d and 3He, the nucleon po-
sitions are sampled differently, to better account for the
known nuclear wave functions. For deuterons we first
sample the relative distance rnp between the proton and
neutron from a probability density obtained from the
Hulthen wave function

P (r)np = 4πr2|Φ(rnp)|2,

Φ(rnp) =

√
αβ(α+β)

2π(α−β)2

e−αrnp − e−βrnp

rnp
, (8)
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where α= 0.228 fm−1 and β= 1.18 fm−1 [42]. We then
construct a 3-dimensional vector ~rnp = rnp(sin θ cosφ,
sin θ sinφ, cos θ) by assigning it the length rnp and an
arbitrary direction, using uniformly sampled values for
cos θ and φ, and put the neutron and proton at positions
~rn,p = b ± 1

2
~rnp. We finally write the deuteron matter

density as a sum of two Gaussians,

ρd(~r) =
1

(2πB)3/2

(
e−|~r−~rp|

2/(2B) + e−|~r−~rn|
2/(2B)

)
,

(9)
which corresponds to the deuteron thickness function

Td(r) = Tn(|r−rn|) + Tp(|r−rp|)

=
1

2πB

∑
i=n,p

e−|r−ri|
2/(2B). (10)

For 3He and t nuclei, we used a set of 14,000 samplings
of the positions of the three nucleons in these nuclei gen-
erated from realistic 3-body ground state wave functions
obtained from Green function Monte Carlo calculations
using the AV18 + UIX model interaction [43]. This set of
3-nucleon configurations was kindly provided by J. Lynn
and J. Carlson [41]. We sampled these triplets of nucleon
positions randomly, rotated the configuration randomly
in 3-space, and shifted each of the three nucleons in the
transverse plane by b. Finally, we placed a Gaussian nu-
cleon density distribution (2) at each of the three nucleon
positions, obtaining the 3He thickness function

T3He(r) =
1

2πB

∑
i=1,2,3

e−|r−ri|
2/(2B). (11)

To compute the midrapidity energy deposition, we go
through all pairs (ij) of projectile and target nucleons
and mark both nucleons in the pair as “wounded” with
probability Pij from Eq. (5). A wounded nucleon remains
wounded even if in a subsequent encounter with a differ-
ent nucleon it suffers no inelastic collision. Each wounded
nucleon at tranverse position ri is taken to deposit en-
tropy near midrapidity with transverse area density pro-
file ∼ 1

2πB exp[−|r−ri|2/(2B)]. The total deposited en-
tropy density in the transverse plane is

s(r) =
κs
τ0

Nw∑
i=1

e−|r−ri|
2/(2B)

2πB
, (12)

where Nw is the total number of wounded nucleons from
both of the colliding nuclei, τ0 is the longitudinal proper
time at which the deposited entropy materializes, and
κs is a normalization factor to be determined later by
requiring the total multiplicity density dNch/dy of finally
emitted charged particles, averaged over many central
collision events, to agree with experiment. The value of
κ is irrelevant for most of the analyses presented in the
rest of this paper.

2. Nucleon-nucleon multiplicity fluctuations

An entropy deposition model which assumes that each
wounded nucleon deposits the same total entropy in the
transverse plane cannot account for the distribution of
multiplicities observed in p+p collisions. To correct for
this, the entropy profile that each wounded nucleon de-
posits is allowed to fluctuate by an overall factor γ sam-
pled from a Gamma distribution

PΓ(γ; k, θ) =
γk−1e−γ/θ

θkΓ(k)
(13)

where k and θ are the so-called shape and scale parame-
ters of the Gamma distribution. With this modification
Eq. (12) is replaced by

s(r) =
κs
τ0

Nw∑
i=1

γi
e−|r−ri|

2/(2B)

2πB
, (14)

with a total initial entropy per unit rapidity of

dS

dy
= κs

Nw∑
i=1

γi . (15)

Due to the properties of the Gamma distribution, dS/dy
is also Gamma distributed, with shape parameter keff =
Nwk and scale parameter θeff = κsθ.

The final multiplicity distribution is obtained from the
Gamma-distributed initial entropy dS/dy by an addi-
tional folding with a Poisson distribution that accounts
for finite multiplicity fluctuations in the hadronization
process, yielding a negative binomial final multiplicity
distribution [44]. For this one needs to know the mean
multiplicity dNch/dy at freeze-out, since this number con-
trols the mean and variance of the Poisson distribution.
We take dNch/dy from the experimental data when com-
paring with measured multiplicity distributions.

In Ref. [36] it was shown that a good description of the
multiplicity distributions measured in p+p collisions can
be achieved with k= 1/θ and by fixing the scale param-
eter to θ= 0.61 for RHIC collisions at

√
s= 200AGeV

and to θ= 0.75 for p+p collisions with
√
s= 5020AGeV

at the LHC. In Fig. 1 we show the multiplicity distribu-
tion for proton-lead collisions at the same LHC energy
resulting from this approach, compared with CMS data.
Whereas an MC-Glauber model without pp multiplicity
fluctuations fails to describe the high-multiplicity tail of
the distribution [36], their inclusion yields a very good
description of the experimental data up to the highest
multiplicities.

Figure 2 shows the initial entropy density profiles for 5
randomly selected p+p collisions, colliding at b= 1.3 fm
with

√
s= 200 GeV, computed with the model described

in this subsection. Without multiplicity fluctuations, the
profiles would be mirror symmetric with respect to the
reaction plane at y= 0, and all odd eccentricity harmon-
ics (in particular the triangularity ε3) would vanish ex-
actly. In Fig. 2 one sees with the naked eye that mul-
tiplicity fluctuations induce initial density distributions
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FIG. 1: Comparison of the normalized charged multiplic-
ity distribution in p+Pb collisions at

√
sNN = 5020 GeV

measured by CMS [7, 45] (blue squares) with the Gaus-
sian nucleon MC-Glauber model including pp multiplic-
ity fluctuations (green circles), as described in the text.
500,000 p+Pb initial entropy density distributions were
sampled for the model simulations; to increase statistics,
for each event the Poisson distribution was oversampled
5 times, resulting in 2.5 million theoretical data points.
Vertical dashed lines labelled by red numbers define “cen-
trality” classes as fractions of the total number of events.

with generically large triangular deformations in p+p col-
lisions.

