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Fermions become polarized in a vortical fluid due to spin-vorticity coupling. Such a polarization
can be calculated from the Wigner function in a quantum kinetic approach. Extending previous
results for chiral fermions, we derive the Wigner function for massive fermions up to the next-to-
leading order in spatial gradient expansion. The polarization density of fermions can be calculated
from the axial vector component of the Wigner function and is found to be proportional to the local
vorticity ω. The polarizations per particle for fermions and anti-fermions decrease with the chemical
potential and increase with energy (mass). Both quantities approach the asymptotic value ~ω/4
in the large energy (mass) limit. The polarization per particle for fermions is always smaller than
that for anti-fermions, whose ratio of fermions to anti-fermions also decreases with the chemical
potential. The polarization per particle on the Cooper-Frye freeze-out hyper-surface can also be
formulated and is consistent with the previous result of Becattini et al..

I. INTRODUCTION

In non-central high-energy heavy-ion collisions, the large orbital angular momentum present in the colliding system
can lead to non-vanishing local vorticity in the hot and dense fluid [1–6]. The vorticity induced by global orbital
angular momentum in the fluid can be considered as local rotational motion of particles [3, 4, 7, 8]. It is closely
related to the rapidity dependence of the v1 flow and shear of the longitudinal flow velocity inside the reaction plane
[5, 9, 10].

As a result of spin-orbital coupling, quarks and anti-quarks can become polarized along the normal direction of the
reaction plane [1, 2, 5]. Through hadronization of polarized quarks and anti-quarks, hyperons can also be polarized in
the same direction in the final state [1, 2, 11]. Measurements of such global hyperon polarization is feasible through the
parity-violating decay of hyperons [12, 13]. Such measurements will shed light on properties of the vortical structures
of the strongly coupled quark-gluon plasma (sQGP) in high-energy heavy-ion collisions.

Quark and anti-quark polarization in a vortical fluid is also closely related to the Chiral Magnetic and Vortical
Effects [14–19]. From the solutions of Wigner functions for chiral or massless fermions in a quantum kinetic approach
one can derive the axial current jµ5 = ρ5u

µ+ξ5ω
µ+ξB5 B

µ, where ρ5 is the axial charge density, uµ is the fluid velocity,
ωµ ≡ 1

2ǫ
µσαβuσ∂αuβ is the vorticity 4-vector, and Bµ = 1

2ǫ
µνλσuνFλσ is the 4-vector of the magnetic field with Fλρ

being the strength tensor of the electromagnetic field. The coefficients ξ5 and ξB5 are all functions of temperatures
and chemical potentials µ and µ5 [19]. In a three-flavor quark matter with u, d and s quarks and their anti-quarks,
ξB5 = 0. In other words, the axial current in a three-flavor quark matter is blind to the magnetic field and solely
induced by the vorticity. Such an axial current leads to the Local Polarization Effect [19] which is also connected to
the spin-vorticity coupling for chiral or massless fermions [20].

In this paper, we will extend our Wigner function method for massless fermions to massive ones and formulate the
polarization of massive fermions induced by vorticity. In Section II, we will give a brief introduction to the Wigner
function method and derive the equations for the Wigner function components for massive fermions based on Ref.
[21, 22]. The Wigner function components can be determined perturbatively by gradient expansion. In Section III,
we will derive the Wigner function at the leading order by definition. Using the projection method we can extract
each component of the Wigner function at the leading order. We will propose the first order solution for the axial
vector component in Section IV by extending the solution for massless fermions. In Section V, we will show that the
axial vector component can be regarded as the spin density in phase space. We can obtain the polarization density
after completion of momentum integration of the axial vector component in Section VI. We will also formulate the
fermion polarization on the freezeout hypersurface by extending the Cooper-Frye formula. We will give a summary
of the results in the final section.

We adopt the same sign conventions for fermion charge Q as in Refs. [19, 20, 22, 23], and the same sign convention
for the axial vector Aµ ∼

〈

ψ̄γµγ5ψ
〉

as in Resf. [19, 20, 23] but different sign convention from Ref. [22].
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II. WIGNER FUNCTION FOR MASSIVE FERMIONS

In this section we will give a brief introduction to the Wigner function and its kinetic equation for massive fermions
based on Refs. [21, 22]. There are also other earlier works in the literature along this line [24, 25]. In a background
electromagnetic field, the quantum mechanical analogue of a classical phase-space distribution for fermions is the
gauge invariant Wigner function Wαβ(x, p) defined by

