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We quantitatively estimate properties of the quark-gluon plasma created in ultra-relativistic heavy-ion col-
lisions utilizing Bayesian statistics and a multi-parameter model-to-data comparison. The study is performed
using a recently developed parametric initial condition model, TRENTo, which interpolates among a general
class of particle production schemes, and a modern hybrid model which couples viscous hydrodynamics to
a hadronic cascade. We calibrate the model to multiplicity, transverse momentum, and flow data and report
constraints on the parametrized initial conditions and the temperature-dependent transport coefficients of the
quark-gluon plasma. We show that initial entropy deposition is consistent with a saturation-based picture, ex-
tract a relation between the minimum value and slope of the temperature-dependent specific shear viscosity, and
find a clear signal for a nonzero bulk viscosity.

I. INTRODUCTION

Simulations based on relativistic viscous hydrodynamics
have been highly successful describing a wealth of bulk ob-
servables in heavy-ion collisions at the Relativistic Heavy-Ion
Collider (RHIC) in Brookhaven, NY and the Large Hadron
Collider (LHC) in Geneva, Switzerland. Initially, the success
of hydrodynamic simulations was primarily qualitative. The
framework elegantly described a number experimental phe-
nomena, for example the existence of large azimuthal particle
correlations, the mass ordering of these correlations, and their
characteristic momentum dependence.

Modern hydrodynamic simulations have greatly expanded
upon the successes of first-generation models. The addition of
dissipative corrections to ideal hydrodynamics [1–6], event-
by-event fluctuations in the colliding nuclei [7, 8], and mod-
ern lattice quantum chromodynamics (QCD) calculations for
the quark-gluon plasma (QGP) equation of state [9–11] are
just a few examples of developments which have dramatically
improved the agreement of hydrodynamic models with exper-
iment.

These developments have positioned hydrodynamic model-
ing to evolve beyond a qualitative science and quantitatively
extract intrinsic properties of hot and dense QCD matter. A
primary goal of the ongoing effort is to determine the tem-
perature dependence of QGP transport coefficients such as
the specific shear viscosity η/s, theorized to reach a lower
bound η/s ≥ 1/4π near the QGP phase transition tempera-
ture [12–14]. An estimate of the effective (constant) QGP
shear viscosity needed to fit spectra and flows at RHIC found
1 ≤ 4πη/s ≤ 2.5 [15], while independent studies have re-
ported estimates consistent with this range [6, 16, 17].

The remaining uncertainty in η/s arises largely from the hy-
drodynamic initial conditions: different initial condition mod-
els lead to different hydrodynamic flow and hence prefer dif-
ferent values of η/s. Current efforts to reduce uncertainties
include improving theoretical descriptions of the initial condi-
tions [18, 19] and testing respective model predictions against

sensitive new observables [20–22]. The process thus defines
an iterative cycle in which theory calculations are embed-
ded in hydrodynamic transport simulations, analyzed against
a comprehensive list of bulk observables, and used to gener-
ate testable predictions which inform subsequent refinements
to the theory.

Model optimization and comparison is often complicated
by multiple undetermined and highly correlated input param-
eters. In addition to QGP transport coefficients, simulations
depend on auxiliary inputs such as an effective nucleon width
and QGP thermalization time, all of which must be simulta-
neously optimized. Evaluating a model for a single set of pa-
rameters requires thousands of individual event simulations,
so direct optimization techniques quickly become intractable.

One solution to the model optimization problem is the use
of modern Bayesian methods to estimate the parameters of
computationally intensive models [23–26]. A given model
is first evaluated at a relatively small number of parameter
configurations and the results are interpolated by a Gaus-
sian process emulator [27]. Then, using the emulator as a
stand-in for the full model, a standard Markov chain Monte
Carlo (MCMC) algorithm exhaustively explores the parame-
ter space and extracts probability distributions for the optimal
values of each parameter.

Bayesian methods have been applied to heavy-ion colli-
sions in several previous studies [28–33], including simula-
tions initialized with a two-component Monte Carlo Glauber
(MC-Glb.) model [34] and the Kharzeev-Levin-Nardi (MC-
KLN) model [35], an implementation of color glass conden-
sate (CGC) effective field theory [36, 37]. Future work could
expand this coverage to additional calculations of QGP initial
conditions in order to systematically constrain each model’s
parameters along with hydrodynamic transport coefficients.
Once the models are appropriately optimized, the relative ac-
curacy of the various theory calculations may be quantified
using a model selection criterion such as Bayes factors.

An alternative approach to model-by-model validation is
to optimize parametric initial conditions that are sufficiently
flexible to mimic the behavior of various theory calcula-
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tions. This allows the parameter optimization process to
determine the nature of the initial conditions concurrently
with QGP medium properties while propagating any relevant
uncertainties—without imposing the assumptions of a spe-
cific model. It also accelerates the model evaluation cycle
by establishing which theory calculations are most compatible
with the data and informing further refinements. To this end,
several recent studies have successfully used event-averaged
parametric initial conditions to constrain QGP properties in-
cluding the equation of state [29–31].

In this work, we extend previous efforts to parametrize and
constrain QGP initial conditions using a recently developed
event-by-event model, TRENTo [38], which is constructed
to interpolate a subspace of all initialization models includ-
ing (but not limited to) specific calculations in CGC effective
field theory. We couple the parametric model to viscous hy-
drodynamics and a hadronic afterburner and apply Bayesian
methods to simultaneously estimate QGP initial condition and
medium properties.

II. EVOLUTION MODEL

Heavy-ion collision dynamics are modeled in a multi-stage
approach using relativistic viscous hydrodynamics for the
time evolution of the QGP medium and microscopic Boltz-
mann transport to simulate the dynamics of the system after
hadronization.

A. Hydrodynamics and Boltzmann transport

Relativistic hydrodynamics models calculate the time evo-
lution of the QGP medium via the conservation equations

∂µT µν = 0 (1)

for the energy-momentum tensor

T µν = e uµuν − ∆µν (P + Π) + πµν , (2)

provided a set of initial conditions for the fluid flow veloc-
ity uµ , energy density e, pressure P, shear stress tensor πµν ,
and bulk viscous pressure Π. We use VISH2+1 [5], a sta-
ble, extensively tested implementation of boost-invariant vis-
cous hydrodynamics which has been updated to handle fluc-
tuating event-by-event initial conditions [39] and incorpo-
rate bulk viscous corrections with shear-bulk coupling.1 This
implementation calculates the time evolution of the viscous
corrections through the second-order Israel-Stewart equations
[40, 41] in the 14-momentum approximation, which yields a

1 Bulk viscous corrections and shear-bulk coupling were implemented in
VISH2+1 by J. Liu and U. Heinz. A first preliminary study involving a
much more restricted set of fit parameters including bulk viscosity was
presented at the Quark Matter 2015 conference [33].

set of relaxation-type equations [42, 43]

τΠΠ + Π̇ = −ζθ − δΠΠΠθ + λΠππ
µνσµν , (3a)

τπ π̇
〈µν〉 + πµν = 2ησµν − δπππµνθ + φ7π

〈µ
α π

ν〉α

− τπππ
〈µ
α σ

ν〉α + λπΠΠσ
µν . (3b)

Here, η and ζ are the shear and bulk viscosities, parametrized
below. For the remaining transport coefficients, we use ana-
lytic results derived in the limit of small but finite masses [42].

The hydrodynamic equations of motion must be closed by
an equation of state (EoS), P = P(e). We use a modern
QCD EoS based on continuum extrapolated lattice calcula-
tions at zero baryon density published by the HotQCD col-
laboration [11] and blended into a hadron resonance gas EoS
in the interval 110 ≤ T ≤ 130 MeV using a smoothstep
interpolation function [44]. The HotQCD EoS, character-
ized by the parametrized interaction measure (e − 3P)/T4,
has been compared to additional state-of-the-art calculations
by the Wuppertal-Budapest collaboration and shown to agree
within published errors [11]. The two parametrizations were
also studied in a recent error analysis at RHIC energies which
quantified the effect of systematic lattice EoS discrepancies
and statistical continuum extrapolation errors on hydrody-
namic observables [44]. The effect of these errors on mean
pT , elliptic flow v2, and triangular flow v3 was found to be
O(1%) and hence is expected to be negligible in the present
analysis.