B. Sub-nucleonic quantum fluctuations

In this subsection we describe how we generalize the
MC-Glauber model to account for the quark substructure
of nucleons (Sec. II B 1) and for sub-nucleonic gluon field

fluctuations (Sec. II B 2).

1. Quark subdivision of nucleons

Schenke and Schlichting [25] showed that, when one
solves the JIMWLK equation [46–48] for the distribution
of gluons at small x generated by three valence quarks
at large x, the low-x gluons appear in three lumps whose
centers track the positions of the valence quarks. The
intrinsic length scale of the gluon clouds (i.e. the “gluonic
radius of a quark”) increases with ln(1/x), i.e. the gluon
clouds become more fuzzy as the rapidity gap between
the valence quarks near beam rapidity and the gluons
near midrapidity increases.

We here propose the following model implementation
of this picture. We assume that at large x the pro-
ton is made of three valence quarks whose positions ~ri
(i= 1, 2, 3) are distributed with a Gaussian probability
distribution of width σq around the nucleon center ~rn:

P (~ri−~rn) =
e−(~ri−~rn)2/(2σ2

q)

(2πσ2
q )3/2

. (16)

Each quark i carries with it a Gaussian density distribu-
tion g(~r−~ri) of width σg of low-x gluons that is normal-
ized to 1/3:

g(~r−~ri
)

=
1

3

e−(~r−~ri)2/(2σ2
g)

(2πσ2
q )3/2

. (17)

It is natural to assume that σq is controlled by confine-
ment and is a fixed fraction of the proton radius in its rest
frame, whereas σg grows with collision energy, leading to
the observed growth of the total inelastic nucleon-nucleon
cross section as described by Eqs. (2), (7). The two width
parameters are constrained by the requirement that, on
average, the total glue distribution of the nucleon is given
by Eq. (2) (which is normalized to 1):

〈
ρn(~r−~rn)

〉
=

∑3
i=1

∫
d3r1 P (~r1−~rn)

∫
d3r2 P (~r2−~rn)

∫
d3r3 P (~r3−~rn) δ(~r1+~r2+~r3−3~rn) g(~r−~ri)∫

d3r1 P (~r1−~rn)
∫
d3r2 P (~r2−~rn)

∫
d3r3 P (~r3−~rn) δ(~r1+~r2+~r3−3~rn)

=
e−(~r−~rn)2/(2B)

(2πB)3/2
. (18)

Here the δ-function in numerator and denominator en-
sures that the center of mass of the three valence quarks
agrees with ~rn, the center of the nucleon. Eq. (18) yields
the constraint

σ2
g +

2

3
σ2
q = B. (19)

The factor 2/3 multiplying σ2
q reflects the fact that only

for two of the three quarks the positions can be sam-
pled randomly from the probability distribution (16)
whereas the third quark’s position is then fixed by the
nucleon center of mass. B is fixed experimentally by the
collision energy, and we will use Eq. (19) to eliminate

σq =
√

3
2 (B−σ2

g) and to express all results as a function
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FIG. 2: Contour plots of the initial entropy density for five randomly selected p+p collisions at
√
s= 200 GeV and

impact parameter b= 1.3 fm, computed with the MC-Glauber model using a smooth Gaussian nucleon density profile
for collision detection and including multiplicity fluctuations in the deposited entropy.

of the width σg of the gluon lumps carried around by the
quarks.

Introducing the shifted and scaled quark positions

~ξi≡ (~ri−~rn)/σq and using the δ-function to integrate
over the position of the third quark, we can rewrite
Eq. (18) as follows:

〈
ρn(~r−~rn)

〉
=

∫
d3ξ1 d

3ξ2 e
− 1

2 (ξ21+ξ22+(~ξ1+~ξ2)2)
[
g(~r−~rn−σq~ξ1) + g(~r−~rn−σq~ξ2) + g

(
~r−~rn+σq(~ξ1+~ξ2)

)]
∫
d3ξ1 d3ξ2 e

− 1
2 (ξ21+ξ22+(~ξ1+~ξ2)2)

. (20)

This identifies the weight

P (~ξ1, ~ξ2) =
e−

1
2 (ξ21+ξ22+(~ξ1+~ξ2)2)∫

d3ξ1 d3ξ2 e
− 1

2 (ξ21+ξ22+(~ξ1+~ξ2)2)
(21)

as the probability distribution to be sampled for the vec-

tors ~ξ1,2 that determine the positions

~r1,2 = ~rn + σq~ξ1,2, ~r3 = ~rn − σq(~ξ1+~ξ2) (22)

of the three valence quarks. Each sampled pair ~ξ1,2 yields
a nucleon centered at ~rn with density distribution

ρn(~r;~r1,~r2,~r3) =

3∑
i=1

g(~r−~ri) =

3∑
i=1

e−(~r−~ri)2/(2σ2
g)

(2πσ2
g)3/2

, (23)

with ~ri from (22). The corresponding nucleon thickness
function (4) is

Tn(r; r1, r2, r3) =

3∑
i=1

e−(r−ri)2/(2σ2
g)

2πσ2
g

, (24)

where all 3-dimensional vectors ~r in (23) have been
replaced by 2-dimensional vectors r in the transverse
plane. The nucleon-nucleon overlap function (3), which
is needed for evaluating with Eq. (5) the collision prob-
ability Pij between two nucleons i and j separated by
b= ri−rj , is given by

Tnn(b) =

3∑
k,l=1

e−(r
(i)
k −r

(j)
l −b)

2/(4σ2
g)

4πσ2
g

. (25)