Wαβ(x, p) =

ˆ

d4y

(2π)4
e−ip·y

〈

ψ̄β(x+
1

2
y)PU(G, x+

1

2
y, x− 1

2
y)ψα(x−

1

2
y)

〉

, (1)

where ψα and ψ̄β are fermionic quantum fields, 〈Ô〉 denotes the grand canonical ensemble averaging and normal
ordering, x = (x0,x) and p = (p0,p) are time-space and energy-momentum 4-vectors respectively, and the gauge link
PU(G, x1, x2) is to ensure the gauge invariance of the Wigner function and given by

PU(G, x+
1

2
y, x− 1

2
y) = P exp

[

−iQyµ
ˆ 1

0

dsGµ(x−
1

2
y + sy)

]

, (2)

where Gµ is the gauge potential of the classical electromagnetic field.
The Wigner function in (1) satisfies the following equation of motion,

(γµK
µ −m)W (x, p) = 0, (3)

where the operator Kµ is given by

Kµ = pµW + i~
1

2
∇µ, (4)

with

pµW = pµ − ~
1

2
Qj1(∆)Fµν∂p ν ,

∇µ = ∂µx −Qj0(∆)Fµν∂p ν , (5)

where we have used ∆ ≡ 1
2~∂p · ∂x with the operator ∂x in ∆ acting only on the strength tensor Fµν , and j0(x) =

sin(x)/x and j1(x) = (sin(x)− xcos(x))/x2 are spherical Bessel functions. If Fµν is a constant we have simpler forms
of these operators

pµW = pµ,

∇µ = ∂µx −QFµν∂p ν . (6)

The Wigner function is a 4 × 4 matrix in Dirac indices and can be decomposed into 16 independent generators of
Clifford algebra,

W =
1

4

[

F + iγ5P + γµVµ + γ5γµAµ +
1

2
σµνSµν

]

, (7)

where the generators of Clifford algebra are

Γi = 1, γ5 = iγ0γ1γ2γ3, γµ, γ5γµ, σµν =
i

2
[γµ, γν ], (8)

corresponding to the scalar, pseudoscalar, vector, axial vector and tensor components respectively. The coefficients
in the decomposition (7) can be obtained by projection of corresponding Dirac matrices on the Wigner function and
taking traces,

F = Tr[W ],

P = −iTr[γ5W ],

V µ = Tr[γµW ],

Aµ = Tr[γµγ5W ],

Sµν = Tr[σµνW ]. (9)
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Substituting Eq. (7) into Eq. (3) with (6) and comparing common terms in the basis of Clifford algebra, we obtain
the following system of equations,

KµVµ −mF = 0,

KµAµ + imP = 0,

KµF + iKνSνµ −mVµ = 0,

iKµP +
1

2
ǫµβνσK

βSνσ +mAµ = 0,

−i(KµVν −KνVµ)− ǫµναβKαAβ −mSµν = 0. (10)

The real parts of the above equations are

pµVµ −mF = 0,

1

2
~∇µAµ +mP = 0,

pµF −
1

2
~∇νSνµ −mVµ = 0,

−1

2
~∇µP +

1

2
ǫµβνσp

βSνσ +mAµ = 0,

1

2
~(∇µVν −∇νVµ)− ǫµναβpαAβ −mSµν = 0. (11)

The imaginary parts are

~∇µVµ = 0,

pµAµ = 0,

1

2
~∇µF + pνSνµ = 0,

pµP +
1

4
~ǫµβνσ∇βSνσ = 0,

(pµVν − pνVµ) +
1

2
~ǫµναβ∇αAβ = 0. (12)

From the 3rd and the 5th line of the imaginary part equations (12) we obtain,

p · ∇F = 0, (13)

and

~(∇λAρ −∇ρAλ)− 2ǫµνλρpµVν = 0, (14)

respectively, where we have multiplied ǫµνλρ to the equation and used ǫµνλρǫµναβ = −2(δλαδρβ − δλβδ
ρ
α). Taking

contraction of the above equation with pλ, we obtain

p · ∇Aρ = pλ∇ρAλ = QF ρξAξ, (15)

where we have used pµAµ = 0 from the 2nd line of Eqs. (12).
From the 1st and 3rd lines of real part equations (11), we obtain