In order to estimate the shear and bulk viscosities, we
parametrize their temperature dependence and define several
variable model inputs. The viscosities are typically expressed
as dimensionless ratios η/s and ζ/s, where s is the entropy
density; for the specific shear viscosity η/s, we use a piece-
wise linear parametrization

(η/s)(T ) =



(η/s)min + (η/s)slope(T − Tc ) T > Tc

(η/s)hrg T ≤ Tc
, (4)

motivated by calculations in low- and high-temperature lim-
its which demonstrate that η/s has a minimum near the QCD
transition temperature [45–47]. We fix the transition temper-
ature Tc = 0.154 GeV to match the HotQCD EoS [11] and
leave (η/s) hrg, min, and slope as tunable parameters, with
the slope restricted to non-negative values. For the specific
bulk viscosity ζ/s, we use the parametrization [43, 48]

(ζ/s)(T ) =




C1 + λ1 exp[(x − 1)/σ1]
+ λ2 exp[(x − 1)/σ2]

T < Ta

A0 + A1x + A2x2 Ta ≤ T ≤ Tb

C2 + λ3 exp[−(x − 1)/σ3]
+ λ4 exp[−(x − 1)/σ4]

T > Tb

,

(5)
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with x = T/T0 and coefficients

C1 = 0.03, C2 = 0.001,
A0 = −13.45, A1 = 27.55, A2 = −13.77,
σ1 = 0.0025, σ2 = 0.022, σ3 = 0.025, σ4 = 0.13,
λ1 = 0.9, λ2 = 0.22, λ3 = 0.9, λ4 = 0.25,
T0 = 0.18 GeV, Ta = 0.995 T0, Tb = 1.05 T0.

Qualitatively, this form peaks near T0 = 180 MeV and falls
off exponentially on either side. To estimate the magnitude of
bulk viscosity, we scale (ζ/s)(T ) by a tunable overall normal-
ization factor (ζ/s)norm.

As the hydrodynamic medium expands and cools below
the QCD transition temperature Tc , it undergoes a transition
from a deconfined QGP to a hadron resonance gas (HRG). We
therefore convert the medium to an ensemble of particles and
switch from hydrodynamics to a microscopic kinetic model,
which can better handle the late stages of the collision includ-
ing species-dependent kinetic freeze-out, hadronic feed-down
dynamics, and non-equilibrium breakup. Kinetic models also
naturally account for hadronic viscosity, obviating the need
to manually specify transport coefficients. Thus, although the
parametrizations for η/s and ζ/s, Eq. (4) and (5), extend be-
low Tc , they do not affect the kinetic model. In particular,
the parameter (η/s)hrg only controls the small fraction of hy-
drodynamic evolution below Tc and before switching to the
kinetic model, and hence is not expected to strongly affect the
overall model. Such multi-stage approaches are known as hy-
brid models [49–51].

The conversion to particles, or “particlization”, is per-
formed on an isothermal spacetime hypersurface defined by
a pre-specified switching temperature Tswitch. Particlization
denotes the conversion of the hadronic medium from macro-
scopic to microscopic degrees of freedom—distinct from the
physical hadronization process—and in principle, may occur
at any temperature within a small window near the QCD tran-
sition temperature, within which both the hydrodynamic and
microscopic models predict the same medium evolution. To
test this postulate, we leave Tswitch as a variable parameter. As
the hydrodynamic medium cools past the switching tempera-
ture, particles are sampled from the Cooper-Frye formula [52]

E
dNi

d3p
=

gi

(2π)3

∫
Σ

f i (x,p) pµ d3σµ , (6)

where i is an index over species, f i the particle species’ dis-
tribution function, and d3σµ a volume element (located at
spacetime position x) of the isothermal hypersurface Σ de-
fined by Tswitch. We use the iSS sampler [39, 53] for parti-
clization.

The distribution function f includes any non-equilibrium
contributions from shear and bulk viscosities, typically ex-
panded into an ideal part and a viscous correction, f = f0+δ f ,
where the ideal part f0 is a Bose or Fermi distribution and the
viscous correction δ f = δ fshear + δ fbulk. We use a common
form for the shear correction [54]

δ fshear = f0(1 ± f0)
1

2T2(e + P)
pµpνπµν . (7)

The bulk viscous correction has a variety of proposed forms,
each of which predicts significantly different behavior when
either the bulk pressure Π or momentum p are large [55, 56].
Given this uncertainty and the small ζ/s at particlization (see
Eq. (5)), we assume that bulk corrections will be small and
neglect them for the present study, i.e. δ fbulk = 0. This pre-
cludes any quantitative conclusions on bulk viscosity, since
we are only allowing bulk viscosity to affect the hydrody-
namic evolution, not particlization. We will, however, be able
to determine whether ζ/s is nonzero. We plan to remedy this
shortcoming in future work, enabling a quantitative estimate
of the temperature dependence of bulk viscosity.

Once the fluid is converted into hadrons, the subsequent mi-
croscopic dynamics are simulated using the Ultra-relativistic
Quantum Molecular Dynamics (UrQMD) model as a hadronic
afterburner [57, 58]. UrQMD uses Monte Carlo techniques to
solve the Boltzmann equation

df i (x,p)
dt

= Ci (x,p), (8)

where f i is the distribution function and Ci the collision ker-
nel for particle species i. The model propagates all produced
hadrons along classical trajectories, and accounts for their
scattering, resonance formation, and decay processes until all
hadrons in the system have ceased interacting. The final par-
ticle data are then postprocessed into observables for compar-
ison with experiment.

B. Parametric initial conditions

The hydrodynamic equations of motion necessitate initial
conditions for the energy density e, fluid flow velocity uµ ,
shear stress tensor πµν , and bulk pressure Π at time τ = τ0,
when the system is assumed to have thermalized. These initial
conditions emerge from dynamical processes of the collision,
and are commonly modeled in two stages: initial state models
describe the system immediately after impact at time τ = 0+,
then pre-equilibrium transport models evolve the system un-
til the thermalization time τ0. Efforts to realistically model
the pre-equilibrium stage include transport dynamics [18, 59–
62] motivated by thermalization studies in strong and weakly
coupled field theories [60, 63–71].

The importance of pre-equilibrium dynamics was recently
studied by initializing hydrodynamic simulations with a free
streaming phase (zero coupling) and switching to hydro-
dynamics (strong coupling) after different periods of time
[33, 72]. The authors showed that although free streaming
never leads to thermalization, it can be used to bracket the
influence of pre-equilibrium dynamics on the medium evo-
lution as the pre-equilibrium coupling strength is expected
to fall between the free streaming and hydrodynamic limits.
When bulk viscous effects were neglected, the analysis found
a preference for a brief free streaming phase τfs . 1 fm/c,
but the effect on hydrodynamic bulk observables was small
and modifications to the preferred value of the QGP specific
shear viscosity η/s were less than 10%. Including nonzero
bulk viscosity opened a window for a longer free-streaming
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stage with τfs ≈ 2 fm/c and reduced the best-fit value for the
specific shear viscosity by 20%. In real situations where the
pre-equilibrium coupling strength is necessarily nonzero, dy-
namical effects on the extracted transport coefficients are ex-
pected to be even smaller.

In the present study we neglect pre-equilibrium dynamics,
instead initializing the flow velocity to zero as well as the vis-
cous terms, which quickly relax to their Navier-Stokes values
[73]. This reduces the initial conditions to a thermal energy
density, which may be provided as an entropy density and
converted via the QCD EoS. We generate event-by-event ini-
tial conditions using the recently developed parametric model
TRENTo [38]. The model begins with a standard Monte Carlo
Glauber formalism, summarized below, and parametrizes en-
tropy deposition as a function of local participant nuclear den-
sity.

