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Abstract

The effects of event-by-event fluctuations in the initial geometry of the colliding nuclei are im-

portant in the analysis of final flow observables in relativistic heavy-ion collisions. We use hydro-

dynamic simulations to study the amplitude correlations between different orders of event-by-event

fluctuating anisotropic flow harmonics. While the general trends seen in the experimental data are

qualitatively reproduced by the model, deviations in detail, in particular for peripheral collisions,

point to the need for more elaborate future calculations with a hybrid approach that describes the

late hadronic stage of the evolution microscopically. It is demonstrated explicitly that the observed

anti-correlation between v2 and v3 is the consequence of approximately linear hydrodynamic re-

sponse to a similar anti-correlation of the corresponding initial eccentricities ε2 and ε3. For n> 3,

the hydrodynamic correlations between v2,3 and vn deviate from the rescaled correlations among

the corresponding initial eccentricities, demonstrating nonlinear mode coupling effect in higher

order flows.
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I. INTRODUCTION

Event-by-event (EbE) fluctuations of the density of produced matter in ultra-relativistic

heavy-ion collisions arise from EbE fluctuations of the impacting nucleons’ positions and

those of the quark and gluon fields inside those nucleons. Anisotropic flow, which is gener-

ated by anisotropies in the pressure gradients, depends on the shape and structure of the

initial density profile [1, 2]. The EbE fluctuations of the initial density profiles lead to the

experimentally observed odd-order flow harmonics in symmetric collision systems [3] and

to EbE fluctuations of and correlations among the flow coefficients and their corresponding

flow angles [4, 5].

These flow fluctuations and correlations can be studied by using a variety of experimental

observables [6]. Specific suggestions proposed during the past decade include the following:

the distribution of vn and associated initial eccentricities εn [7–9], the correlation between

different flow angles (event-plane correlators) [10, 11] and between the magnitudes of the flow

coefficients [12], a principle component analysis (PCA) of flows [13–15], and the extraction of

non-linear mode-coupling coefficients [16, 17]. Several more can be found in the review [18].

Recently, the ATLAS and ALICE Collaborations performed measurements of correla-

tions between the amplitudes of different anisotropic flows in Pb+Pb collisions at
√
sNN =

2.76 TeV at the LHC [18–20]. Using different methods, both groups report an anti-correlation

between the elliptic and triangular flow coefficients, v2 and v3. The ALICE collaboration

has studied symmetric 2-harmonic 4-particle cumulants to evaluate the correlation and com-

pared them to transport and hydrodynamic simulations [20]. The ATLAS collaboration

found a linear anti-correlation between v3 and v2 but non-linear correlations between the

quadrangular and pentangular flows v4, v5 and v2, v3, from which they extracted evidence

for non-linear mode-coupling contributions to these higher-order flow harmonics [19]. The

ATLAS results have not yet been compared with dynamical evolution models.

In this paper, we study the correlations between different orders of flow using event-by-

event hydrodynamic simulations with the (2+1)-dimensional code VISH2+1 [21, 22]. Our goal

is to see whether all aspects of the large set of correlation data reported by ATLAS in [19]

are in qualitative agreement with the hydrodynamic paradigm. Unfortunately, exploring

detailed correlations among the event-by-event fluctuating flow coefficients requires large

statistics not only on the experimental side, but also theoretically, where large numbers
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of events with fluctuating initial conditions must be simulated dynamically. To keep the

numerical effort manageable we will perform the simulations in pure hydrodynamic mode,

i.e. without switching to a microscopic description of the late hadronic stage. While such

a hybrid approach will eventually be required for a fully quantitative comparison with the

experimental data, the present study should be sufficient to recognize serious discrepancies

with the hydrodynamic approach that might threaten to invalidate it. In this study we do

not systematically explore the sensitivity of these correlations to the QGP shear viscosity

η/s and rather fix it to the value 0.08 which, for the Monte Carlo Glauber initial conditions

used here, is preferred by the pT distributions of identified hadrons and of the charged

hadron elliptic and triangular flow [23].1 Since the flow fluctuations obtained from our pure

hydrodynamic simulations are not expected to be quantitatively precise, we will refrain

here from a direct comparison with the experimental data, but instead invite the reader to

compare with the ATLAS data [19].

The hydrodynamic vm − vn correlations are presented in Sec. II. In Sec. III, we discuss

the linear and nonlinear contributions to higher-order flows and to their correlations with

v2 and v3. Our results are discussed and summarized in Sec. IV. Details of the event-shape

selection used in our analysis are presented in Appendix B while the relationship between

the boomerang-like shape of the vn-vm correlations and the centrality dependence of the

harmonic flow coefficients is discussed in Appendix A.