(p2 −m2)F =
1

2
~pµ∇νSνµ ≈

1

2
~QFµνSµν , (16)

where we have neglected the second order term ~∇ν(pµSνµ) ∼ ~
2. Inserting the 5th line into the 4th line in Eqs. (11)

and neglecting the second order term ~∇µP ∼ ~
2, we obtain

(p2 −m2)Aµ =
1

2
~ǫµβνσp

β∇νV σ

= −1

2
~QǫµβνσF

βνV σ = −~QF̃µσV
σ. (17)
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where we have neglected the second order term ~ǫµβνσ∇ν(pβV σ) ∼ ~
2 following the last line of Eqs. (12). Here we

have used F̃ ρλ = 1
2ǫ

ρλµνFµν .
From the 2nd, 3rd and 5th lines of Eqs. (11), the pseudoscalar, vector and tensor components are

P = − 1

2m
~∇µAµ,

Vµ =
1

m
pµF −

1

2m
~∇νSνµ,

Sνσ =
1

2m
~(∇νV σ −∇σV ν)− 1

m
ǫνσαβpαAβ . (18)

Substituting the above into Eqs. (16,17), we obtain a closed system of on-shell equations for F and Aµ up to O(~).
We now collect all equations for F and Aµ,

pµAµ = 0,

p · ∇Aρ = QF ρξAξ,

p · ∇F = 0,

(p2 −m2)F = − 1

2m
~QFµνǫ

µναβpαAβ ,

(p2 −m2)Aµ = − 1

m
~QF̃µσp

σF, (19)

which make a closed system of equations for F and Aµ and can be solved perturbatively in powers of ~. The last two
equations relate the solutions of the lower order to the higher order. Having F and Aµ, we can determine P , V µ and
Sµν through Eq. (18).

III. WIGNER FUNCTION COMPONENTS AT LEADING ORDER

At leading order of electromagnetic interaction, the gauge link in the Wigner function in Eq. (1) can be set to 1,
then we have following simple form

Wαβ(x, p) =

ˆ

d4y

(2π)4
e−ip·y

〈

ψ̄β(x+
y

2
)ψα(x−

y

2
)
〉

. (20)

We can expand fermionic fields in momentum space using creation and destruction operators as

ψ(x) =
1√
Ω

∑

k,s

1√
2Ek

[a(k, s)u(k, s)e−ik·x + b†(k, s)v(k, s)eik·x],

ψ̄(x) =
1√
Ω

∑

k,s

1√
2Ek

[a†(k, s)ū(k, s)eik·x + b(k, s)v̄(k, s)e−ik·x], (21)

where Ω is the volume and s = ± denote the spin state parallel or anti-parallel to the spin quantization direction n

in the rest frame of the particle. Insert the above into Eq. (20), we obtain

Wαβ(x, p) =
1

(2π)3
δ(p2 −m2)

{

θ(p0)
∑

s

fFD(Ep − µs)uα(p, s)ūβ(p, s)

−θ(−p0)
∑

s

fFD(Ep + µs)vα(−p, s)v̄β(−p, s)
}

, (22)

where we have used
〈

a†(p, s)a(p, s)
〉

= fFD(Ep − µs) and
〈

b†(−p, s)b(−p, s)
〉

= fFD(Ep + µs) with the Fermi-Dirac

distribution defined by fFD = 1/(eβx + 1) (β ≡ 1/T , T is temperature) and µs is the chemical potential for the
fermions with spin state s.

From Eq. (22) we can extract the scalar, vector and axial vector components by applying Eq. (9). We extract the
scalar component as

F(0) = Tr[W ] = mδ(p2 −m2)V (23)
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where we have used ū(p, s)u(p, s) = 2m and v̄(−p, s)v(−p, s) = −2m, and

V ≡ 2

(2π)3

∑

s

[

θ(p0)fFD(p0 − µs) + θ(−p0)fFD(−p0 + µs)
]

. (24)

For the vector component, we have

V µ
(0) = Tr[γµW ] = pµδ(p2 −m2)V, (25)

where we have used ū(p, s)γµu(p, s) = 2(Ep,p) and v̄(−p, s)γµv(−p, s) = 2(Ep,−p). For the axial vector component,
we obtain

Aµ
(0) = Tr[γµγ5W ]

= m [θ(p0)n
µ(p,n)− θ(−p0)nµ(−p,−n)] δ(p2 −m2)A, (26)

where we have defined

A ≡ 2

(2π)3

∑

s

s
[

θ(p0)fFD(p0 − µs) + θ(−p0)fFD(−p0 + µs)
]