First, nucleon positions for nuclei A and B are sampled
from a standard uncorrelated Woods-Saxon distribution [74]
and shifted by ±b/2, where b is a minimum-bias impact pa-
rameter. Participants are then determined randomly from the
inelastic collision probability [75]

Pcoll(b) = 1 − exp
[
−σggTpp (b)

]
,

Tpp (b) =

∫
dx dy Tp (x, y)Tp (x − b, y),

(9)

where b is now the impact parameter between two nucleons,
Tp is the nucleon thickness function, and the effective partonic
cross section σgg is fixed to reproduce the inelastic nucleon-
nucleon cross section

σinel
NN =

∫
2πb db Pcoll(b). (10)

The energy-dependent cross section σinel
NN = 4.0, 4.2, 6.4,

7.0 fm2 at
√

sNN = 130, 200, 2760, 5020 GeV, respectively
[76–78]. For the nucleon thickness function we use a Gaus-
sian

Tp (x, y) =
1

2πw2 exp
(
−

x2 + y2

2w2

)
, (11)

where w is a tunable effective nucleon width.
We now define the participant thickness function

T̃ (x, y) =

Npart∑
i=1

γi Tp (x − xi , y − yi ), (12)

which differs from the conventional thickness function T by
including only participant nucleons and weighting each par-
ticipant by a random factor γi , sampled from a gamma distri-
bution with unit mean and variance 1/k, where k is a tunable
shape parameter [79]. These weights are inserted to account
for minimum-bias proton-proton multiplicity fluctuations.

The TRENTo model calculates local entropy density at
midrapidity by applying a function f to the participant thick-
ness functions:

s(τ0, x, y) |ηs=0 = f (T̃A,T̃B). (13)
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FIG. 1. (Color online) Several randomly generated TRENTo Pb+Pb
initial condition events using generalized mean parameter p = 0,
nucleon width w = 0.5 fm, and gamma fluctuation factor k = 1.4.

We use a functional form motivated by basic physical con-
straints and phenomenological observations [38] known as the
generalized mean:

s ∝ *
,

T̃ p
A

+ T̃ p
B

2
+
-

1/p

. (14)

This parametrization introduces a continuous entropy depo-
sition parameter p which effectively interpolates among dif-
ferent entropy deposition schemes. For p = (1,0,−1), the
generalized mean reduces to arithmetic, geometric, and har-
monic means, while for p→ ±∞ it asymptotes to minimum
and maximum functions:

s ∝




max(T̃A,T̃B) p→ +∞,

(T̃A + T̃B)/2 p = +1, (arithmetic)√
T̃AT̃B p = 0, (geometric)

2 T̃AT̃B/(T̃A + T̃B) p = −1, (harmonic)

min(T̃A,T̃B) p→ −∞.

(15)

Perhaps the simplest explanation of this ansatz is to examine
the effect of the mapping on realistic events: Fig. 1 shows
examples of entropy density in the transverse plane for sev-
eral typical Pb+Pb events at

√
sNN = 2.76 TeV, while Fig. 2

shows a cross section of a single event along the direction of
the impact parameter. At each point in the transverse plane
there are two relevant scales of interest: the smaller of the
two participant densities, T̃min = min(T̃A,T̃B), and the larger,
T̃max. In Fig. 2, the gray band marks the region spanned by
T̃min and T̃max, while the blue band and line show the gener-
alized mean of the participant densities for different values of
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FIG. 2. (Color online) Cross section of the participant nucleon den-
sity in a mid-central Pb+Pb collision at

√
sNN = 2.76 TeV as a

function of the transverse coordinate x parallel to impact parameter
b. The gray band indicates the region bounded by the minimum and
maximum values of the local participant thickness functions T̃A and
T̃B , while the blue band indicates the region spanned by the general-
ized mean of T̃A and T̃B with parameter −1 < p < 1. The solid blue
line shows an example of a discrete mapping specified by a general-
ized mean with p = 0.

the parameter p. We see that decreasing p pulls the general-
ized mean towards the minimum of T̃A and T̃B while increas-
ing p pushes it to the maximum, thus, the generalized mean
ansatz parametrizes asymmetric entropy deposition, or in the
parlance of color glass condensate theory, the intensity of sat-
uration effects on local gluon production.

These local modifications naturally become manifest in
global quantities such as integrated particle yields. When two
heavy ions collide at fixed impact parameter b, their nuclear
densities are shifted by a common offset T (x ± b/2, y) which
increases the average asymmetry of local participant matter.
This asymmetry grows with increasing impact parameter and
is highly correlated with collision centrality. By varying the
generalized mean parameter p, the TRENTo model directly
modulates the attenuation of entropy deposition in peripheral
collisions and provides a parametric handle on the central-
ity dependence of charged particle production—similar to the
role of the binary collision fraction α in the two-component
Glauber model.

Figure 3 plots the charged particle density per participant
pair at midrapidity as a function of participant number us-
ing model calculations from TRENTo and experimental data
from PHENIX [76] and ALICE [80, 81]. The model curves
are calculated assuming that charged particle multiplicity is
proportional to total initial entropy [82], where the propor-
tionality constant varies with beam energy but is constant for
all collision systems at the same energy. We set the entropy
deposition parameter p = 0, which was previously shown to
provide a good description of proton-proton, proton-lead, and
lead-lead multiplicity distributions as well as lead-lead eccen-
tricity harmonics at LHC energies [38]. However, this value
and the other parameters used in Fig. 3 have not yet been sys-
tematically optimized—they are for demonstration purposes
only. While p could depend on energy, we see in the figure

that p = 0 provides a good description of the data at all beam
energies and self-consistently describes proton-lead and lead-
lead multiplicities at the same collision energy.

Note that, while the generalized mean parametrizes entropy
deposition in asymmetric regions of the collision (T̃A , T̃B),
it asserts a particular scaling in symmetric regions, namely

f (αT̃ ,αT̃ ) = αT̃ , (16)

for a constant α. This property, known as scale invariance
or homogeneity, is difficult to empirically prove or disprove,
but multiple experimental observations indicate that it holds
to very good approximation. For example, it was demon-
strated that collisions of highly deformed uranium nuclei ex-
hibit elliptic flow patterns which are incompatible with a
scale-violating binary collision term postulated by the two-
component Glauber ansatz [83–85]. Measurements of cen-
tral copper-copper, gold-gold, and uranium-uranium particle
production at RHIC also exhibit approximate participant scal-
ing [76]. Moreover, the scale invariant constraint serves as a
reasonable approximation for a number of calculations of the
mapping f in Eq. (13) derived from CGC effective field the-
ory, as we show momentarily. At present, we thus assert scale
invariance as a simplifying postulate, although relaxing this
constraint may further reduce bias and could be considered in
future work.

C. Reproducing existing I.C. models

The aforementioned procedure defines the TRENTo initial
condition model proposed in Ref. [38]. The model is con-
structed to achieve maximal flexibility using a minimal num-
ber of parameters and can mimic a wide range of existing ini-
tial condition models. To demonstrate the efficacy of the gen-
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FIG. 3. (Color online) Average charged particle density per partici-
pant pair (dNch/dη)/(Npart/2) at midrapidity as a function of partic-
ipant number for Pb+Pb, p+Pb, and Au+Au systems at various colli-
sion energies. Lines are TRENTo calculations with generalized mean
parameter p = 0, and symbols are experimental data from PHENIX
[76] and ALICE [80, 81]. The average minimum bias participant
number for p+Pb is shifted for clarity.
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eralized mean ansatz, Eq. (14), we now show that the mapping
can reproduce different theory calculations using suitable val-
ues of the parameter p.