II. vm − vn CORRELATIONS

The anisotropic flow coefficients vn are defined as the nth azimuthal Fourier coefficient of

the momentum spectrum. It has been pointed out [24, 25] that in the absence of event-by-

event fluctuation (i.e. for hydrodynamics with smooth initial condition) even flow harmonics

are correlated because, even if the fluid velocity profile is only elliptically deformed, a full

set of even flow harmonics is in general generated because the fluid velocity enters through

the exponent of the (flow-boosted) thermal distribution on the freeze-out surface. When

EbE density fluctuations in the initial state are included, the resulting flow fluctuations

of different harmonic orders (both even and odd) are, in general correlated by geometric

1 In Appendix A we use a previously generated smaller set of hydrodynamic events with Monte Carlo
KLN initial conditions [17], which were evolved with three different values of the specific shear viscosity
η/s= 0, 0.08, and 0.2, to discuss different possible shapes of the “boomerang”-like dependence of vm on
vn for different collision centralities that was pointed out by the ATLAS Collaboration [19], and how these
shapes vary with η/s.
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constraints on the positions and shapes of these fluctuations inside the spatially deformed

region where the colliding nuclei overlap. For example, by selecting events in which two

suitably located upward fluctuations of the density generate an especially large geometric

ellipticity, this selection restricts the possibility for adding a third hot spot to generate also

large triangularity of the density distribution. And if such high-ellipticity events created by

hot spots do feature also a triangular deformation, the axes of the corresponding ellipses and

triangles (i.e. the elliptic and triangular participant planes) tend to be correlated [26, 27].

Hydrodynamics will translate these correlations between the harmonic eccentricity vectors

in the initial state into corresponding correlations among the final harmonic flow coefficients.

In this section, we explore these final-state flow correlations with the (2+1)-dimensional

viscous hydrodynamic model VISH2+1, using MC-Glauber initial condition and minimal spe-

cific shear viscosity η/s = 0.08. We use the same setup as in a previous work [17], starting

the hydrodynamic evolution at longitudinal proper time τ0 = 0.6 fm/c and ending it on an

isothermal decoupling surface of temperature Tdec = 120 MeV. Guided by the experimental

analysis in [19] we defined 14 equal centrality bins (0%-5%, 5%-10%, . . . , 65%-70%, based

on their final charged multiplicity density at midrapidity) and generated 3000 hydrodynam-

ically evolved events in each bin. For each of the multiplicity bins these 3000 events were

then ordered and binned by their q2 or q3 values, where qn = qn e
inΨq

n = 〈mT e
inφp〉/〈mT 〉 was

calculated from the Cooper-Frye spectrum on the freeze-out surface as the transverse en-

ergy (mT =
√
m2+p2

T ) weighted average of the phase factors einφp [19]2 (whose unweighted

average over the spectrum defines the anisotropic flow coefficients Vn = vn e
inΨn). (Binning

events by a certain event characteristic such as qn that can be measured event-by-event is

known as “event-shape engineering” [28].3)

2 In the experimental analysis [19] qn was measured at forward rapidity, 3.3< |η|< 4.8, which leads to some
decorrelation from the midrapidity anisotropic flows vn caused by rapidity-dependent fluctuations of the
multiplicity density and initial transverse density distribution [27, 29–32] that we cannot simulate with
our longitudinally boost-invariant evolution code. We therefore compute qn at midrapidity.

3 Using two different definitions of qn (the integrated charged hadron flow vchn and the transverse energy
weighted flow of charged pions, charged kaons and protons after resonance decays) we found negligible
differences in the results for event-shape engineered event samples. Since we we compute qn directly from
hydrodynamics on the freeze-out surface using the Cooper-Frye algorithm, our qn are not affected by the
finite-number statistical fluctuations seen in experiment where qn for each event is constructed from a
finite number of reconstructed particles. This makes our event-shape selection more precise than can be
realized in experiment; the more “blurry” experimental event-shape selection could be simulated by using
appropriate finite numbers of particles sampled from the Cooper-Frye distribution, but this would have
been numerically much more expensive.
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FIG. 1. (Color online) The correlations between v3 and v2 (a,b) and between v4 and v3 (c,d),
as a function of event centrality for the 14 centrality bins described in the text, from viscous
hydrodynamic simulations (a,c) and from experimental data [19] (b,d) for Pb-Pb collisions at
the LHC. Solid triangles represent vm − vn correlations in a given centrality bin; black triangles
represent the values for centrality bins for which event-shape selected results are suppressed to avoid
excessive clutter, while colored solid triangles represent the bin-averaged values for the centrality
bins listed in the legend for which we show, with symbols of the same color, the vm−vn correlations
for event-shape selected events within the given centrality bin. In panels (a,b) event shapes are
selected using q2, for panels (c,d) we use q3 for the event-shape selection. For the ATLAS data
[19] (b,d) statistical and systematic uncertainties are shown as error bars and grey shaded boxes,
respectively. Note that what is plotted is the rms value of vn, i.e. vn{2}, for charged hadrons
(after resonance decays) integrated over the indicated pT range; this agrees with Ref. [19] where,
however, the qualifier {2} was dropped for clarity. The reader should also note the different vertical
and horizontal ranges covered by the theoretical (a,c) and experimental (b,d) results.