, (27)

and used ū(p, s)γµγ5u(p, s) = 2msnµ(p,n) and v̄(−p, s)γµγ5v(−p, s) = 2msnµ(−p,−n) with nµ(p,n) given by

nµ(p,n) = Λµ
ν(v)n

ν(0,n) =

(

n · p
m

,n+
(n · p)p

m(m+ Ep)

)

. (28)

Here Λµ
ν(v) is the Lorentz transformation for v = p/Ep and nν(0,n) = (0,n) is the 4-vector of the spin quantization

direction in the rest frame of the fermion. One can check that nµ(p,n) satisfies n2 = −1 and n · p = 0, so it behaves
like a spin 4-vector up to a factor of 1/2. For Pauli spinors χs and χs′ in u(p, s) and v(−p, s′) respectively, we have

χ†
sσχs = sn and χ†

s′σχs′ = −s′n. We can take the massless limit by setting n = p̂, then we havemnµ(p,n)→ (|p|,p)
and mnµ(−p,−n)→ (|p|,−p). This way we can recover the previous result of the axial vector component for massless
fermions [19, 23],

Aµ
(0) → δ(p2)

2

(2π)3
pµ

∑

s

s

{

θ(p0)fFD(p0 − µs) + θ(−p0)fFD(−p0 + µs)

}

, (29)

where s = ± now denote the right-handed and left-handed fermions.

IV. AXIAL VECTOR COMPONENT AT NEXT-TO-LEADING ORDER

We start with the solution to the Wigner function for chiral or massless fermions [19, 20, 23]. It is well known that
in this case the vector and axial vector components decouple from the rest of other components. Their solutions can
be recombined into the chiral components of right-hand and left-hand,

J ρ
(0)s(x, p) = pρfsδ(p

2),

J ρ
(1)s(x, p) = −s

2
~Ω̃ρσpσ

dfs
d(βp0)

δ(p2)− sQ~F̃ ρλpλfs
δ(p2)

p2
, (30)

where s = ± denote right-hand/left-hand helicity, p0 ≡ u · p, Ω̃ρσ = 1
2ǫ

ρσµν∂µ(βuν), F̃
ρλ = 1

2ǫ
ρλµνFµν , and fs are

distribution functions of chiral fermions defined by

fs(x, p) =
2

(2π)3
[θ(p0)fFD(p0 − µs) + θ(−p0)fFD(−p0 + µs)] . (31)

and

dfs
d(βp0)

=
2

(2π)3

[

θ(p0)
d

d(βp0)
fFD(p0 − µs)− θ(−p0)

d

d(−βp0)
fFD(−p0 + µs)

]

. (32)
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Note that in the definition of the dual vorticity tensor Ω̃ρβ in Eq. (30) we have included the factor β = 1/T inside
∂µ, which is different from the convention (without such a factor) in Refs. [19, 20, 23]. The chiral components in Eq.
(30) are related to the vector and axial vector components by

V ρ(x, p) = J ρ
+(x, p) + J ρ

−(x, p),

Aρ(x, p) = J ρ
+(x, p)−J ρ

−(x, p). (33)

Now we try to extend Eq. (30) to massive fermions. We recall that the vector and axial vector components at the
leading or zeroth order are given by Eqs. (25) and (26),

V µ
(0) = pµδ(p2 −m2)V,

Aµ
(0) = m [θ(p0)nσ(p̄, n0)− θ(−p0)nσ(−p̄,−n0)] δ(p

2 −m2)A, (34)

where V = f+ + f− and A = f+ − f− are given by Eqs. (24) and (27). Note that we have written relevant quantities

in covariant forms with fluid velocity: p0 → u ·p, (0,p)→ p̄α = pα− (u ·p)uα, Ep =
√

m2 − p̄2 = |u ·p|. In particular,
we have re-written nµ(p,n) and nµ(−p,−n) from Eq. (26) as

nµ(p,n)→ nµ(p̄, n0) = −n0 · p̄
m

uµ + nµ
0 −

n0ξp̄
ξ p̄µ

m(m+ Ep)
,

nµ(−p,−n)→ nµ(−p̄,−n0) = −n0 · p̄
m

uµ − nµ
0 +

n0ξp̄
ξ p̄µ

m(m+ Ep)
, (35)

where nα
0 = (0,n) is the four-vector in the co-moving frame of the fluid cell and satisfies n0 · u = 0. We now propose

the following form for the axial component at the first order for massive fermions based on the solution in Eq. (30),

Aα
(1)(x, p) = −1

2
~Ω̃ασpσ

dV

d(βp0)
δ(p2 −m2)−Q~F̃αλpλV

δ(p2 −m2)

p2 −m2
, (36)

where the first term is induced by the vorticity. We can check that the above Aα
(1)(x, p) satisfies the first and last

equation of (19). The kinetic equation, the second equation of Eq. (19), can be imposed for Aα
(1)(x, p). We will show

in the next section that the axial vector can give the spin 4-vector, so we can calculate the polarization density from
the vorticity term of Aα

(1)(x, p) in Eq. (36).