Perhaps the simplest and oldest model of heavy-ion initial
conditions is the so called participant or wounded nucleon
model, which deposits entropy for each nucleon that engages
in one or more inelastic collisions [86]. In its Monte Carlo
formulation [87–90], the wounded nucleon model may be ex-
pressed in terms of participant thickness functions, Eq. (12),
as

s ∝ T̃A + T̃B . (17)

Comparing to Eq. (15), we see that the wounded nucleon
model is equivalent to the generalized mean ansatz with p = 1.

More sophisticated calculations of the mapping f in
Eq. (13) can be derived from color glass condensate effective
field theory. A common implementation of a CGC based sat-
uration picture is the KLN model [91–93], in which entropy
deposition at the QGP thermalization time can be determined
from the produced gluon density, s ∝ Ng , where

dNg

dy d2r⊥
∼ Q2

s,min

[
2 + log

(Q2
s,max

Q2
s,min

)]
, (18)

and Qs,max and Qs,min denote the larger and smaller values
of the two saturation scales in opposite nuclei at any fixed
position in the transverse plane [94]. In the original formula-
tion of the KLN model, the two saturation scales are propor-
tional to the local participant nucleon density in each nucleus,
Q2

s,A ∝ T̃A, and the gluon density can be recast as

s ∼ T̃min
[
2 + log(T̃max/T̃min)

]
(19)

to put it in a form which can be directly compared with the
wounded nucleon model.

Another saturation model which has attracted recent inter-
est after it successfully described an extensive list of exper-
imental particle multiplicity and flow observables [19, 95]
is the EKRT model, which combines collinearly factorized

pQCD minijet production with a simple conjecture for gluon
saturation [96, 97]. The energy density predicted by the model
after a pre-thermal Bjorken free streaming stage is given by

e(τ0, x, y) ∼
Ksat

π
p3

sat(Ksat, β; TA,TB), (20)

where the saturation momentum psat depends on nuclear
thickness functions TA and TB , as well as phenomenological
model parameters Ksat and β. Calculating the saturation mo-
mentum in the EKRT formalism is computationally intensive,
and hence—in its Monte Carlo implementation—the model
parametrizes the saturation momentum psat to facilitate effi-
cient event sampling [19]. The energy density in Eq. (20) can
then be recast as an entropy density using the thermodynamic
relation s ∼ e3/4 to compare it with the previous models.

Note that Eq. (20) is expressed as a function of nuclear
thickness T which includes contributions from all nucleons
in the nucleus, as opposed to the participant thickness T̃ . In
order to express initial condition mappings as functions of a
common variable one could, e.g. relate T̃ and T using an ana-
lytic wounded nucleon model. The effect of this substitution
on the EKRT model is small, as the mapping deposits zero
entropy if nucleons are non-overlapping, effectively remov-
ing them from the participant thickness function. We thus
replace T with T̃ in the EKRT model and note that similar
results are obtained by recasting the wounded nucleon, KLN,
and TRENTo models as functions of T using standard Glauber
relations.

Figure 4 shows one-dimensional slices of the entropy de-
position mapping predicted by the KLN, EKRT, and wounded
nucleon models for typical values of the participant nucleon
density sampled in Pb+Pb collisions at

√
sNN = 2.76 TeV.

The vertically staggered lines in each panel show the change
in deposited entropy density as a function of T̃A for several
constant values of T̃B , where the dashed lines are the entropy
density calculated using the various models and the solid lines
show the generalized mean ansatz tuned to fit each model.
The figure illustrates that the ansatz reproduces different ini-
tial condition calculations and quantifies differences among
them in terms of the generalized mean parameter p. The
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FIG. 5. (Color online) Eccentricity harmonics ε2 and ε3
as a function of impact parameter b for Pb+Pb collisions at
√

sNN = 2.76 TeV calculated from IP-Glasma and TRENTo initial
conditions. IP-Glasma events are evaluated after τ = 0.4 fm/c clas-
sical Yang-Mills evolution [18]; TRENTo events after τ = 0.4 fm/c
free streaming [72, 98] and using parameters p = 0 ± 0.1, k = 1.6,
and nucleon width w = 0.4 fm to match IP-Glasma [99].

KLN model, for example, is well-described by p ∼ −0.67, the
EKRT model corresponds to p ∼ 0, and the wounded nucleon
model is precisely p = 1. Smaller, more negative values of
p pull the generalized mean toward a minimum function and
hence correspond to models with more extreme gluon satura-
tion effects.

The three models considered in Fig. 4 are by no means
an exhaustive list of proposed initial condition models, see
e.g. Refs. [90, 100–104]. Notably absent, for instance, is
the highly successful IP-Glasma model which combines IP-
Sat CGC initial conditions with classical Yang-Mills dynam-
ics to describe the full pre-equilibrium evolution of produced
glasma fields [18, 59, 105]. The IP-Glasma model lacks a sim-
ple analytic form for initial energy (or entropy) deposition at
the QGP thermalization time and so cannot be directly com-
pared to the generalized mean ansatz. In lieu of such a com-
parison, we examined the geometric properties of IP-Glasma
and TRENTo through their eccentricity harmonics εn .

We generated a large number of TRENTo events using en-
tropy deposition parameter p = 0, Gaussian nucleon width
w = 0.4 fm, and fluctuation parameter k = 1.6, which were
previously shown to reproduce the ratio of ellipticity and tri-
angularity in IP-Glasma [38]. We then free streamed [72, 98]
the events for τ = 0.4 fm/c to mimic the weakly coupled pre-
equilibrium dynamics of IP-Glasma and match the evolution
time of both models. Finally, we calculated the eccentricity
harmonics ε2 and ε3 weighted by energy density e(x, y) ac-
cording to the definition

εneinφ = −

∫
dx dy rneinφe(x, y)∫

dx dy e(x, y)
, (21)

where the energy density is the time-time component of the
stress-energy tensor after the free streaming phase, T00. The
resulting eccentricities, pictured in Fig. 5, are in good agree-
ment for all but the most peripheral collisions, where sub-

nucleonic structure becomes important. This similarity sug-
gests that TRENTo with p ∼ 0 can effectively reproduce the
scaling behavior of IP-Glasma, although a more detailed com-
parison would be necessary to establish the strength of corre-
spondence illustrated in Fig. 4.

Additionally, a participant quark model has been proposed
to describe the multiplicity and transverse-energy distribu-
tions of a variety of collision systems without a binary colli-
sion term [76, 106]. The model can be recast using an analytic
Glauber formalism to construct an effective entropy deposi-
tion mapping in the form of Eq. (13). However, the result-
ing mapping cannot be encapsulated by a single value of the
parameter p, so we do not attempt to support or exclude the
participant quark model in the present analysis.

III. PARAMETER ESTIMATION

With the full evolution model in hand, a number of im-
portant model parameters—related to both initial-state en-
tropy deposition and the QGP medium—remain undeter-
mined. These parameters typically correlate among each other
and affect multiple observables, hence, if we wish to describe
a wide variety of experimental observables, the only option is
a simultaneous fit to all parameters. However, it is not feasi-
ble to do this directly, since simulating observables at even a
single set of parameter values requires thousands of individual
events and significant computation time.

To overcome this limitation, we employ a Bayesian method
for parameter estimation with computationally expensive
models [23–26]. Briefly, the model is evaluated at a rela-
tively small O(102) number of parameter points, the output is
interpolated by a Gaussian process emulator, and the emula-
tor is used to systematically explore the parameter space with
Markov chain Monte Carlo methods. This section summarizes
the methodology; see Ref. [32] for a complete treatment.

TABLE I. Input parameter ranges for the initial condition and hy-
drodynamic models.

Parameter Description Range

Norm Overall normalization 100–250
p Entropy deposition parameter −1 to +1
k Multiplicity fluct. shape 0.8–2.2
w Gaussian nucleon width 0.4–1.0 fm
η/s hrg Const. shear viscosity, T < Tc 0.3–1.0
η/s min Shear viscosity at Tc 0–0.3
η/s slope Slope above Tc 0–2 GeV−1

ζ/s norm Prefactor for (ζ/s)(T ) 0–2
Tswitch Particlization temperature 135–165 MeV
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TABLE II. Experimental data to be compared with model calculations.