In Fig. 1(a,b) we plot the rms triangular flow v3{2} against the rms elliptic flow v2{2} of

charged hadrons for the 14 centrality bins defined above; Fig. 1(c,d) show the same for v4

vs. v3. Comparing the v3 − v2 correlations as a function of centrality without event-shape

selection (solid triangles connected by black or grey lines) from hydrodynamic simulations
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(Fig. 1a) with those from experiment (Fig. 1b) we observe qualitative but not quantitative

agreement. Qualitatively, the theoretical simulations reproduce the boomerang-like relation

between the rms triangular and elliptic flow coefficients as a function of collision centrality

that was first pointed out by the ATLAS Collaboration [19]. However, the detailed shape of

the boomerang predicted by our viscous hydrodynamic calculations disagrees with the one

measured experimentally. Similar qualitative agreement but quantitative failure is observed

in panels (c,d) of Fig. 1 where we plot the v4 − v3 correlations. In Appendix A we discuss

how the shape of the “boomerang” relates to the centrality dependences of the two flow

harmonics plotted against each other in the graph and demonstrate that this shape can

change qualitatively (including “looping boomerangs”) for different values of the QGP shear

viscosity η/s and for different combinations of harmonics m and n. The failure of the pure

hydrodynamic results shown in Fig. 1a to correctly reproduce the experimentally measured

v3 − v2 and v4 − v3 correlations can, at least in part, be attributed to an overprediction

of both v2 and v3 in peripheral collisions; it is possible that modeling the evolution with a

hybrid code that accounts for the larger effective shear viscosity of the evolving matter in

its less strongly coupled late hadronic stage may correct this in the future.

The different colored and shaped markers connected by colored lines in figures 1a,c show

what happens when we subdivide the 3000 events from each centrality bin into 6 event-

shape selected event classes with different q2 resp. q3 values [27, 28, 33]. To do so we order

the events by q2 and throw them into bins covering the following fractions of these ordered

events: 0−0.1, 0.1−0.2, 0.2−0.5, 0.5−0.8, 0.8−0.9, and 0.9−1.0. Our choice of the qn bins

differs from the ATLAS experiment which had higher event statistics and used up to 15 qn

bins, depending on centrality. Our qn bin choice is discussed in Appendix B.

Comparing the theoretical panels Fig. 1a with the experimental ones in Fig. 1b, keeping in

mind the different vertical and horizontal ranges of the theoretical and experimental panels,

we observe qualitative agreement: Fig. 1a qualitatively confirms the anti-correlation between

v3 and v2 within fixed multiplicity bins observed by ATLAS in Fig. 1b. However, while in

the experimental data this negative correlation persists also (albeit weakly) in the most

central collisions, the hydrodynamic model simulations predict a weakly positive correlation

between v2 and v3 in central collisions. As will be further discussed below in Fig. 2, this

positive correlation tracks a similar positive correlation between the corresponding initial

eccentricities ε2 and ε3 in the MC-Glauber model. This is not unexpected because it is well
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known that the hydrodynamic response of v2 and v3 to ε2 and ε3, respectively, is to very

good approximation linear, especially at small eccentricities.4

Figure 1c shows a weak anti-correlation between v4 and v3 for events within bins of

fixed multiplicity (centrality). While this is in qualitative agreement with the ATLAS data

shown in Figure 1d [19], our simulations predict that this anti-correlation strengthens in

more peripheral collisions – a feature that is not obvious in the ATLAS data. Again, we

note that our pure hydrodynamic simulations overpredict the mean and variance of the v3

distributions in the more peripheral centrality classes compared to the ATLAS data.