Here r
(i)
k (k= 1, 2, 3) are the positions of the three valence

quarks in nucleon i, and similarly for nucleon j.
As before, for each projectile-target nucleon pair (ij)

in the two colliding nuclei both nucleons are labelled
as “wounded” with probability Pij . Once a nucleon is
wounded, its quark substructure gets broken up, creat-
ing rapidly separating color charges connected by strong
color fields. This process which involves all three valence
quarks, converts a fraction of the nucleon’s initial beam
energy and deposits it near midrapidity. This amount
fluctuates from event to event, and we assume it to fluctu-
ate independently for each valence quark. The deposited
entropy density is thus modeled as

s(r) =
κs
τ0

Nw∑
i=1

3∑
k=1

γ
(i)
k

e−(r−r(i)k )2/(2σ2
g)

2πσ2
g

, (26)

where γ
(i)
k is Gamma distributed with

PΓ(γ; kq, θq) =
γkq−1e−γ/θq

θ
kq
q Γ(kq)

, (27)

using the same scale and a thrice smaller shape param-
eter compared to nucleons without substructure, θq = θn
and kq = kn/3, in order to ensure the same multiplicity
distribution in p+p collisions as for the Glauber model
without quark substructure. When averaged over many
samplings of the valence quark positions and γ-factors,
the mean entropy density deposited per wounded nucleon
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FIG. 3: Same as Fig. 1, but now the experimental data from CMS are compared with simulations in which the protons
are subdivided into gluon clouds of width σg, with three choices for σg as given in the legend, located around three
valence quarks with fluctuating positions as described in the text. The inset is a linear plot of the same quantities to

better see the sensitivity to σg at low multiplicities.

FIG. 4: Contour plots of the initial entropy density for five randomly selected p+p collisions at
√
s= 200 GeV

and impact parameter b= 1.3 fm, computed with the MC-Glauber model using quark subdivision of the nucleon
density profile for both collision detection and entropy deposition, including additional multiplicity fluctuations in the

deposited entropy. See text for model description and discussion.

at position rn is proportional to the Gaussian thickness
function (4) of that nucleon without subdivision:

〈
s(r)

〉
=

〈
κs
τ0

3∑
k=1

γ
(n)
k

e−(r−r(n)
k )2/(2σ2

g)

2πσ2
g

〉

=
κs
τ0

e−(r−rn)2/(2B)

2πB
(28)

While quark substructure has no effect on the mul-
tiplicity distribution in p+p collisions (by construction
of our model), it does slightly modify the multiplicity
distribution in p+Pb collisions which, as seen in Fig. 3,

shows some sensitivity to the choice of the width σg of
the gluon clouds around the valence quarks (and thereby
to the variance σ2

q of the fluctuating quark positions). At
average multiplicities, small σg values yield the best de-
scription of the experimental data whereas the extreme
tail of the measured multiplicity distribution is best de-
scribed by larger σg values, even as large as

√
B (in which

case the three valence quarks sit on top of each other and
the proton density distribution degenerates to a smooth
profile described by a single Gaussian). We choose from
here on σg = 0.3 fm as a compromise value that yields
the best overall description of the measured p+Pb mul-
tiplicity distribution at the LHC. It is possible that ex-
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(a,b) and 5020 GeV (c,d). See text for detailed discussion.

perimental data on diffraction in e+p collisions can be
used to more tightly constrain σg, following the methods
proposed in [32], but we leave this to a future study.

Figure 4 shows the effect of quark subdivision of nu-
cleons on the initial entropy density profiles in p+p colli-
sions at b= 1.3 fm and

√
s = 200 GeV. Compared to the

case of smooth Gaussian protons shown in Fig. 2, ac-
counting in the collision detection probability for bumpy
gluon density distributions within each nucleon appears
to favor somewhat more compact distributions of pro-
duced entropy density: Since the collision probability
increases when the valence quarks from projectile and
target overlap, collisions between quark-diquark-like nu-
cleon configurations in which the diquarks face each
other, thereby ensuring stronger overlap, are favored.3

Clearly, the density profiles shown in Fig. 4 have a more
bumpy character than those without quark subdivision,
explaining the larger eccentricity values for collisions be-
tween nucleons with quark substructure that we discuss
next.

In Figure 5 we show the elliptic and triangular
eccentricities as a function of collision “centrality”
(as measured by the total initial entropy dS/dy, see
Fig. 1), for p+p collisions at

√
s= 200 GeV (where√

B= 0.408 fm) in panels (a,b), and for
√
s= 5020 GeV

(where
√
B= 0.516 fm) in panels (c,d). Let us explain

3 We checked and found that computing the collision probabil-
ity from the quark-subdivided thickness function (24) tends to
favor generically collisions with more compact wounded nucleon-
nucleon configurations than computing it with the Gaussian
thickness function (4), resulting in 5-7% smaller ellipticities and
triangularities in pp collisions. Note that multiplicity fluctua-
tions are only included in the entropy deposition process, not in
the calculation of the collision probability.

the model versions for which results are shown in the
figure. All five model variants include p+p multiplicity
fluctuations – without those, ε3 would be zero by reflec-
tion symmetry for nucleons without quark subdivision.
The lines labeled “disk” (solid purple triangles) use a
disk-like collision criterium where, for the purpose of col-
lision detection, the nucleons are represented by black
disks whose radius is fixed by the total inelastic nucleon-
nucleon cross section, assuming 100% collision probabil-
ity when the disks overlap and zero collision probability
when they don’t. Nucleons that have been wounded by
suffering a collision then deposit entropy with a single
Gaussian profile as described in Sec. II A 2. Fig. 5 shows
that this model generates the smallest ellipticities and
triangularities. The black lines with solid black circles
uses a collision detection criterium based on Eq. (5) with
a Gaussian nucleon profile, again followed by entropy de-
position as described in Sec. II A 2. This produces twice
larger elliptic and three times larger triangular eccentric-
ities than obtained for disk-like collision detection. This
clearly demonstrates the importance of collisions with
impact parameters exceeding the disk diameter where
only the tails of the Gaussian nucleon distributions over-
lap. Though rare, these collisions have a strong effect
on the eccentricities, boosted by multiplicity fluctuations
in the final state. Note that the purple triangles and
black circles don’t move much by going from RHIC to
LHC energies, in spite of the 20% increase of the proton
radius.