Observable Particle species Kinematic cuts Centrality classes Ref.

Yields dN/dy π±, K±, pp̄ |y | < 0.5 0–5, 5–10, 10–20, . . . , 60–70 [107]

Mean transverse momentum 〈pT 〉 π±, K±, pp̄ |y | < 0.5 0–5, 5–10, 10–20, . . . , 60–70 [107]

Two-particle flow cumulants vn {2} all charged |η | < 1 0–5, 5–10, 10–20, . . . , 40–50 [108]
n = 2, 3, 4 0.2 < pT < 5.0 GeV n = 2 only: 50–60, 60–70

A. Model parameters and observables

We choose a set of nine model parameters for estimation.
Four control the parametric initial state:

1. the overall normalization factor,

2. entropy deposition parameter p from the generalized
mean ansatz Eq. (14),

3. gamma shape parameter k, which sets nucleon multi-
plicity fluctuations in Eq. (12), and

4. Gaussian nucleon width w from Eq. (11), which deter-
mines initial-state granularity;

the remaining five are related to the QGP medium:

5–7. the three parameters (η/s hrg, min, and slope) in Eq. (4)
that set the temperature dependence of the specific shear
viscosity,

8. normalization prefactor for the temperature dependence
of bulk viscosity Eq. (5), and

9. particlization temperature Tswitch.

This parameter set will enable simultaneous characterization
of the initial state and medium, including any correlations.
Table I summarizes the parameters and their corresponding
ranges, which are intentionally wide to ensure that the optimal
values are bracketed.

Having designated the model parameters and ranges, we
generated a 300 point maximin2 Latin hypercube design [109]
in the nine-dimensional parameter space and executed O(104)
minimum-bias Pb+Pb events at each of the 300 points. Each
event consists of a single “bumpy” (i.e. Monte Carlo sampled)
initial condition and hydro simulation followed by multiple
samples of the freeze-out hypersurface. The number of sam-
ples is roughly inversely proportional to the event’s particle
multiplicity so that total particle production is constant across
all events—typically ∼5 samples for central events and up to
100 for peripheral events. This strategy leads to consistent sta-
tistical uncertainties across all parameter points and centrality
classes.

Parameter estimation relies on observables that are sensi-
tive to varying the model inputs. For example, bulk viscosity

2 A “maximin” design maximizes the minimum distance between points,
thereby reducing large gaps and tight clusters.

suppresses radial expansion, so a meaningful estimate of the
(ζ/s)(T ) normalization parameter requires some measure of
radial flow such as the mean transverse momentum. Indeed,
previous work has shown that finite bulk viscosity is neces-
sary to simultaneously fit both mean transverse momentum
and anisotropic flow [43].

For the present study we compare to the centrality depen-
dence of identified particle yields dN/dy and mean trans-
verse momenta 〈pT 〉 for charged pions, kaons, and protons
as well as two-particle anisotropic flow coefficients vn {2} for
n = 2, 3, 4. Table II summarizes the observables includ-
ing kinematic cuts, centrality classes, and experimental data,
which are all from the ALICE experiment, Pb+Pb collisions
at
√

sNN = 2.76 TeV [107, 108]. These observables charac-
terize the lowest-order moments of the transverse momentum
and flow distributions; including higher-order quantities such
as mean-square momenta 〈p2

T 〉 [33] and four-particle cumu-
lants vn {4} [110] could enable a more precise fit.

When computing simulated observables, we strive to repli-
cate experimental methods as closely as possible. We se-
lected the same centrality classes as the corresponding ex-
perimental data by sorting each design point’s minimum-bias
events by charged-particle multiplicity dNch/dη at midrapid-
ity (|η | < 0.5) and dividing the events into the desired per-
centile bins. We computed identified dN/dy and 〈pT 〉 by sim-
ple counting and averaging of the desired species at midra-
pidity (|y | < 0.5); no additional steps are necessary since the
experimental data are corrected and extrapolated to zero pT
[107]. Finally, we calculated flow coefficients for charged par-
ticles within the kinematic range of the ALICE detector using
the direct Q-cumulant method [111].

The top row of Fig. 8 (located later in Sec. IV) shows the
final observables for each of the 300 design points; their large
spreads arise from the wide input parameter ranges.

B. Gaussian process emulators

Central to the parameter estimation method is a statisti-
cal surrogate model that interpolates the model input param-
eter space and provides fast predictions of the output observ-
ables at arbitrary inputs. We use Gaussian process emulators
[27] as flexible, non-parametric interpolators. Essentially, this
amounts to assuming that the model follows a multivariate
normal distribution with mean and covariance functions de-
termined by conditioning on actual model calculations.

The full evolution model takes vectors x of n = 9 inputs



9

0 1000 2000 3000
Predicted dNπ±/dy

0

1000

2000

3000

O
bs

er
ve

d

0–5%
30–40%

0.4 0.5 0.6 0.7
Predicted 〈pT 〉π±

0.4

0.5

0.6

0.7

0.00 0.03 0.06 0.09 0.12

Predicted v2{2}

0.00

0.03

0.06

0.09

0.12

FIG. 6. (Color online) Validation of Gaussian process emulator predictions. Each panel shows predictions compared to explicit model
calculations at the 50 validation design points. The horizontal location and error bar of each point indicates the predicted value and uncertainty,
vertical indicates the explicitly calculated value and statistical uncertainty, and the diagonal gray line represents perfect agreement. Left:
charged pion yields dNπ±/dy, middle: mean pion transverse momenta 〈pT 〉π± , right: flow cumulant v2{2}; each in centrality bins 0–5% (blue
circles) and 30–40% (orange squares).

and produces a number of outputs (each centrality bin of each
observable is an output). For the moment consider only a sin-
gle output, e.g. pion dN/dy in 20–30% centrality (the specific
observable does not matter), and call it y. We have already
evaluated the model at m = 300 design points, i.e. an m × n
design matrix X = {x1, . . . ,xm }, and obtained the correspond-
ing m outputs y = {y1, . . . , ym }. Now, we assume that the
model is a Gaussian process with some covariance function
σ and condition it on the training data (X,y), yielding pre-
dictions for the outputs y∗ at some other points X∗ within the
design range. The predictive distribution for y∗ is the multi-
variate normal distribution

y∗ ∼ N (µ,Σ),

µ = σ(X∗,X )σ(X,X )−1y,

Σ = σ(X∗,X∗) − σ(X∗,X )σ(X,X )−1σ(X,X∗),

(22)

where µ is the mean vector and Σ the covariance matrix, and
the notation σ(·, ·) indicates a matrix from applying the co-
variance function to each pair of inputs, e.g.

σ(X,X ) =
*...
,

σ(x1,x1) · · · σ(x1,xm )
...

. . .
...

σ(xm ,x1) · · · σ(xm ,xm )

+///
-

. (23)

Thus, we obtain both the mean predicted output and corre-
sponding uncertainty at any desired input point. Generally,
the uncertainty is small near explicitly calculated points and
wide in gaps, reflecting the true state of knowledge of the in-
terpolation.

The covariance function σ quantifies the correlation be-
tween pairs of input points. We use a typical Gaussian func-

tion

σ(x,x′) = σ2
GP exp

[
−

n∑
k=1

(xk − x ′
k

)2

2`2
k

]
+ σ2

nδxx′ , (24)

which yields smoothly-varying processes with continuous
derivatives, making it a common choice for well-behaved
models. This form has several variable hyperparameters: the
overall variance of the Gaussian process σ2

GP, the correlation
lengths for each input parameter `k , and the noise variance σ2

n

which allows for statistical error. These hyperparameters may
be estimated from the training data by numerically maximiz-
ing the likelihood function

log P = −
1
2

yᵀΣ−1y −
1
2

log |Σ | −
m
2

log 2π, (25)

with Σ = σ(X,X ), i.e. the covariance function applied to the
inputs. This expression consists of a least-squares fit to the
data (first term), a complexity penalty to prevent overfitting
(second term), and a normalization constant (third term).