In Figs. 2 and 3 we compare, for every other centrality bin, the correlations between

v3,4,5 and v2 (Fig. 2) and between v4,5 and v3 (Fig. 3) with the correlations between the

corresponding initial eccentricities εn, using event-shape selected events ordered by their q2

and q3 values, respectively. For this comparison the initial eccentricities in each q-bin were

rescaled by the ratios between the rms flows and eccentricities in the given centrality bin as

suggested in [19]; that is, we compare the hydrodynamically simulated vm − vn correlations

(black circles connected by black lines) with corresponding ṽm − ṽn correlations (blue lines)

where ṽn is calculated in each q-bin as

ṽn{2}(qn) ≡ sn εn{2}(qn) (1)

with a scaling factor sn =
√
〈v2
n〉/〈ε2n〉 = vn{2}/εn{2} determined from the ensemble average

over the entire centrality bin. We see in the top row of Fig. 1 (panels a-g) that the (anti-

)correlation between v3 and v2 is linear and, except for small deviations in the outer q2

bins (i.e. in the tails of the q2-distribution), tracks the corresponding eccentricities. For all

other combinations of n and m (see bottom two rows of Fig. 2 and Fig. 3), we observe a

similar agreement between the vm−vn correlations and the corresponding scaled eccentricity

4 We found that the weak positive correlation between ε2 and ε3 in central Pb+Pb collisions is an artifact
arising from the neglect of p-p multiplicity fluctuations in the version of the MC-Glauber model used in this
work and also in [19]. This unfortunate choice was motivated by our desire to re-use a significant number
of previously generated hydrodynamic events for this analysis and to avoid the retuning of initial and
freeze-out parameters of the hydrodynamic module to a new initial-state model. Without p-p multiplicity
fluctuations, both ε2 and ε3 decrease strongly with multiplicity within the 0 − 5% centrality bin, and
the positive correlation between them seen in Figs. 1b, 2a for that bin reflects mostly this centrality
dependence of ε2,3 instead of genuine shape change at fixed centrality [34]. When we add p-p multiplicity
fluctuations in the MC-Glauber model as described in [22], the slight positive correlation between ε3 and
ε2 seen in Fig. 2a below for 0 − 5% centrality disappears and even turns into a slight anti-correlation
(albeit a very weak one, weaker than the one seen in Fig. 2b). Linear hydrodynamic response will turn
this into a weak anti-correlation between v3 and v2 at 0− 5% centrality, similar to what was observed by
ATLAS [19]. Due to the numerical expense we have, however, not rerun the modified initial conditions
through hydrodynamics.
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correlations only for the most central (0− 5% centrality) collisions. In such collisions, there

is no geometric contribution to the eccentricities, i.e. all εn are entirely due to initial-state

fluctuations. For all other centrality bins, the even eccentricity harmonics, in particular the

ellipticity ε2, has a nonzero geometric component due to the almond shape of the nuclear

overlap region. As also observed in the experimental data [19], this leads to increasingly

strong mode-mixing effects at larger impact parameters that lead to deviations between the

vm − vn correlations and those between the corresponding scaled eccentricities ṽm − ṽn for

the more peripheral centrality classes.5 Quite generically we see from Fig. 2 that v4 and v5

increase with v2 more strongly than ε4 and ε5 increase with ε2, indicating a non-linear mode-

coupling contribution from ε2 (which increases with impact parameter). Similarly, Fig. 3

shows that v5 increase with v3 more strongly than ε5 increase with ε3, indicating a similar

non-linear mode-coupling contribution from ε3 (which, according to Fig. 1a, increases with

impact parameter up to 50%− 55% centrality). On the other hand, no such clear nonlinear

contribution is seen for v4 as a function of v3 (top row in Fig. 3), indicating the absence of

appreciable nonlinear mode coupling between these two harmonics.

To quantify the mode-coupling effects seen in Figs. 2, 3 we fit the hydrodynamic flow

coefficients in each centrality bin to the following functional forms [19]:

v3{2} = v0
3 + k3 v2{2},

v4{2} =
√

(v0
4)2 + (k4 v2

2{2})2, (2)

v5{2} =
√

(v0
5)2 + (k5 v2{2} v3{2})2.

The corresponding fits are shown in the figures as red solid lines.6 From the discussion

above it is clear that the mode-coupling coefficients k3,4,5 encode a combination of the ini-

tial correlations among the corresponding eccentricity coefficients and hydrodynamic mode-

5 Note that the correlations between the scaled eccentricities ṽm and ṽn for (m,n) 6= (3, 2) are also in
general non-linear; if the hydrodynamic response of vn to εn were linear for all values of n, however, we
would expect the vm−vn correlations to perfectly track the corresponding ṽm− ṽn correlations, whatever
their shape. The fact that they don’t indicates non-linear mode-mixing in the hydrodynamic response.