V. ENERGY-MOMENTUM AND SPIN TENSOR/VECTOR DENSITY FROM THE WIGNER
FUNCTION

The symmetrized Lagrange density for a free Dirac particle is

L = ψ̄(
1

2
iγµ
←→
∂ µ −m)ψ, (37)

where
←→
∂ =

−→
∂ −←−∂ . The energy-momentum tensor can be obtained,

T µν =
∂L

∂(∂µψ)
∂νψ + ∂νψ† ∂L

∂(∂µψ†)
− gµνL

=
1

2
iψ̄γµ

←→
∂ νψ − gµνψ̄(1

2
iγµ
←→
∂ µ −m)ψ. (38)

When taking ensemble average of T µν , we will use the Dirac equation and assume all fields are on-shell. So we have

〈T µν(x)〉 =
1

2
i
〈

ψ̄(x)γµ
←→
∂ ν

xψ(x)
〉

− gµν
〈

ψ̄(
1

2
iγα
←→
∂ α −m)ψ

〉

=

ˆ

d4ppνTr(γµW )− gµν
ˆ

d4p [pµTr(γ
µW )−mTr(W )]

=

ˆ

d4ppνV µ, (39)
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where we have used pµVµ = mF , the first line of Eqs. (11) and

Wαβ(x, p) =

ˆ

d4y

(2π)4
e−ip·y

〈

ψ̄β(x+
y

2
)ψα(x −

y

2
)
〉

lim
y→0

∂µy

〈

ψ̄β(x+
y

2
)ψα(x−

y

2
)
〉

=
1

2

〈

[∂µx ψ̄β(x)]ψα(x) − ψ̄β(x)∂
µ
xψα(x)

〉

= i

ˆ

d4ppµWαβ(x, p). (40)

The spin tensor density is defined by

Mαβ(x) = ψ†(x)
1

2
σαβψ(x) =

1

2
Tr

[

γ0σ
αβψ(x)ψ̄(x)

]

. (41)

Taking the ensemble average of the spin tensor, we can also express it in terms of the Wigner function,

〈

Mαβ(x)
〉

=
1

2
lim
y→0

Tr
[

γ0σ
αβψ(x− y

2
)ψ̄(x +

y

2
)
]

=
1

2

ˆ

d4pTr
[

γ0σ
αβW (x, p)

]

. (42)

Then we can define the spin tensor component in the Wigner function as

Mαβ(x, p) ≡ 1

2
Tr

[

γ0σ
αβW (x, p)

]

=
1

2

[

−ǫ0αβρAρ + igα0Tr(γβW )− igβ0Tr(γαW )
]

, (43)

where we have used γµσνα = i(gµνγα − gµαγν) + ǫµναλγ5γλ. If we take αβ = ij (spatial indices), we have a simple
relation

M ij(x, p) = −1

2
ǫijkAk(x, p) =

1

2
ǫijkAk(x, p), (44)

where ǫijk is 3-dimensional anti-symmetric tensor. The above property can also be seen by the spatial components of
Aµ(x)

Ai(x) = ψ̄(x)γiγ5ψ(x) = ψ†(x)γ0γiγ5ψ(x) = ψ†(x)Σiψ(x), (45)

where Σi = diag(σi, σi) with σi being the Pauli matrices. Thus we recognize that Ai(x, p)/2 corresponds to the spin
vector component of the Wigner function from which we can calculate the polarization density.