The remaining three curves in Fig. 5 (labelled by red,
green, and blue squares connected by dotted, dash-dotted
and dashed lines, respectively) show the initial-state ec-
centricities in collisions between nucleons with valence
quark substructure, as described in Sec. II B 1, for gluon
cloud width parameters σg = 0.25, 0.3, and 0.4 fm, respec-
tively. The largest of these σg values almost exhausts the
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collision centrality, using the same symbols and line styles
as in Fig. 5. See text for discussion.

width
√
B= 0.408 fm of the Gaussian describing the av-

erage nucleon density distribution at RHIC energies, ex-
plaining why in this case the eccentricities almost agree
with the results for smooth Gaussian nucleons without
quark subdivision (see Fig.!5a,b). As σg decreases, and
thus the variance σ2

q of the fluctuating quark positions in
the nucleon increases, the fluctuating nucleon densities
become more inhomogeneous, resulting in larger eccen-
tricities. The largest eccentricity values would be ob-
tained for pointlike valence quarks (σg = 0) with quark
position variance σ2

q = 3
2B (see Eq. (19)). Note that

quark substructure increases ε2 on average by up to 80%
and can more than double the average triangularity ε3.
Due to the increasing proton radius

√
B from RHIC to

LHC energies, valence quarks with the same gluon cloud
radius σg experience more freedom at LHC energies for
moving around inside the proton, leading to larger ellip-
tic and triangular eccentricities at LHC than at RHIC
(c.f. panels (a,b) vs. (c,d) in Fig. 5).

Figure 6 shows the average rms radii of the initial en-
tropy density distributions for the same set of model as-
sumptions studied in Fig. 5, for p+p collisions at RHIC
and LHC energies. The traditional disk-like collision de-
tection criterium leads to the largest source radii. Using a
Gaussian nucleon profile for computing the collision prob-
ability favors more compact collision configurations, re-
sulting in more compact deposited entropy profiles. Fur-
ther quark-subdivision leads to still smaller initial source
radii, with the smallest valance quark gluon clouds (i.e.
the biggest variance for the quark positions inside the
nucleon) leading to the most compact initial fireball con-
figurations, smaller by about 40% compared to those cal-
culated with disk-like collision detection. Naturally, such
more compact initial density distributions feature larger

4 3 2 1 0 1 2 3 4
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FIG. 7: A representive sample of the Gamma-distributed
random field (with transverse correlation length ā =
0.29 fm) used for modulating the gluon field strength in-
side a Gaussian nucleon, or within the Gaussian gluon
cloud carried along by a quark when nucleons are subdi-

vided into valence quarks.

density gradients, resulting in larger radial flow after hy-
drodynamic evolution and larger mean transverse mo-
menta of the finally emitted hadrons.

It is worth emphasizing that the method introduced
in this subsection to account for quark substructure dif-
fers from what has become known as the “constituent
quark Monte-Carlo Glauber model” [29–31], by enforc-
ing (through the center-of-mass constraint in Eq. (18))
the clustering of three quarks each into a nucleon, and
by insisting that all three quarks in a wounded nucleon
contribute to the production of new matter at midrapid-
ity. Also, by sampling the valence quark positions from a
Gaussian distribution of width σq, we implicitly allow for
fluctuations of the nucleon r.m.s. radius. In earlier ver-
sions of the Monte Carlo Glauber model such nucleon size
fluctuations were introduced via a fluctuating nucleon-
nucleon cross section [28]. Both of these features have
a significant influence on the initial eccentricities of the
fireballs formed in collisions involving nuclei made of just
a single or a few nucleons.

2. Sub-nucleonic gluon field fluctuations

In this subsection explore the consequences of account-
ing for gluon field fluctuations inside the colliding nu-
cleons for the initial entropy density profile. Follow-
ing Ref. [23], we first generate a 2-dimensional field of
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Gamma distributed random variables with unit mean
and transverse correlation length ā. A representative
sample of this field is shown in Fig. 7. As stated in the
introduction, we use ā= 0.29 fm at

√
s
NN

= 200 GeV and
ā= 0.2 fm at

√
sNN = 5020 GeV. Let us denote the value

of this field at transverse position r by Γ(r). To apply
the fluctuations, a large (30 fm× 30 fm) field was gener-
ated from which to sample. For each nucleon i centered
at ri, a random square section of the field Γ, with cen-
ter Ri and width 10

√
B, is sampled from the grid. The

entropy density deposited by each wounded nucleon is
then modified by multiplication with the random field as
follows:

s(r) = s0(r) Γ(r+Ri) Θ
(
5
√
B − |Ri − r|

)
, (29)

where s0 is the original deposited entropy density profile
from Eq. (14) or (27) for Nw = 1).
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FIG. 8: Similar to Fig. 5a, but including gluon field
fluctuations. The width of the gluon cloud carried
by valence quarks for quark-subdivided nucleons has
been set to σg = 0.3 fm, and ā= 0.29 fm is taken for the
transverse gluon field correlation length in collisions at√

s= 200 GeV. See text for detailed discussion.

The effects of sub-nucleonic gluon field fluctuations on
the initial elliptic and triangular eccentricities are shown
in Fig. 8. How they affect the initially deposited en-
tropy density profiles can be seen in Fig. 9 for b= 1.3 fm
pp collisions at

√
s= 200 GeV. As described in the cap-

tion, all combinations (gluon field fluctuations imprinted
in pp collisions for Gaussian and quark-subdivided nu-
cleons with and without multiplicity fluctuations and for
three choices of the transverse correlation length of the
fluctuating gluon fields) have been studied. We point out
the qualitatively different characteristics of the entropy
density profiles generated by quark-subdivided nucleons
(panels (e) and (f) in Fig. 9; see also Fig. 4 for the case
without gluon field fluctuations) compared to those gen-
erated by Gaussian nucleons with (panels (a-d) of Fig. 9)

and without gluon field fluctuations. The radial fluctua-
tions of the nucleon size in the quark-subdivision model
allow for stronger spatial deformations, generating larger
elliptic and triangular eccentricities, which are impossi-
ble to mimic by starting with a Gaussian nucleon profile
of fixed radius and modulating it by gluon field fluctua-
tions.