6 Note that the fit of v5 according to Eq. (2) depends on whether q2 or q3 is used for event-shape
selection. To fit the v5{2} − v2{2} correlation within a given centrality class, we use the ansatz
v3{2} = v03 + k3 v2{2} in the fit function for v5{2}, v5{2} =

√
(v05)2 + [k5 v2{2} (v03+k3 v2{2})]2, with

v03 and k3 obtained from fitting the v3 − v2 correlation at the same centrality using q2 event-shape selec-
tion. For the fit of the v5{2} − v3{2} correlation at the same centrality we similarly use the fit function

v5{2} =
√

(v05)2 + [k5

k3
v3{2} (v3{2}−v03)]2 but obtain v03 and k3 from a fit of the v2− v3 correlation at the

same centrality after binning the events in q3.
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mixing during the subsequent dynamical evolution. A discussion of the centrality dependence

of the fit parameters kn and v0
n is presented in Appendix C.

Before closing this section let us briefly comment on the weak anti-correlation between

v4 and v3 seen in the top row of Fig. 3. This anti-correlation strengthens as the collisions

become more peripheral. At the same time, deviations from a qualitatively similar but

weaker anti-correlation between the associated (scaled) initial eccentricities ε4 and ε3 also

become larger. We believe that this is caused by the well-known nonlinear mode-mixing

contribution to v4 from v2
2 (or ε22) which increases with impact parameter and (according to

Fig. 1b) is anti-correlated with v3.

III. LINEAR/NONLINEAR DECOMPOSITION OF v4 AND v5
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0.00

0.01

0.02

0.03

v 4
{ 2}

q2 selection (a)

Inclusive
Linear
Nonlinear
Fit L
Fit NL
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0.000

0.004

0.008

0.012

v 5
{ 2}
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0 20 40 60
Centrality (%)

0.000
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0.008

0.012

v 5
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FIG. 4. (Color online) Centrality dependence of v4 (a) and v5 (b,c), together with their associated

linear and nonlinear components defined in Eqs. (5) and (6), from the hydrodynamic simulations

described in the text. Black solid circles show the full vn{2}. Red dotted and blue dashed lines

are the linear (L) and nonlinear (NL) parts as defined in Eqs. (5) and are identical in panels b and

c. Red circles (“Fit L”) and blues squares (“Fit NL”) show the linear and nonlinear components

vL, fit
n {2} and vNL, fit

n {2}, respectively, defined in Eqs. (6) based on the fit functions (2); they differ

between panels b and c. The shaded regions show the statistical uncertainties associated with the

finite number (3000) of collision events per centrality bin.

Through hydrodynamic evolution, anisotropic pressure gradients build up anisotropic

particle distributions in transverse momentum space, i.e. anisotropic flow. Hydrodynamic

calculations show that v2 and v3 respond approximately linearly to the corresponding initial

eccentricities, e.g. vn/εn = const, except for large impact parameters [35–40]. Higher-order

flow harmonics, on the other hand, exhibit non-linear response, i.e. mode-mixing [35, 36, 41].

The authors of [16] suggested that the higher-order complex harmonic flow coefficients

Vn (n > 3) could be modeled as sums of linear and nonlinear response terms: Vn = V L
n +V NL

n .
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Taking V L
n and V NL

n are uncorrelated [16, 17] and 〈V L
n 〉 = 0, vn{2} can thus be decomposed

as follows:

v2
n{2} = 〈|Vn|2〉 = 〈|V L

n + V NL
n |2〉

= 〈|V L
n |2〉+ 〈|V NL

n |2〉+ 2Re(〈V L
n 〉〈V NL∗

n 〉)

= (vL
n{2})2 + (vNL

n {2})2. (3)

In other words, the mean square of the elliptic flow is equal to the sum of the mean squares

of its linear and nonlinear parts. Further, the decomposition of V4 and V5 suggested in [16],

V4 = V4L + χ422V
2

2 ,

V5 = V5L + χ523V2V3, (4)

allows vL
n{2} and vNL

n {2} for n = 4, 5 to be expressed as [16, 17]

vL
4 =

√
〈v2

4〉 −
|Re〈V4V ∗2

2 〉|2
〈v4

2〉
, vNL

4 =
|Re〈V4V

∗2
2 〉|√

〈v4
2〉

,

vL
5 =

√
〈v2

5〉 −
|Re〈V5V ∗

2 V
∗

3 〉|2
〈v2

2v
2
3〉

, vNL
5 =

|Re〈V5V
∗

2 V
∗

3 〉|√
〈v2

2v
2
3〉

. (5)

(Here we suppressed for clarity the label {2} denoting the second order cumulant.) We note

that this definition differs from a alternative estimate used by ATLAS (see Eqs. (18) and

(21) in [19]) which is based on event plane correlators and includes additionally nonlinear

mode coupling effects among the flow angles.