VI. POLARIZATION FROM AXIAL VECTOR COMPONENT

We can now calculate the polarization of massive fermions from the axial vector component obtained in Section
V. At the leading order, we can obtain the polarization density by integrating Aα

(0) in Eq. (26) or Eq. (34) over the
4-momentum,

Πα
(0)(x) =

1

2

ˆ

d4p Aα
(0)(x, p)

=
1

2
m

ˆ

d3p

(2π)3
1

Ep

∑

s

s

[

nα(p̄, n0)
1

eβ(Ep−µs) + 1
− nα(−p̄,−n0)

1

eβ(Ep+µs) + 1

]

= −1

2
uα
ˆ

d3p

(2π)3
n0 · p̄
Ep

∑

s

s

[

1

eβ(Ep−µs) + 1
− 1

eβ(Ep+µs) + 1

]

+

ˆ

d3p

(2π)3
m

2Ep

[

nα
0 −

(n0 · p̄)p̄α
m(m+ Ep)

]

∑

s

s

[

1

eβ(Ep−µs) + 1
+

1

eβ(Ep+µs) + 1

]

. (46)
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If µs = µ does not depend on s, we see immediately that Πα = 0. In this case the non-vanishing polarization can
only come from the first-order contribution from the vorticity term of Aα

(1)(x, p) in Eq. (36),

Πα(x) = Πα
(1)(x) = −

1

4

ˆ

d4p~Ω̃ασpσ
dV

d(βp0)
δ(p2 −m2)

=
1

2

ˆ

d3p

(2π)3
~Ω̃ασ 1

Ep

{

pσ|p0=Ep

eβ(Ep−µ)

[eβ(Ep−µ) + 1]2
− pσ|p0=−Ep

eβ(Ep+µ)

[eβ(Ep+µ) + 1]2

}

=
1

2
~ωα

ˆ

d3p

(2π)3

{

eβ(Ep−µ)

[eβ(Ep−µ) + 1]2
+

eβ(Ep+µ)

[eβ(Ep+µ) + 1]2

}

, (47)

where we have removed the spin dependence in the chemical potential, µs = µ, and we have used the fact that the
spatial part of pσ gives vanishing momentum integral. We see that the polarization density is proportional to the
vorticity vector ωα = Ω̃ασuσ and is the sum over contributions from fermions and anti-fermions.

We can also obtain the polarization density from the second (electromagnetic field) term of Aα
(1)(x, p) in Eq. (36),

Πα
B(x) =

1

2
~Q

ˆ

d4pF̃αλpλV
d

dp20
δ(p2 −m2)

= −1

4
~Q

ˆ

d4pF̃αλuλ
dV

dp0
δ(p2 −m2)

=
1

2
~QβBα

ˆ

d3p

(2π)3
1

Ep

{

eβ(Ep−µ)

[eβ(Ep−µ) + 1]2
− eβ(Ep+µ)

[eβ(Ep+µ) + 1]2

}

, (48)

where we have used δ′(x) = −δ(x)/x and that the spatial part of pσ gives vanishing momentum intergal. Also we
have dropped the complete derivative term which is vanishing at the boundary in momentum space.

We see from Eqs. (47,48) that there is a correspondence between Πα(x) from the vorticity and Πα
B(x) from the

magnetic field: Epω
α ↔ QβBα. Note that there is a factor β in the definition of ωα, ωα ≡ (1/2)ǫαρµνuρ∂µ(βuν). At

zero temperature, the anti-fermion parts in Eqs. (47,48) are vanishing, the momentum integrals can be carried out
analytically from the Fermi sphere distribution. The correspondence at zero temperature now becomes µωα ↔ QβBα,
where the β factor cancels the one in the definition of ωα so the correspondence does not have temperature dependence.
From such a correspondence, we see that Πα

B(x) always comes with the charge Q while Πα(x) does not, therefore the
contributions from fermions and anti-fermions in Πα(x) have the same sign while they have opposite signs in Πα

B(x)
since fermions and anti-fermions carry opposite charges.

In this paper we consider only the polarization induced by the vorticity since it lasts longer and is stronger than
the magnetic effect in later stage of hydrodynamical evolution for massive hadrons.

To estimate the magnitude of Πµ(x) for fermions from Eq. (47), we can carry out the momentum integral in the
co-moving frame. After completing the integral over the momentum direction, we obtain the spin polarization density

Π(x) = ~ω
1

4π2

ˆ ∞

0

d|p| |p|2 eβ(Ep∓µ)

[eβ(Ep∓µ) + 1]2
, (49)

for fermions (−) and anti-fermions (+). The particle number density for fermions and anti-fermions is given by

ρ(x) = 2

ˆ

d3p

(2π)3
1

eβ(Ep∓µ) + 1
=

1

π2

ˆ ∞

0

d|p| |p|2
eβ(Ep∓µ) + 1

. (50)

The integrated polarization per particle Π(x)/ρ(x) for fermions or anti-fermions can be obtained by completing the
momentum integrals in Eqs. (49) and (50). We can also define the unintegrated ones with momentum dependence,
which is given by the following formula in the comoving frame,