Figure 8 shows the effect of sub-nucleonic gluon field
fluctuations with and without quark-subdivision on the
elliptic and triangular eccentricities of the initial entropy
density profiles generated in pp collisions at RHIC ener-
gies. Only the realistic case which includes fluctuations
in the multiplicities generated by the nucleons or their
valence quarks is considered. One sees that the addi-
tion of gluon field fluctuations does not affect the almost
perfect centrality independence of the two eccentricities
in pp collisions. This centrality (i.e. multiplicity) inde-
pendence is due to the large variance of the multiplicity
fluctuations in pp collisions. We will show further be-
low that these large multiplicity fluctuations completely
invalidate any geometric interpretation of the measured
centrality variable (i.e. event multiplicity) in terms of
impact parameter or geometric overlap between the col-
liding objects in any collision where at least one of the
two colliding nuclei is small (i.e. contains less than a
handful of nucleons).

Whereas quark subdivision increases the initial eccen-
tricities ε2,3 by significant factors, as discussed in Fig. 5
above (c.f. circles and squares connected by solid lines in
Fig. 8), the addition of gluon field fluctuations (dashed,
dotted and dash-dotted lines for different choices of the
transverse gluon field correlation length as specified in
the legend) affects the ellipticity and triangularity dif-
ferently. For Gaussian nucleons (circles in Fig. 8), gluon
field fluctuations increase the ellipticity ε2 by about 30%,
roughly independent of the transverse gluon field correla-
tion length a (Fig. 8a) while they decrease the triangular-
ity ε3 (Fig. 8b) by an amount that depends sensitively on
the parameter a. For quark-subdivided nucleons (squares
in Fig. 8), gluon field fluctuations have practically no ef-
fect on the ellipticity while decreasing the triangularity
by about 15-20%, independent of a.

Clearly, the strongest effect on the eccentricities is gen-
erated by the quark subdivision process, with its con-
comitant radial fluctuations of the entropy density fluc-
tuations. Gluon field fluctuations lead to an additional
increase of the uncertainty range for the triangularities of
the initial entropy density distributions in pp collisions.
Mindful of the fact that our prescription for including
gluon field fluctuation effects is incomplete since it does
not properly account for the multiscale nature of these
fluctuations, caused by the local variation of the satura-
tion momentum across the transverse plane, we set gluon
field fluctuations aside for the rest of the paper, focussing
on quark subdivision as the driver for sub-nucleonic den-
sity fluctuations in the initial state of nuclear collisions.
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FIG. 9: Contour plots of the initial entropy density for five randomly selected p+p collisions at
√
s= 200 GeV and

impact parameter b= 1.3 fm, computed with the MC-Glauber model with Gaussian or quark-subdivided nucleons
whose Gaussian gluon density distributions have been modulated by the Gamma-distributed random field shown in
Fig. 7. The fluctuated gluon density distributions are used for both collision detection and entropy deposition. In the
entropy deposition step multiplicity fluctuations are either included or not, as specified in the following: (a) Gaussian
nucleons with gluon field fluctuations (GFF) of transverse correlation length a = ā = 0.29 fm, without multiplicity
fluctuations (MF); (b) same as (a) except for a = 2ā; (c) same as (a) except for a = ā/2; (d) same as (a) but including
fluctuations in the multiplicity generated by each nucleon; (e) quark-subdivided nucleons with valence quark gluon
clouds of width σg = 0.3 fm modulated by GFF with a = ā without MF; (f) same as (e) but including independent

fluctuations of the multiplicities created by each quark.
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FIG. 10: False-color scatter plot of multiplicity dS/dy∝ dNch/dy vs. impact parameter b (a) and vs. the number of
participant nucleons Npart (b) in p+p, p+Au, d+Au and 3He+Au collisions at

√
s= 200AGeV. Quark-subdivided

nucleons with width σg = 0.3 fm for the valence quark gluon clouds were used to produce this figure.

III. RESULTS FOR p+p AND x+Au COLLISIONS

For each of the initial state options discussed in
Sec. II, we generated between 500,000 and 1,000,000
initial entropy density profiles for each collision type,
x+Au at

√
s= 200 GeV (per nucleon pair) and x+Pb at√

s= 5.02 TeV (per nucleon pair) where x ∈ p,d,3He. In
the following we analyze these initial density profiles for
their eccentricities and their probability distributions, ex-
ploring the effects of the various sources of fluctuations
(quark subdivision, gluon field fluctuations, multiplicity
fluctuations) discussed in Sec. II. Since the results for
x+Pb collisions at the LHC are qualitatively similar to
those for x+Au collisions at top RHIC energy, with only
minor quantitative differences, we focus in the following
plots on the RHIC results.

A. Multiplicity fluctuations and centrality

As already noted in the preceding section, the exper-
imental procedure of ordering collision events by multi-
plicity and then cutting the set into “centrality” classes
labelled by fractions of the total cross section (as illus-
trated in Fig. 1) produces in collisions involving small
nuclei event classes with quite different characteristics
than those we are used to from collisions between large
nuclei. In collisions between large nuclei, such as the
Pb+Pb collisions studied art the LHC, event multiplic-
ity, the impact parameter b and the number of participat-
ing (“wounded”) nucleons Npart are all tightly correlated,
leading to uncertainties in b and Npart of at most a few

percent for fixed event multiplicity (see for example Fig. 7
in Ref. [49]). This allows for a straightforward geometric
interpretation of the measured multiplicity and justifies
calling the resulting multiplicity bins “centrality bins”.