The fit functions (2), on the other hand, suggest the following decomposition of v4 and

v5 into linear and nonlinear parts (also used in [19]):

vL, fit
4 = v0

4, vNL,fit
4 =

√
v4{2}2 − (v0

4)2 = k4 v
2
2{2}. (6)

vL, fit
5 = v0

5, vNL,fit
5 =

√
v5{2}2 − (v0

5)2 = k5 v2{2} v3{2}.

Note that the definitions of k4 in Eqs. (2,6) and χ422 in Eq. (4) differ.

The different prescriptions (5) and (6) for separating vn into linear and nonlinear con-

tributions are compared for n= 4 and 5 (i.e. for the quadrangular and pentangular flows)

in Fig. 4 as a function of collision centrality.7 We see that the two prescriptions yield

compatible results: In central collisions, the linear contribution dominates the total flow,

7 These figures are to be compared with Figs. 11 and 15 in Ref. [19] where the number of participating
nucleons Npart from the Glauber model is used as a measure for collision centrality.
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whereas the nonlinear contribution increases with increasing impact parameter (at least in

part through mode-mixing effects involving ε2, as discussed in the preceding section). While

the centrality dependence of the linear contributions to v4 and v5 is weak, the nonlinear

contribution varies strongly with collision centrality. It is noteworthy that the separation of

v5 into linear and non-linear parts according to Eqs. (2,6) shows only very weak sensitivity

to whether the fit is based on event-shape selection using q2 or q3. This is discussed in more

detail in Appendix B.

IV. SUMMARY AND FURTHER DISCUSSION

In a beautiful experimental analysis [19], the ATLAS Collaboration recently performed

a comprehensive analysis of correlations among the fluctuating anisotropic flow amplitudes

vn in Pb+Pb collisions at the LHC, using a set of correlators that are completely insensitive

to the associated fluctuating flow angles Ψn. The purpose of the present work was to study

whether the experimentally measured flow amplitude correlations and their dependence on

collision centrality can be described and understood within the otherwise highly successful

hydrodynamic approach to the dynamical evolution of relativistic heavy ion collisions.

We found qualitative agreement with all the main characteristics of the experimentally

observed flow correlations. Quantitatively the hydrodynamic model simulations fail in the

most peripheral collisions where all anisotropic flow coefficients are overpredicted. We as-

cribe this failure predominantly to the lack of a proper microscopic description of the late

hadronic stage in our pure hydrodynamic simulations which did not include a transition

from fluid dynamics to a hadron cascade below the hadronization temperature. This is

known to underestimate shear viscous effects and the associated suppression of anisotropic

flow build-up in the hadronic phase. We showed that the correlations among the anisotropic

flow amplitudes vn in part reflect similar correlations among the corresponding eccentricities

εn of the fluctuating density profiles in the initial state, enhanced, however, by nonlinear

mode-coupling effects in the hydrodynamic evolution. For elliptic and triangular flow we

found a linear anti-correlation that reflects a linear hydrodynamic mapping of a similar lin-

ear anti-correlation between the initial elliptic and triangular eccentricities. For higher-order

flow harmonics the correlations between the corresponding initial eccentricities are found in

general to be non-linear; while their hydrodynamic mapping to flow correlations is found to
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be linear in central collisions, it becomes increasingly nonlinear in non-central collisions due

to mode-coupling effects involving the growing elliptic flow v2. We decomposed the vm− vn
correlations into linear and non-linear contributions whose centrality dependence qualita-

tively agrees with the experimental data; two different procedures for this decomposition

yielded mutually compatible results. While the linear component depends only weakly on

the collision centrality, the nonlinear component varies strongly with impact parameter. We

emphasize, however, that the non-linear part of the correlation extracted by these methods

includes nonlinearities from both the initial state (through nonlinear eccentricity correla-

tions) and from the hydrodynamic evolution (through mode-coupling effects) which cannot

be separated model-independently. It is likely that both types of nonlinearities, the ones in

the initial state and the hydrodynamic ones, are caused primarily by the elliptic geometric

deformation of the nuclear overlap region in noncentral Pb+Pb collisions. This conjecture

can be tested experimentally and theoretically in ultra-central U+U collisions where the

nuclear overlap region is elliptically deformed even at zero impact parameter.