Π(x,p)

ρ(x,p)
= ~

ω

4

eβ(Ep∓µ)

eβ(Ep∓µ) + 1
, (51)

where we have defined Π(x,p) ≡ dΠ(x)/d|p| and ρ(x,p) ≡ dρ(x)/d|p|.
At zero temperature, the spin polarization density in (49) and the particle number density in (50) for anti-fermions

are vanishing, and the fermion parts can be worked out following the Fermi sphere distribution,

ΠT=0(x) =
1

4π2
~β−1

ωµ
√

µ2 −m2θ(µ−m),

ρT=0(x) =
1

3π2
(µ2 −m2)3/2θ(µ −m). (52)
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Figure 1: The unintegrated polarization per particle defined in Eq. (51) for fermions (a) and anti-fermions (b) at momentum
p in the unit of the local vorticity ~ω as functions of βEp and βµ.
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Figure 2: The ratio R of polarization per particle in Eq. (55) for fermions to anti-fermions as a function of βEp and βµ.

We can also obtain from Eq. (48) the polarization density from electromagnetic fields at zero temperature

ΠB,T=0(x) =
1

4π2
~QB

√

µ2 −m2θ(µ−m). (53)

We can see the correspondence between ΠT=0(x) and ΠB,T=0(x) is µω ↔ QβB. The integrated polarization per
particle Π(x)/ρ(x) for fermions at zero temperature has a simple form,

ΠT=0(x)

ρT=0(x)
=

3

4
~β−1

ω

µ

µ2 −m2
θ(µ−m), (54)

which is a decreasing functuion of µ. Note that the factor β−1 in Eqs. (52, 54) is to cancel the factor β in the
definition of ω so that there is no temperature dependence in the results.

The numerical results for the unintegrated polarization per particle in Eq. (51) in the unit of the local vorticity
~ω are shown in Fig. 1 in the range βEp = [0, 10] and βµ = [0, 4]. At fixed values of energy βEp, we see that
Π(x,p)/ρ(x,p) is a decreasing (increasing) function of βµ for fermions (anti-fermions), but it always increases with
βEp at fixed βµ for both fermions and anti-fermions. The numerical results for the ratio of Π(x,p)/ρ(x,p) for
fermions to anti-fermions,

R =
[Π(x,p)/ρ(x,p)]fermion

[Π(x,p)/ρ(x,p)]anti−fermion
, (55)

are shown in Fig. 2. We see that Π(x,p)/ρ(x,p) for fermions is always less than that for anti-fermions, i.e. R < 1,
and R decreases with βµ and increases with βEp. When βEp is very large, the Fermi-Dirac distributions become
Boltzmann ones and Π(x,p)/ρ(x,p) reaches its asymptotic value 1/4 (in the unit of ~ω) for both fermions and
anti-fermions, which leads to R→ 1.

The numerical results for the integrated polarization per particle Π(x)/ρ(x) for fermions (left panel) and anti-
fermions (right panel) are shown in Fig. 3 as functions of βm and βµ. The numerical results for the ratio of Π(x)/ρ(x),

R =
[Π(x)/ρ(x)]fermion

[Π(x)/ρ(x)]anti−fermion
, (56)
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Figure 3: The integrated polarization per particle Π(x)/ρ(x) for fermions (a) and anti-fermions (b) in the unit of the local
vorticity ~ω as functions of βm and βµ.
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Figure 4: The ratio R of the integrated polarization per particle in Eq. (56) for fermions to anti-fermions. (a) R as a function
of βm and βµ. (b) R as functions of βm at three values βµ = 0.5, 1, 2 corresponding to short-dashed, long-dashed and solid
lines respectively.

are shown in Fig. 4. In the left panel we show R as a function of βm and βµ, while in the right panel we show R at
three values of βµ as functions of βm. The dependences of Π(x)/ρ(x) on βm and βµ are similar to Π(x,p)/ρ(x,p)
on βEp and βµ, but the variation in the values of Π(x)/ρ(x) on βm is much smaller than Π(x,p)/ρ(x,p) as shown
in Figs. 1 and 2.