Fig. 10 shows that correlations between multiplicity,
b and Npart become much weaker in collisions involv-
ing small nuclei.4 Due mostly to nucleon-nucleon mul-
tiplicity fluctuations, but also to the tails of the nu-
cleon density profiles (whether modulated by quark-
subdivision and/or gluon field fluctuations or not), cut-
ting on fixed multiplicity produces event samples whose
numbers of wounded nucleons and impact parameters
fluctuate wildly. This basically invalidates a geometric
interpretation of multiplicity as a measure of collision
“centrality” in collisions involving small nuclei, in partic-
ular in p+p collisions. For this reason some experimental
group have started replacing “1 – (collision centrality)”
by “event activity” for small collision systems, empha-
sizing the multiplicity-based nature of the experimental
classification procedure.

4 It should be noted that multiplicity fluctuations and the use of
realistic nucleon density profiles play a crucial role here, and
in particular for p+p collisions Fig. 10 would look completely
different if a disklike collision criterion were used and multiplicity
fluctuations were ignored, as is the case, for example, in the
popular PHOBOS Glauber model [20, 50].
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FIG. 11: Left panel: Probability distributions for the intrinsic eccentricities ε2 (left column) and ε3 (right column) for
protons (red circles), deuterons (blue squares), and 3He nuclei (green triangles), calculated from the nuclear thickness
functions for smooth Gaussian nucleons (row (a)), Gaussian nucleons modulated by gluon field fluctuations (row (b))
and quark-subdivided nucleons modulated by gluon field fluctuations (row (c)). Right panel: Probability distributions
for the same eccentricities calculated from the deposited entropy density profile in central (0−10% centrality) p+Au
(red circles), d+Au (blue squares) and 3He+Au collisions at

√
s= 200AGeV, including multiplicity fluctuations,

again using smooth Gaussian nucleons as well as Gaussian and quark-subdivided nucleons modulated by gluon field
fluctuations (rows (a)-(c), respectively). Without multiplicity and sub-nucleonic density fluctuations, we observed
a significant decrease of the mean ellipticity 〈ε2〉 for p+Au collisions and of the mean triangularity 〈ε3〉 for d+Au

collisions (not shown).

B. Intrinsic eccentricity distributions at impact

Without multiplicity and sub-nucleonic density fluctu-
ations, nucleons (by spherical symmetry) have no intrin-
sic eccentricities at all, deuterons (by reflection symmetry
with respect to the plane spanned by the proton-neutron
axis and the beam direction) have non-zero eccentricity
coefficients only for even harmonic orders, and nonzero
intrinsic triangularities are only possible for nuclei involv-
ing 3 or more nucleons (e.g. 3H or 3He). The entropy
density profiles created in proton-proton collisions share
the symmetries of the intrinsic deuteron thickness func-
tion and thus also have only even harmonic eccentricity
coefficients.

As already mentioned in Sec. II, all of this changes
when one allows for sub-nucleonic density fluctuations
and pp multiplicity fluctuations. In Fig. 11a we show
distributions of the elliptic and triangular eccentricities
calculated from the nuclear thickness functions of sam-
ples of randomly oriented protons, deuterons and 3He nu-
clei (circles, squares and triangles). We call these (slight
inaccurately) their “intrinsic” eccentricities. The figure
explores the effects of gluon field fluctuations superim-
posed on Gaussian (row (b)) and quark-subdivided nu-
cleons (row (c)) on these intrinsic ellipticity and triangu-
larity distributions (left and right columns, respectively)
and compares them to those obtained with smooth Gaus-
sian nucleon density profiles in row (a).5 We see that sub-

5 Note that pp multiplicity fluctuations do not enter here since

nucleonic fluctuations introduce non-zero ellipticities and
triangularities in the proton, and that quark-subdivision
increases the mean ellipticity of the proton but not its
mean triangularity which remains (at the intrinsic level)
much smaller than the mean triangularity of 3He nuclei.
Quark subdivision shifts the ellipticity and triangular-
ity distributions for deuterons to somewhat larger values,
but doesn’t change their mean values dramatically. The
intrinsic triangularities of protons and deuterons have
similar distributions and mean values, with and without
quark subdivision – gluon field fluctuations are sufficient
to generate these.

The reader should note the large “intrinsic” elliptici-
ties for 3He nuclei, with a mean value even larger than
that of deuterons (〈ε2〉= 0.60 for 3He vs. 0.49 for d in
row (a) which assumes smooth Gaussian nucleons). This
is largely an effect of perspective: Although the three nu-
cleons in the 3He nucleus are aligned in a plane, this plane
is in general not oriented perpendicular to the beam axis.
Even an equilateral triangle looks elongated when viewed
at an angle.

C. Eccentricity distributions directly after impact

When a small nucleus hits a big target nucleus (such
as Au), it generally wounds several target nucleons such
that the total number of wounded nucleons (all of which

they are only implemented in the entropy deposition process after
a collision has happened.
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FIG. 12: Centrality dependence of ε2{2} (solid lines, shifted up by 0.2 for better visibility) and ε3{2} (dashed lines)
for p+p (a), p+Au (b), d+Au (c) and 3He+Au (d) collisions at

√
s= 200AGeV. In the left (right) panels impact

parameter (multiplicity) is used to characterize centrality. Purple triangles and black circles connected by solid lines
show results from disk-like and Gaussian nucleon density profiles used in the collision detection algorithm. Red, blue
and green squares connected by dotted, dash-dotted and dashed lines, respectively, use quark-subdivided nucleon
density profiles with widths σg = 0.25, 0.3 and 0.4 fm, respectively. All results include multiplicity fluctuations in the

entropy deposition process. See text for discussion.

contribute to the entropy density profile deposited in
the collision) is significantly larger than the number of
projectile nucleons. simple statistics suggests that this
should reduce the effects of sub-nucleonic structure on
the eccentricies of the deposited entropy profile relative
to the “intrinsic” eccentricities of the projectile thick-
ness functions. However, additional multiplicity fluctu-
ations in the entropy deposition process counteract this
tendency and are expected to increase the eccentricies of
the deposited entropy profile relative to their “intrinsic”
values. This is studied in Fig. 11b.