To this point we have considered only a single output.
Gaussian processes are fundamentally scalar functions, but
the model produces many outputs, all of which must be emu-
lated. This is readily solved by transforming the output data
into orthogonal and uncorrelated linear combinations called
principal components, then emulating each component with
an individual Gaussian process.

Let p be the number of model outputs, that is, given an m×n
design matrix X , the model produces an m×p output matrix Y .
The principal components Z are then computed by the linear
transformation

Z =
√

m YU (26)

where U are the eigenvectors of the sample covariance ma-
trix Y ᵀY . The Gaussian processes predict principal compo-
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nents Z∗ at input points X∗ which are then transformed back
to physical space as

Y∗ =
1
√

m
Z∗Uᵀ . (27)

Often, the p model outputs are strongly correlated and so
a much smaller number of principal components q � p ac-
count for most of the model’s variance. Thus one can use only
q components, reducing a high-dimensional output space to a
few one-dimensional problems with negligible loss of infor-
mation. We use q = 8 principal components, retaining over
99.5% of the variance from the original p = 68 outputs.

To validate the performance of the emulators, we generated
an independent 50 point Latin hypercube design from the orig-
inal design space, evaluated the full model at each validation
point, and compared the explicit model calculations to emu-
lator predictions. Figure 6 confirms that the emulators faith-
fully predict true model calculations. The predictions need not
agree perfectly at every point; ideally the residuals would be
normally distributed with mean zero and variance predicted
by the Gaussian processes.

C. Bayesian calibration

The final step in the parameter estimation method is to cali-
brate the model parameters to optimally reproduce experimen-
tal observables, thereby extracting probability distributions
for the true values of the parameters. According to Bayes’
theorem, the probability for the true parameters x? is

P(x? |X,Y,yexp) ∝ P(X,Y,yexp |x?)P(x?). (28)

The left-hand side is the posterior: the probability of x? given
the design X , computed observables Y , and experimental data
yexp. On the right-hand side, P(x?) is the prior probability—
encapsulating initial knowledge of x?—and P(X,Y,yexp |x?) is
the likelihood: the probability of observing (X,Y,yexp) given
a proposal x?.

The likelihood may be quickly computed using the princi-
pal component Gaussian process emulators constructed in the
previous subsection:

P = P(X,Y,yexp |x?)
= P(X, Z,zexp |x?)

∝ exp
{
−

1
2

(z? − zexp)ᵀΣ−1
z (z? − zexp)

}
, (29)

where z? = z?(x?) are the principal components predicted by
the emulators, zexp is the principal component transform of the
experimental data yexp, and Σz is the covariance (uncertainty)
matrix. As in previous work [29, 32], we assume a constant
fractional uncertainty on the principal components, so that the
covariance matrix is

Σz = diag(σ2
z zexp), (30)

with σz = 0.10 in the present study. This is a simple ansatz
intended to conservatively account for the various sources of

uncertainty in the experimental data, model calculations, and
emulator predictions. It certainly limits the meaning of quan-
titative uncertainties in the final estimated parameters and is
an obvious target for improvement in future studies.

We place a uniform prior on the model parameters, i.e. the
prior is constant within the design range and zero outside.
Combined with the likelihood (29) and Bayes’ theorem (28),
we can easily evaluate the posterior probability at any point in
parameter space.

Posterior distributions are typically constructed using
Markov chain Monte Carlo (MCMC) methods. MCMC al-
gorithms generate random walks through parameter space by
accepting or rejecting proposal points based on the posterior
probability; after many steps the chain converges to the de-
sired posterior.

We use the affine-invariant ensemble sampler [112, 113],
an efficient MCMC algorithm that uses a large ensemble of
interdependent walkers. We first run O(106) steps to allow
the chain to equilibrate, discard these “burn-in” samples, then
generate O(107) posterior samples.

IV. RESULTS

The primary result of this study is the posterior distribu-
tion for the model parameters, Fig. 7. In fact, this figure
contains two posterior distributions: one from calibrating to
identified particle yields dN/dy (blue, lower triangle), and
the other from calibrating to charged particle yields dNch/dη
(red, upper triangle). We performed the alternate calibration
to charged particles because the model could not simultane-
ously describe all identified particle yields for any parameter
values, as will be demonstrated shortly.

In Fig. 7, the diagonal plots are marginal distributions for
each model parameter (all other parameters integrated out)
from the calibrations to identified (blue) and charged (red)
particles, while the off-diagonals are joint distributions show-
ing correlations among pairs of parameters from the calibra-
tions to identified (blue, lower triangle) and charged (red, up-
per triangle) particles. Operationally, these are all histograms
of MCMC samples.

We discuss the posterior distributions in detail in the fol-
lowing subsections. First, let us introduce several ancillary
results.

Table III contains quantitative estimates of each parameter
extracted from the posterior distributions. The reported val-
ues are the medians of each parameter’s distribution, and the
uncertainties are highest-posterior density3 90% credible in-
tervals. Note that some estimates are influenced by limited
prior ranges, e.g. the lower bound of the nucleon width w.

Figure 8 compares simulated observables (see Table II) to
experimental data. The top row has explicit model calcula-
tions at each of the 300 design points; recall that all model

3 The highest-posterior density credible interval is the smallest range con-
taining the desired fraction of the distribution.
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FIG. 7. (Color online) Posterior distributions for the model parameters from calibrating to identified particles yields (blue, solid lines, lower
triangle) and charged particles yields (red, dashed lines, upper triangle). The diagonal has marginal distributions for each parameter, while the
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parameters vary across their full ranges, leading to the large
spread in computed observables. The bottom row shows em-
ulator predictions of 100 random samples from the identified
particle posterior distribution (these are visually indistinguish-
able for the charged particle posterior). Here, the model has
been calibrated to experiment, so its calculations are clustered
tightly around the data—although some uncertainty remains
since the samples are drawn from a posterior distribution of

finite width. Overall, the calibrated model provides an excel-
lent simultaneous fit to all observables except the pion/kaon
yield ratio, which (although it is difficult to see on a log scale)
deviates by roughly 10–30%. We address this deficiency in
the following subsections.
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FIG. 8. (Color online) Simulated observables compared to experimental data from the ALICE experiment [107, 108]. Top row: explicit model
calculations for each of the 300 design points, bottom: emulator predictions of 100 random samples drawn from the posterior distribution. Left
column: identified particle yields dN/dy, middle: mean transverse momenta 〈pT 〉, right: flow cumulants vn {2}.

A. Initial condition parameters

The first four parameters are related to the initial condition
model. Proceeding in order:

The normalization factor is not a physical parameter but
nonetheless must be tuned to fit overall particle production.
Both calibrations produced narrow posterior distributions,
with the identified particle result located slightly lower to
compromise between pion and kaon yields. There are some
mild correlations between the normalization and other param-
eters that affect particle production.

The TRENTo entropy deposition parameter p introduced
in Eq. (14) has a remarkably narrow distribution, with the two
calibrations in excellent agreement. The estimated value is es-
sentially zero with approximate 90% uncertainty ±0.2, mean-
ing that initial state entropy deposition is roughly proportional
to the geometric mean of participant nuclear thickness func-
tions, s ∼

√
T̃AT̃B . This confirms previous analysis of the

TRENTo model which demonstrated that p ≈ 0 simultane-
ously produces the correct ratio between initial state ellipticity
and triangularity and fits multiplicity distributions for a vari-
ety of collision systems [38]. We observe little correlation be-
tween p and any other parameters, suggesting that its optimal
value is mostly factorized from the rest of the model.