We see that R < 1, i.e. the polarization per particle for fermions is always less than that for anti-fermions.
This behavior is consistent to the observation in the STAR experiment [26]. Also R decreases with µ at fixed m.
Such behaviors are based on the following facts: (a) Π(x) is actually proportional to the susceptibility ∂ρ/∂µ and in-
creases/decreases for fermions/anti-fermions with βµ just as ρ(x); (b) Πfermion/Πanti−fermion and ρfermion/ρanti−fermion

are all increasing functions of βµ; (c) Πfermion/Πanti−fermion is less than ρfermion/ρanti−fermion and increases slower with
βµ than ρfermion/ρanti−fermion.

In the massless case, the momentum integrals in Eqs. (49,50) can be worked out, so we obtain the quantities for
fermions (+) and anti-fermions (−),

Πm=0(x) = −~ω 1

2π2
Li2(−e±βµ),

ρm=0(x) = − 2

π2
Li3(−e±βµ),

[

Π(x)

ρ(x)

]

m=0

= ~ω
1

4

Li2(−e±βµ)

Li3(−e±βµ)
, (57)

where the polylogarithm function is defined by the power series, Lis(z) =
∑∞

k=1 z
k/ks. Fig. 5 shows the numerical

results for [Π(x)/ρ(x)]m=0 for fermions and anti-fermions and their ratio R defined by Eq. (56) as functions of βµ.
If we consider the Cooper-Frye description of hadron freezeout in hydrodynamic evolution, we can re-write the

polarization density in Eq. (47) by replacing the momentum integral with the one on the freezeout hypersurface. For
fermions, we pick up the first term in the second line of Eq. (47) and define the polarization spectra in momentum
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Figure 5: (a) The integrated polarization per particle Π(x)/ρ for massless fermions (solid line) and anti-fermions (long-dashed
line) in the unit of ~ω as functions of βµ. (b) The ratio R of the integrated polarization per particle in Eq. (56) for fermions
to anti-fermions as a function of βµ.

space as,

dΠα(p)

d3p
≈ ~

2mEp

ˆ

dΣλp
λΩ̃ασpσfFD(x, p)(1 − fFD(x, p)), (58)

where pµ denote the on-shell 4-momentum and we have pµ = (Ep,p) in the co-moving frame. The particle number
distribution for fermions is given by

fFD(x, p) =
1

eβ(x)[u(x)·p−µ] + 1
. (59)

In Eq. (58), we note that Πα(p) is the polarization of fermions with the momentum p and has the unit ~. We can
verify that the Lorentz transformation rule for both sides of Eq. (58) are the same. The particle number spectra for
fermions in momentum space emitting on the freezeout hypersurface can be defined as

dρ(p)

d3p
=

2

Ep

ˆ

dΣλp
λfFD(x, p), (60)

where the factor 2 is from two spin orientations. Then we obtain the polarization per particle for fermions with the
momentum p,

Pα(p) ≡ dΠα(p)/d3p

dρ(p)/d3p
=

~

4m

´

dΣλp
λΩ̃ασpσ fFD(x, p)[1 − fFD(x, p)]
´

dΣλpλ fFD(x, p)
. (61)

Eq. (61) is a covariant expression for the polarization vector per particle which is the same as the result by Becattini
et al [27]. For anti-fermions, we can flip the sign of the chemical potential, µ → −µ, in the above formula. We see
from Eq. (47) that the total polarization is the sum of fermion and anti-fermion contributions.

VII. SUMMARY AND CONCLUSION

We have extended our previous works on the Wigner function for chiral or massless fermions to that for massive
fermions. The Wigner function at the leading order is derived from its definition by setting the gauge link to 1
and by expanding the free form of the fermionic quantum fields in momentum space. Then all components of the
Wigner function can be extracted by projecting the corresponding Dirac matrices and taking traces. The axial
vector component at the next-to-leading order for massive fermions can be obtained by extending that for massless
fermions and satisfies the required equations. We have shown that the axial vector component behaves like a spin
4-vector in phase space up to a factor 1/2. The polarization density can be computed by integration of the axial
vector component over momentum. Our numerical results show that the polarization per particle decreases/increases
with the (temperature normalized) chemical potential for fermions/anti-fermions at fixed (temperature normalized)
energy (mass), while it always increases with the (temperature normalized) energy (mass) at fixed (temperature
normalized) chemical potential. We have found that the polarization per particle for fermions is always less than that
for anti-fermions. At large energy (mass) limit the polarization per particle approaches the asymptotic value ~ω/4
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for both fermions and anti-fermions following the Boltzmann distribution. We have also formulated the polarization
per particle for fermions with the specific momentum on the Cooper-Frye freezeout hypersurface in a hydrodynamic
description, which is consistent to the previous result of Becattini et al..
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