In Appendix A we showed that the detailed shape of the centrality dependence of hy-

drodynamic vm − vn correlations is quite sensitive to the shear viscosity of the expanding

fluid, and also to the fluctuation spectrum of the initial state of the expanding fireball. This

offers the hope that such correlations can in future studies be used as valuable constraints

for both initial state fluctuation and QGP transport coefficients. This will, however, require

full simulations with a hybrid model approach that correctly implements the early and late

non-equilibrium dynamics of the evolving nuclear fireball.
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Appendix A: vm − vn structure

In this Appendix we explore the various possible types of vm − vn correlation structures

(“boomerang shapes”, such as the one shown in Fig. 1a) that can arise from qualitative

differences in the centrality dependences of the two flow harmonics vn, vm that are being

correlated. No event-shape selection is performed in this Appendix, the events are only

sorted by multiplicity (more precisely, by the initial entropy dS/dy which is monotonically

related to the final multiplicity).
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FIG. 5. (Color online) v2, v3, v4, and v5 as function of collision centrality from ideal and viscous

hydrodynamics with KLN initial conditions. Each centrality bin contains 1000 events. Solid black

squares correspond to ideal hydrodynamics, while solid blue diamonds and solid red circles corre-

spond to viscous hydrodynamics with η/s= 0.08 and 0.2, respectively. The open blue diamonds

and red circles are also from viscous hydrodynamics with η/s= 0.08 and 0.2, respectively, but

without including the viscous correction δf at freeze-out.

As examples, we show in Fig. 6 the centrality dependences of vn, n= 2 − 5, from ideal

and viscous hydrodynamics, with and without including the viscous δf corrections of the

local distribution function at freeze-out. Most of these flow coefficients first increase and

then decrease again as one moves from central to peripheral collisions, although a few simply

increase monotonically over the range of centralities shown in the plot, and for the highest

value of the shear viscosity studied here, η/s= 0.2, the pentangular flow v5 actually first

rises, then drops, then rises again.8

8 Comparison of the open and filled circles in Fig. 5 shows that this feature is actually caused by a large
viscous correction δf at freeze-out. We found that the mechanism underlying the appearance for η/s= 0.2
of a dip of v5 at 50% − 60% centrality is that the inclusion of δf causes a jump by π/5 of the peak of
the distribution of the relative angle between the pentangular participant and flow planes, Ψ5−Φ5. More
generally, we observe in Fig. 5 very large δf corrections in peripheral collisions to all anisotropic flow
coefficients. This raises doubts about the quantitative reliability of hydrodynamic simulations in the
most peripheral bins and calls for an improved treatment in future work of the viscous corrections to the
freeze-out distribution function.
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The figure illustrates that several factors conspire to produce the observed centrality

dependences of vn: (1) the centrality dependences of the driving eccentricities εn, (2) the

centrality dependent duration of the hydrodynamic evolution which shortens the lifetime in

peripheral collisions, cutting short the build-up of flow anisotropies, and which also controls

the magnitude of the viscous corrections at freeze-out, and (3) the shear viscous damping of

the anisotropic flow coefficients, especially for larger n. In peripheral collisions the viscous

damping of vn is stronger than in central collisions [21], so as the shear viscosity increases

the anisotropic flows peak at lower centrality, and this shift of the peak to lower centralities

increases with harmonic order n.

In Fig. 6 we show that these trends can lead to qualitative changes in the shape of the cor-

relation between vn and vm as function of centrality when we change the pair (n,m) and/or

the shear viscosity. Panel (a) shows a case where both vn and vm increase within a certain

centrality range monotonically with centrality (here: v2 and v3 from ideal fluid dynamics).

This type of correlation does not look at all like what is seen in the ATLAS data. A better

representation of the experimental shape is obtained in panel (d) for η/s= 0.2; however, the

agreement is not perfect because in the hydrodynamic simulation v3 peaks at smaller impact

parameter than v2 whereas the “boomerang” shape seen by ATLAS requiresthat both v3 and

v2 peak at the same centrality. We observe such a “boomerang” shape for the correlation

between v5 and v4 for η/s= 0.08, shown in panel (b) of Fig. 6. Panel (c) demonstrates that

a “boomerang” with opposite orientation is obtained when both vm on the vertical axis and

vn on the horizontal axis peak as a function of impact parameter, but vn then decreases

faster than vm when the impact parameter is further increased. Such a situation is seen in

the experimental data when ATLAS plots the correlation between v4 on the vertical axis

and v3 on the horizontal axis (Fig. 12 in [19]) but not reproduced by our hydrodynamic

simulations (see Fig. 5b,c). Panel (e) of Fig. 6 shows the very exotic form of the vm − vn
correlation that is possible when one of the two flow harmonics has a centrality dependence

like the one seen for v5 for η/s= 0.2 in Fig. 5 (right panel): in this case the “boomerang”

can bend around to form a loop!