Further, recall that the p parameter smoothly interpolates
among different classes of initial condition models; Fig. 9
shows an expanded view of the posterior distribution along
with the approximate p-values for the other models in Fig. 4.
The EKRT model (and presumably IP-Glasma as well) lie
squarely in the peak—this helps explain their success—while
the KLN and wounded nucleon models are considerably out-

side.
The distributions for the multiplicity fluctuation parameter

k are quite broad, indicating that it’s relatively unimportant
for the present model and observables. Indeed, these fluctu-
ations are overwhelmed by nucleon position fluctuations in
large collision systems such as Pb+Pb.

The Gaussian nucleon width w has fairly narrow distribu-
tions mostly within 0.4–0.6 fm. It appears we did not ex-
tend the initial range low enough and so the posteriors are
truncated; however we still resolve peaks at ∼0.43 and ∼0.49
fm for the identified and charged particle calibrations, respec-
tively. Since the distributions are asymmetric, the median val-
ues are somewhat higher than the modes. The quantitative
estimates and uncertainties are in good agreement with the
gluonic widths extracted from deep inelastic scattering data at
HERA [114–116] and support the values used in EKRT and
IP-Glasma studies [18, 19]. We also observe striking correla-
tions between the nucleon width and QGP viscosities—this is

−1.0 −0.5 0.0 0.5 1.0
p

KLN EKRT WN

FIG. 9. (Color online) Posterior distribution of the TRENTo en-
tropy deposition parameter p introduced in Eq. (14). Approximate
p-values are annotated for the KLN (p ≈ 0.67 ± 0.01), EKRT
(p ≈ 0.0 ± 0.1), and wounded nucleon (p = 1) models.
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because decreasing the width leads to smaller scale structures
and steeper gradients in the initial state. So e.g. as the nucleon
width decreases, average transverse momentum increases, and
bulk viscosity must increase to compensate. This explains the
strong anti-correlation between w and ζ/s norm.

B. QGP medium parameters

The shear viscosity parameters (η/s)min,slope set the temper-
ature dependence of η/s according to the linear ansatz

(η/s)(T ) = (η/s)min + (η/s)slope(T − Tc ) (31)

for T > Tc . The full parametrization Eq. (4) also includes a
constant (η/s)hrg for T < Tc ; this parameter was included in
the calibration but yielded an essentially flat posterior distribu-
tion, implying that it has little to no effect. This is not surpris-
ing, since hadronic viscosity is largely handled by UrQMD,
not the hydrodynamic model. Therefore, we omit (η/s)hrg
from the posterior distribution visualizations and tables.

Examining the marginal distributions for η/s min and
slope, we see a clear preference for (η/s)min . 0.15 and
a slight disfavor of steep slopes; however, the marginal dis-
tributions do not paint a complete picture. The joint distri-
bution shows a salient correlation between the two parame-
ters, hence, while neither η/s min nor slope are strongly con-
strained independently, a linear combination is quite strongly
constrained. Figure 10 visualizes the complete estimate of the
temperature dependence of η/s via the median min and slope
from the posterior (for identified particles) and a 90% credi-
ble region. This visualization corroborates that the posterior
for (η/s)(T ) is markedly narrower than the prior and further
reveals that the uncertainty is smallest at intermediate temper-
atures, T ∼ 200–225 MeV. We hypothesize that this is the

TABLE III. Estimated parameter values (medians) and uncertainties
(90% credible intervals) from the posterior distributions calibrated
to identified and charged particle yields (middle and right columns,
respectively). The distribution for Tswitch based on charged particles
is essentially flat, so we do not report a quantitative estimate.

Calibrated to:

Parameter Identified Charged

Normalization 120.+8.
−8. 132.+11.

−11.

p −0.02+0.16
−0.18 0.03+0.16

−0.17

k 1.7+0.5
−0.5 1.6+0.6

−0.5

w [fm] 0.48+0.10
−0.07 0.51+0.10

−0.09

η/s min 0.07+0.05
−0.04 0.08+0.05

−0.05

η/s slope [GeV−1] 0.93+0.65
−0.92 0.65+0.77

−0.65

ζ/s norm 1.2+0.2
−0.3 1.1+0.5

−0.5
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FIG. 10. (Color online) Estimated temperature dependence of the
shear viscosity (η/s)(T ) for T > Tc = 0.154 GeV. The gray shaded
region indicates the prior range for the linear (η/s)(T ) parametriza-
tion Eq. (31), the blue line is the median from the posterior distribu-
tion, and the blue band is a 90% credible region. The horizontal gray
line indicates the KSS bound η/s ≥ 1/4π [12–14].

most important temperature range for the present observables
at
√

sNN = 2.76 TeV—perhaps it is where the system spends
most of its time and hence where most anisotropic flow de-
velops, for instance—and thus the data provide a “handle” for
η/s around 200 MeV. Data at other beam energies and other,
more sensitive observables could provide additional handles
at different temperatures, enabling a more precise estimate of
the temperature dependence of η/s.

This result for (η/s)(T ) supports several recent findings us-
ing other models: a detailed study using the EKRT model [19]
showed that a combination of RHIC and LHC data prefer a flat
or shallow high-temperature slope, while an analysis using
a three-dimensional constituent quark model [117] demon-
strated that a similar flat or shallow slope best describes the
rapidity dependence of elliptic flow at RHIC. In addition, the
estimated temperature-averaged shear viscosity is consistent
with the (constant) η/s = 0.095 reported [43] using the IP-
Glasma model and the same bulk viscosity parametrization,
Eq. (5). Finally, the present result remains compatible (within
uncertainty) with the KSS bound η/s ≥ 1/4π [12–14].

One should interpret the estimate of (η/s)(T ) depicted in
Fig. 10 with care. We asserted a somewhat restricted lin-
ear parametrization reaching a minimum at a fixed temper-
ature, and evidently may not have extended the prior range
for the slope high enough to bracket the posterior distribu-
tion; these assumptions, along with the flat 10% uncertainty
(see Eq. (30)), surely affect the precise result. And in general,
a credible region is not a strict constraint—the true function
may lie partially or completely (however improbably) outside
the estimated region. Yet the overarching message holds: we
find the least uncertainty in η/s at intermediate temperatures,
and estimate that its temperature dependence has at most a
shallow positive slope.

For the ζ/s norm (the prefactor for the parametrization
Eq. (5)), the calibrations yielded clearly peaked posterior dis-
tributions located slightly above one. Hence, the estimate is
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FIG. 11. (Color online) Model calculations using the high-probability parameters listed in Table IV. Solid lines are calculations using
parameters based on the identified particle posterior, dashed lines are based on the charged particle posterior, and points are data from the
ALICE experiment [107, 108]. Top row: calculations of identified or charged particle yields dN/dy or dNch/dη (left), mean transverse
momenta 〈pT 〉 (middle), and flow cumulants vn {2} (right) compared to data. Bottom: ratio of model calculations to data, where the gray band
indicates ±10%.

comfortably consistent with leaving the parametrization un-
scaled, as in [43]. As noted in the previous subsection, there
is a strong anti-correlation between ζ/s norm and the nucleon
width. We also observe a positive correlation with η/s min,
which initially seems counterintuitive. This dependence arises
via the nucleon width: increasing bulk viscosity requires de-
creasing the nucleon width, which in turn necessitates increas-
ing shear viscosity to damp out the excess anisotropy. Given
the previously mentioned shortcomings in the current treat-
ment of bulk viscosity (neglecting bulk corrections at parti-
clization, lack of a dynamical pre-equilibrium phase), we re-
frain from making any quantitative statements. What is clear,
however, is that a nonzero bulk viscosity is necessary to si-
multaneously describe transverse momentum and flow data.