One sees that the ellipticities of the matter produced
in p+Au collisions are generally much bigger than their
intrinsic values in the projectile proton, eccept for the
case of quark-subdivision. Almost no difference exists be-
tween the ellipticity distributions of the matter produced
in d+Au and 3He+Au collisions. The large differences
between the intrinsic triangularity distributions of p, d
and 3He seen in Fig. 11a are almost completely washed
out after the collision: The right column in Fig 11b shows
that the triangularity distributions of the entropy profiles

generated in central p+Au, d+Au and 3He+Au collisions
are almost indistinguishable. In particular if one includes
the effects of quark subdivision, protons generate matter
with, on average, the same triangularity as 3He nuclei
when colliding centrally with Au nuclei, contrary to ini-
tial expectations [41] .

D. Centrality dependence of mean eccentricities
and rms radii

In Figure 12 we show the dependence of the elliptic
and triangular eccentricities (upper and lower panels, re-
spectively) for p+p and x+Au collisions at RHIC (x=p,
d, 3He), as a function of impact parameter (left pan-
els) and “centrality” as measured by multiplicity (right
panels). Different curves correspond to standard disk-
like collision detection, smooth Gaussian nucleons, and
quark-subdivided nucleons with different widths of the
valence quark gluon clouds, as described in the legend.
Note the very different centrality dependences when cen-
trality is defined in terms of impact parameter and mul-
tiplicity, respectively, especially for protons. This differ-
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FIG. 13: Similar to Fig. 12, but using different panels for different models for the collision detection (disk-like (a,d),
Gaussian (b,e) and quark-subdivided nucleons with σg = 0.3 fm (c,f)), and comparing in each panel different collision
systems (black triangles: p+p; red circles: p+Au; blue upside-down triangles: d+Au; green squares: 3He+Au). Panels

a-c use impact parameter, panels d-f use multiplicity to characterize collision centrality. See text for discussion.

ence is caused by multiplicity fluctuations, as discussed in
Sec. III A. Note that for Gaussian and quark-subdivided
nucleons, the range of impact parameters in p+p colli-
sions is limited by the reach of the Gaussian tails of the
nucleon density distribution – collisions at larger impact
parameters are possible but so rare that our event sample
contains too few events to allow for a meaningful calcu-
lation of ε2,3{2}.

In collisions between large nuclei the initial triangu-
larity and especially the eccentricity are known to ex-
hibit significant dependence on the collision centrality.
In contrast, we find for p+p and p+Au collisions almost
no centrality dependence of ε2,3{2} at all, and even for
3He+Au collisions the strong rise of ε2{2} from central to
mid-peripheral collisions known from Au+Au collisions
is not yet visible; in fact, for disk-like collision detection
and smooth Gaussian nucleons, both ε2 and ε3 decrease
monotonically with increasing centrality. (This is more
clearly visible in Fig. 13 discussed below.) The most
significant centrality dependence of ε2,3{2} seen in the
right panels of Figs. 12c,d is a strong decrease in low-
multiplicity events (i.e. at large values for the centrality
variable) for d+Au and 3He+Au collisions. Compari-
son with the left panels in the same figures and explicit
study of the low-multiplicity events show that this de-
crease originates in geometrically highly peripheral (i.e.
large impact parameter) collisions where, in the most ex-
treme case, only a single valence quark with a strong up-
ward fluctuation in its produced entropy dominates the
deposited entropy profile.

We note that sub-nucleonic shape fluctuations caused
by quark subdivision reduce the centrality dependence of
ε2,3{2} in x+Au collision when the nucleus x is small. On
the other hand, for all but the lowest-multiplicity events
(i.e. for small to moderately large centrality values) the
sensitivity of ε2,3{2} on the width σg of the valence quark
clouds (and thus on the variance of the quark positions
inside the nucleons) weakens significantly from p+p tp

p+Au to 3He+Au collisions. In other words, the sub-
nucleonic structure of protons and neutrons becomes in-
creasingly irrelevant for the calculation of the initial-state
eccentricities as the size of the colliding nuclei increases.
Whereas for collisions involving small nuclei the initial
eccentricities “see” the fluctuating internal spatial struc-
ture of each nucleon, for large collision systems essen-
tially all that matters are the fluctuations on a nucleon
size length scale caused by the fluctuations of the nucleon
positions within the nucleus. While the latter observa-
tion has been made before [? ], the strong sensitivity
of the initial fireball geometry to details of the internal
structure of the nucleon in small-on-small and small-on-
large collisions is pointed out and systematically studied
here for the first time.

In Figure 13 we replot the results from Fig. 12 in such
away that the systematic change of the centrality depen-
dence of ε2,3 with the collision system becomes more ap-
parent. For both disk-like and smooth Gaussian nucleons
(panels d and e) we see monotonic increases of both ε2
and ε3 with the size of the projectile x in central x+Au
collisions, while in the most “peripheral” (lowest multi-
plicity) events their values approach the p+p values. It
is no surprise that the increase of ε2 in central x+Au col-
lisions is particularly strong for deuteron projectiles: In
the most central collisions, the rms ellipticity in d+Au
collisions even slightly exceeds the one for 3He+Au colli-
sions. Comparison of panels d, e, and f (or, equivalently,
a, b, and c) in Fig. 13 shows that accounting for Gaussian
tails in the nucleon density distribution and for quark
substructure increase both ε2 and ε3 while at the same
time reducing their centrality dependences.