Let us summarize by concluding that the perfect “boomerang”-shaped correlations be-

tween v2, v3 and v4 observed by ATLAS in [19] require that all three of these flow coefficients

peak as functions of centrality at the same centrality. Figs. 1 and 5 show that the purely hy-

drodynamic simulations with MC-Glauber and MC-KLN initial conditions and the choices
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FIG. 6. (Color online) Different types of vm−vn correlation structures (“boomerang shapes”) from

ideal and viscous hydrodynamics with KLN initial conditions. Each centrality bin contains 1000

events. See text for explanation.

of η/s reported here are not able to reproduce this feature. This may be related to the

large δf corrections in peripheral collisions noted in footnote 7, but a deeper study will be

required to fully clarify this issue.

Appendix B: qn bins for event-shape selection

Due to event-by-event fluctuations, events with similar multiplicity may have quite dif-

ferent initial density distributions. The event-shape selection method was proposed to con-

strain initial event shapes by selecting certain events on the basis of their anisotropic flow

coefficients [27, 28, 33].

In ATLAS, events of a given collision centrality were subdivided into 15 qn bins (some-

times 14 qn bins when the two highest qn bins were combined) covering the following frac-

tions of the qn-ordered events [19]: 0−0.01, 0.01−0.025, 0.025−0.05, 0.05−0.075, 0.075−0.1,

0.1−0.2, 0.2−0.3, 0.3−0.4, 0.4−0.5, 0.5−0.6, 0.6−0.7, 0.7−0.8, 0.8−0.9, 0.9−0.95, and

0.95−0.1. In our case the number of events in each centrality class is much smaller than

in the ATLAS experiment. Therefore, we use only 6 qn bins covering the fractions 0−0.1,

0.1−0.2, 0.2−0.5, 0.5−0.8, 0.8−0.9, and 0.9−1. In this Appendix we explore, as an example,

the sensitivity of the decomposition of v5 into its linear and nonlinear parts, as described in

Sec. III, to the number of q2 or q3 bins used in the event-shape selection procedure.

In Fig. 7 we show as circles and diamonds the linear parts of v5{2} as a function of collision

centrality, computed by fitting in each centrality bin the dependence of v5{2} on v2{2} resp.

v3{2} with the last equation in (2), using information from 6 or 15 q2 resp. q3 bins. One

sees that in all except the 35%-40% centrality bin the fits converge to almost exactly the
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FIG. 7. (Color online) The centrality dependence of the linear part of v5{2} obtained from the fit

with Eqs. (2), (6), as shown in Fig. 4, but now compared for two different fits using 6 (red circles)

and 15 (blue diamonds) q2 (a) or q3 (b) bins when binning the 3000 events in each centrality class

by their event shapes. The red lines show the linear parts as defined in Eqs. (5) for comparison.

Note the expanded vertical scale compared to Fig. 4.

same v0
5 values whether we use 6 or 15 q-bins. If we had used 15 q-bins in Fig. 1, the results

would have looked rather noisy, due to statistical limitations. Fig. 7 demonstrates that by

reducing the number of q-bins to 6, in order to see the trends in Fig. 1 more cleanly, we are

not sacrificing accuracy when separating vn{2} into its linear and nonlinear contributions.

With larger numbers of events than we have at our disposal, one can add additional qn

bins near the two ends of the qn distribution, to better explore the full range of event shapes.

Since the shape of the qn distribution depends on collision centrality, the optimal choice of the

centers and widths of each qn bin may depend on centrality. With our limited statistics, we

18



chose 6 bins whose positions and widths were distributed symmetrically around the median

qn. ATLAS [18] chose qn bins that were optimized to the Bessel-Gaussian distribution of

qn in ultra-central collisions and whose positions and widths were asymmetric around the

median qn. They then used the same asymmetric binning scheme at all collision centralities

even though the q2 distribution first becomes more symmetric and then again asymmetric

in the opposite direction as one proceeds from ultra-central to ultra-peripheral collisions.

Fig. 7 shows that, for the purpose of separating linear and nonlinear contributions to the

higher-order flow harmonics the precise placement of the qn bins does not matter.

Appendix C: Fit parameters in Eqs. (2)

In this appendix we present for completeness the values of the fit parameters from the fit

functions (2) for the fits performed in Figs. 2 and 3 as functions of centrality. The results

shown in panels a,b agree qualitatively with the analogous experimental fit parameters

plotted in last two panels of Fig. 8 in Ref. [19]. The difference between the solid circles and

hollow triangles in Fig. 8d illustrates the effect of different qn selections (see footnote 6).
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in Figs. 2 and 3.
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