The distributions for the particlization temperature Tswitch
have by far the most dramatic difference between the two
calibrations. The posterior from identified particle yields
shows a sharp peak centered at T ≈ 148 MeV, just below
Tc = 154 MeV; but with charged particle yields, the distribu-
tion is nearly flat. This is because the final particle ratios—
while somewhat modified by scatterings and decays in the
hadronic phase—are largely determined by the thermal ratios
at the particlization temperature. So, when we require the
model to describe identified particle yields, Tswitch is tightly
constrained; on the other hand, lacking these data there is lit-
tle else to determine an optimal switching temperature. This
reinforces the original hybrid model postulate—that both hy-
dro and Boltzmann transport models predict the same medium
evolution within a temperature window [49–51].

Note that, while we do see a narrow peak for Tswitch, the
model cannot simultaneously fit pion, kaon, and proton yields;
in particular, the pion/kaon ratio is 10–30% low. The peak
thus arises from a compromise between pions and kaons—
not an ideal fit—so we do not consider the quantitative value
of the peak to be particularly meaningful. This is a long-

TABLE IV. High-probability parameters chosen based on the poste-
rior distributions and used to generate Fig. 11. Pairs of values sep-
arated by slashes are based on identified / charged particle yields,
respectively. Single values are the same for both cases.

Initial condition QGP medium

norm 120. / 129. η/s min 0.08
p 0.0 η/s slope 0.85 / 0.75 GeV−1

k 1.5 / 1.6 ζ/s norm 1.25 / 1.10
w 0.43 / 0.49 fm Tswitch 0.148 GeV

standing issue in hybrid models [118] and therefore likely in-
dicates a more fundamental problem with the particle produc-
tion scheme rather than one with this specific model.

C. Verification of high-probability parameters

As a final verification of emulator predictions and the
model’s accuracy, we calculated a large number of events us-
ing high-probability parameters and compared the resulting
observables to experiment. We chose two sets of parame-
ters based on the peaks of the posterior distributions, listed
in Table IV. These values approximate the “most probable”
parameters and the corresponding model calculations should
optimally fit the data.

We evaluated O(105) minimum-bias events (no emulator)
for each set of parameters and computed observables, shown
along with experimental data in Fig. 11. Solid lines represent
calculations using parameters based on the identified particle
posterior while dashed lines are based on the charged parti-
cle posterior. Note that these calculations include a peripheral
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centrality bin (70–80%) that was not used in parameter esti-
mation.

We observe an excellent overall fit; most calculations are
within 10% of experimental data, the notable exceptions be-
ing the pion/kaon ratio (discussed in the previous subsection)
and central elliptic flow, both of which are general problems
within this class of models. Total charged particle produc-
tion is nearly perfect—within 2% of experiment out to 80%
centrality—indicating that the issues with identified particle
ratios arise in the particlization and/or hadronic phases, not in
initial entropy production. The v2 mismatch in the most cen-
tral bin is a manifestation of the experimental observation that
elliptic and triangular flow converge to nearly the same value
in ultra-central collisions [108, 119], a phenomenon that hy-
drodynamic models have yet to explain [120, 121].

V. SUMMARY AND CONCLUSIONS

We have used Bayesian methodology to quantitatively es-
timate initial condition and transport properties of the QGP
medium produced in relativistic heavy-ion collisions. We cou-
pled a parametric initial condition model to viscous hydrody-
namics and a hadronic afterburner, calibrated the full model
to a variety of bulk observables, and established a number of
salient constraints on model parameters, including a relation
between the minimum value and slope of the temperature-
dependent shear viscosity, a clear signal for a nonzero bulk
viscosity, and a robust constraint on initial state entropy depo-
sition.

The parametric initial condition model used in this anal-
ysis, TRENTo, smoothly interpolates among various physi-
cally reasonable entropy deposition schemes, ranging from a
wounded nucleon model to specific calculations in color glass
condensate effective field theory. This flexibility is ideal for
model-to-data comparison, since it allows the analysis frame-
work to optimize the initial conditions with minimal theoreti-
cal assumptions.

The heavy-ion collision transport dynamics were simulated
using an event-by-event hybrid model with viscous hydrody-
namics for the early hot and dense stage and a microscopic
hadronic afterburner for the later dilute stage. The hydro-
dynamic model uses a modern continuum extrapolated lat-
tice equation of state and implements temperature-dependent
shear and bulk viscous corrections. To constrain the viscosi-
ties, we parametrized their temperature dependence with sev-
eral tunable model parameters for optimization.

With the full evolution model in hand, we applied Bayesian
methods to estimate its various input parameters. We evalu-
ated the model at several hundred points in parameter space,
calculated bulk observables at each point, and trained a Gaus-
sian process emulator to interpolate the model calculations.
Then, we used a Markov chain Monte Carlo (MCMC) al-
gorithm to systematically explore parameter space—with the
emulator acting as a stand-in for the complete model—and
calibrate the model to optimally reproduce experimental data,
thereby extracting posterior probability distributions for all
parameters and their correlations.

The primary results of this work are the posterior distri-
butions, shown in Fig. 7, and the corresponding quantitative
estimates of each parameter, presented in Table III. These dis-
tributions contain a wealth of information about QGP initial
condition and medium properties; here we summarize the key
features:

1. Based on the TRENTo initial condition parametrization,
we find that initial entropy deposition is approximately
proportional to the geometric mean of local participant
nuclear densities. This scaling is functionally similar to
the notably successful EKRT and IP-Glasma models.

2. The preferred Gaussian nucleon width is roughly 0.5 ±
0.1 fm, consistent with values extracted from HERA
deep inelastic scattering data.

3. For the temperature-dependent specific shear viscosity
(η/s)(T ), we asserted a linear parametrization reaching
its minimum at the QCD phase transition temperature.
The data cannot individually constrain both the mini-
mum value and the slope, but do constrain a linear com-
bination, as shown in Fig. 10. The uncertainty on η/s
is smallest at intermediate temperatures, T ∼ 200–225
MeV; we hypothesize that this is the most important tem-
perature range at

√
sNN = 2.76 TeV, and that including

data from additional beam energies would enable a more
precise estimate of (η/s)(T ).

4. We observe a clear preference for a nonzero bulk viscos-
ity, which is necessary to simultaneously describe trans-
verse momentum and flow data. We refrain from making
any quantitative statements given current limitations in
the treatment of bulk viscosity.

5. The result for the particlization temperature (when the
model switches from hydrodynamics to hadronic after-
burner) depends strongly on the observables used for cal-
ibration. When fitting to identified pion, kaon, and pro-
ton yields, the temperature is tightly constrained just be-
low the QCD transition temperature. On the other hand,
when the identified yields are replaced with total charged
particle yields, there is essentially no preference within
the considered range. This implies that both stages of the
hybrid model simulate the same medium evolution near
the QGP transition, but not the same hadronic chemistry.

The aforementioned parameter estimates allow us to assess
the performance of a systematically optimized model. To this
end, we evaluated the full model using high-probability pa-
rameters based on the posterior distributions. The resulting
charged particle yields, mean transverse momenta, and flow
cumulants agree with experiment at the 10% level, as shown
in Fig. 11.

In future work, we plan to include data from multiple beam
energies—we anticipate that a combined analysis of data at
√

sNN = 200 GeV, 2.76 TeV, and 5.02 TeV will enable a pre-
cise extraction of temperature-dependent QGP transport coef-
ficients. We will also consider new, sensitive observables such
as correlations between flow harmonics of different order.

We will implement several improvements to the physical
models, including a free streaming stage for pre-equilibrium
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dynamics and bulk viscous corrections at particlization. These
changes will especially improve estimates of the specific bulk
viscosity ζ/s.

Finally, we plan to improve the treatment of experimen-
tal and model uncertainties, essential for rigorous quantitative
uncertainties on estimated parameters.

All code used in this study is publicly avail-
able: the TRENTo initial condition model at
qcd.phy.duke.edu/trento, the iEBE-VISHNU
package at u.osu.edu/vishnu, UrQMD at
urqmd.org, the workflow for generating events at
github.com/jbernhard/heavy-ion-collisions-osg,
and the source for this manuscript including all figures and
tables at github.com/Duke-QCD/trento-paper-2.
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