We note that Fig. 13 exhibits significant qualitative
differences compared to similar studies reported in [41].
These differences demonstrate the importance of multi-
plicity and sub-nucleonic shape fluctuations in a complete
description of the initial state of the fireballs created in
p+p and x+Au/Pb collisions when x is small.
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different collision systems (black triangles: p+p; red cir-
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We close this subsection by showing in Fig. 14 the cen-
trality dependence of the mean rms radii as functions of
collision centrality for p+p, p+Au, d+Au, and 3He+Au
collisions at

√
s= 200AGeV, for the same three collision

detection models studied in Fig. 13. While for p+p colli-
sions the rms radii are approximately independent of col-
lision centrality as measured by multiplicity (as already
shown in Fig. 6), collisions of protons or small nuclei on
Au targets produce much larger initial source sizes in
high-multiplicity than in low-multiplicity events. At the
left end of the centrality distribution (i.e. for the high-
est multiplicity events) the choice of collision criterium
and quark subdivision have negligible effect on the ini-
tial fireball radius in x+Au collisions even though their
effect is strong in p+p collisions. At the right end on
the centrality distribution (i.e. for the lowest produced
multiplicities) the sources produced in x+Au collisions
have the same size as those produced (at any centrality)
in p+p collisions. The smaller initial sources in “periph-
eral” (i.e. low-multiplicity) x+Au collisions feature larger
initial pressure gradients, resulting in stronger hydrody-
namic acceleration, but smaller initial entropy content,
resulting in shorter lifetimes and earlier freeze-out. In
future studies of the hydrodynamic evolution of the ini-
tial configurations analyzed in the present work, it will be
interesting to explore the consequences of the interplay
between these counteracting effects on the final mean pT
values of hadrons emitted from central vs. peripheral
x+Au collisions.

E. Eccentricity correlations

In Figure 15 we present an analysis of eccentricity cor-
relations, specifically of correlations between the magni-

tudes of the ellipticity ε2 and triangularity ε3, inspired
by a similar analysis for the corresponding flow coeffi-
cients first performed on experimental data from Pb+Pb
collisions at the LHC by the ATLAS collaboration [51]
and recently repeated on the results from hydrodynamic
model calculation in [52]. Due to the well-established lin-
earity of the elliptic (triangular) flow response to ε2 (ε3),
we expect the v3-v2 correlations to look similar to Fig. 15
once the initial entropy density profiles generated in this
work will have been evolved hydrodynamically.

The grey band in the center of each panel in Fig. 15
connects the pairs (〈ε2〉, 〈ε3〉) for each of the centrality
bins shown in the legend. (In panel (a) this band degen-
erates to a point, due to the centrality independence of
both ε2 and ε3 in p+p collisions.) For the colored points
we ordered the events in each centrality class by ellip-
ticity ε2 and subdivided them into 10 equally occupied
ellipticity bins. What is plotted in Fig. 15 is the mean
triangularity 〈ε3〉 of the events in each of these bins vs.
their mean ellipticity 〈ε2〉, connected by lines for each
centrality class and separated by color, symbols and line
style for different centrality classes.

In p+p collisions we observe a simple pattern of event
triangularities that increase monotonically with event el-
lipticity, at a rate that is completely independent of col-
lision centrality. This is caused by the large effects from
multiplicity fluctuations which largely wash out all geo-
metric differences between different centrality classes.

For x+Au collisions, where x stands for p (Fig. 15b),
d (Fig. 15c) or 3He (Fig. 15d), we observe triangulari-
ties that are essentially uncorrelated with ε2 in “central”
collisions but become more and more strongly positively
correlated with ε2 as the centrality increases (i.e. the
multiplicity decreases). As the collision centrality ap-
proaches 100% the correlation between ε2 and ε3 becomes
similar to the one seen in p+p collisions.

We point out that the characteristic patterns seen in
Fig. 15 for p+p and small-on-large collisions are opposite
to those seen in large-on-large collisions such as Pb+Pb
[51, 52]: While in all cases ε3 (or v3) is uncorrelated with
ε2 (or v2) in central collisions, ε3 (v3) develops at non-
zero centrality a negative (anti-) correlation with ε2 (v2)
in non-central Pb+Pb collisions, instead of the positive
correlation observed here for p+p and small-on-large col-
lisions. The anti-correlation between ε3 and ε2 observed
in non-central Pb+Pb collisions has been attributed in
[51, 52] to geometric deformation effects of the nuclear
overlap region. Since centrality in p+p and small-on-
large collisions cannot be interpreted geometrically, such
a geometric anti-correlation is not visible in Fig. 15.

IV. SUMMARY AND CONCLUSIONS

In this work we studied the initial elliptic and trian-
gular eccentricity coefficients of the mid-rapidity matter
produced in high-energy collisions involving small pro-
jectile and/or target nuclei. We showed that, contrary
to collisions between large nuclei, in such small-on-small
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FIG. 15: Eccentricity correlations between ε3 and ε2 in p+p (a), p+Au (b), d+Au (c) and 3He+Au collisions (d)
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p+p collisions) connect the mean values of ε3 vs. ε2 for the centrality bins shown in the legend. The colored points
subdivide the events in each centrality bin into bins with different ε2 values and plot the mean triangularity 〈ε3〉 vs.
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or small-on-large collisions sub-nucleonic density fluctua-
tions play a crucial role for the size and shape of the ini-
tially produced matter, and that in particular accounting
for multiplicity fluctuations completely changes the cen-
trality dependences of the initial ellipticities and triangu-
larities (where centrality is defined in terms of the mul-
tiplicity of produced particles, as done in experiment).
Our results suggest that a quantitative understanding of
recent experimental measurements of anisotropic flow in
high-multiplicity p+p and in p+Au, d+Au, 3He+Au and
p+Pb collisions at RHIC and LHC requires a careful and
systematic study of the initial state of the hot matter cre-
ated in these collisions, and of its effect on the dynamical
evolution of that matter.

The results presented here focus entirely on the initial
state of the produced matter. For comparison with
experiment these initial conditions must be propagated
dynamically to the experimentally observed final state,
using a dynamical evolution model. Results from ongo-

ing hydrodynamic simulations using the iEBE-VISHNU
code package [36] will be reported separately.
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