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The ground state phase transition in Nd, Sm and Gd isotopes is investigated by using the Nilsson mean-field
plus standard pairing model based on the exact solutions obtained from the extended Heine-Stieltjes correspon-
dence. The results of the model calculations successfully reproduce the critical phenomena observed experi-
mentally in the odd-even mass differences, odd-even differences of two-neutron separation energy, α-decay and
double β−-decay energy of these isotopes. Since the odd-even effects are the most important signatures of pair-
ing interactions in nuclei, the model calculations gain microscopic insight into the nature of the ground state
phase transition manifested by the standard pairing interaction.

PACS numbers: 21.60.Fw, 21.60.Cs, 27.30.+t

I. INTRODUCTION

Quantum phase transitions (QPTs) in nuclei have been ana-
lyzed extensively in both experiment and theory [1–6]. These
studies have provided new insights and understanding of the
evolution of nuclear shapes and energy level structures in tran-
sitional regions [7]. Theoretical studies of the QPTs in nuclei
are typically based on the collective model and the interact-
ing boson model [1, 4, 8–11]. Recently, the new microscopic
insight for the traditional collective states in nuclei has been
provided by using the projected shell model (PSM) [12]. The
analysis of the resulting wave functions for the excited 0+

states indicates clear features of quantum oscillations, with
large fluctuations in deformation for soft nuclei and strong
anharmonicities in the oscillations for rigidly deformed nu-
clei [13]. The relativistic density-functional theory has also
been exploited in determining parameters in the collective
Hamiltonian [14, 15], which is thus provided a microscopic
method to study the low-lying spectra of nuclei in the tran-
sitional region. Generally, the QPT in nuclei is referred to
as the ground state phase transition, though the concept can
also be applied to excited states. Classically, the QPT in nu-
clei occurs at zero temperature, which can be related to dif-
ferent geometrical shapes of the systems. The critical phe-
nomena of the QPT may be manifested by a sudden change in
many quantities of the ground or lower excited states, which
are called effective order parameters of the QPT, such as exci-
tation energy ratios, ground state quadrupole moment, the iso-
mer shifts, two-neutron separation energy, etc. Since a nuclear
system is finite, only a crossover may be observed instead of
a dramatic and sudden change or discontinuity in these quan-
tities predicted from the classical limit of the theories. [7]

Nuclear pairing correlation, as an important part of the
residual interactions necessary to augment any nuclear mean-
field theory, represents one of the main and longstanding pil-
lars of current understanding of nuclear structure [17]. Par-
ticularly, the pairing interaction in the nuclear shell model
plays a key role to reproduce ground-state properties of nuclei,
such as binding energies, two-neutron (proton) separation en-
ergies, odd-even effects, and excitation spectra, etc. [18–24].

Very recently, the ground state phase transition in some even-
even, odd-A, and odd-odd nuclei in the A ∼ 150 mass region
with the analysis of some experimental observables (the ef-
fective order parameters) has been investigated [25]. The ex-
perimental evidence reveals that the odd-even mass difference
may reach the maximal or minimal value around the critical
point at the neutron number N = 90. The analysis of Sm
isotopes based on the Nilsson mean-field plus the extended
pairing model also indicates possible existence of critical phe-
nomena which may microscopically be related to pairing in-
teractions [25]. However, the nature of the critical behavior,
including the role of pairing interaction, is still far from being
clear. In particular, it is known that the odd-even effect (i.e.,
the fact that the mass of an odd-even nucleus is larger than the
mean of the two adjacent even-even nuclear masses [19]) pro-
vides the most significant evidence of pairing interactions, but
how these interactions relate to the phase transition is yet to
be resolved. Therefore, it is important to explore possible mi-
croscopic mechanism with an appropriate pairing model that
can account for the ground state phase transition reflected by
the related odd-even effects in nuclei.

The purpose of this work is to systematically study the
ground state phase transition in Nd, Sm, and Gd isotopes by
using the Nilsson mean-field plus standard pairing model. It
has been observed recently [26] that solutions of the model
can be obtained from zeros of the associated extended Heine-
Stieltjes polynomials, which makes it feasible to apply the
model with many valence nucleon pairs over a large number of
single-particle levels. In addition, a recent study [27] provides
a refined method to solve the nonlinear Richardson equation
for both deformed and nearly spherical nuclei based on the
polynomial approaches shown in Refs. [26, 28]. By using the
extended Heine-Stieltjes polynomials, the effect of the pairing
interaction as well as the spherical mean-field on the spectral
statistical properties have been studied [29]. It is shown that
there are many exceptional values of the pairing strength G
within the critical region from the normal (localized) to the
nonlocal (pair condensate) phase transition in the model, and
at these exceptional values the level statistics is ascribed to
quantum chaos. The goal of this work is to gain some insight
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into the possible correlation between the pairing interaction
and the related ground state phase transition described by the
Nilsson mean-field plus standard pairing model.

It is known that Nd, Sm, and Gd isotopic chains display a
transition from spherical to axially deformed shape, which is
the typical first-order ground state phase transition described
in the collective model or the interacting boson model in nu-
clei [8]. In this paper, the odd-even mass differences, odd-
even differences of two-neutron separation energy, α-decay
and double β−-decay energy of these nuclei will be calculated.
The ground-state phase transition of these isotopes will be an-
alyzed systemically based on the model results. The role of
the pairing interaction in the ground state phase transition will
also be addressed.

II. THE NILSSON MEAN-FIELD PLUS STANDARD
PAIRING MODEL AND ITS EXACT SOLUTION

The Hamiltonian of the Nilsson mean-field plus standard
pairing model for either the proton or the neutron sector is
given by

Ĥ =

n∑
i=1

εin̂i −G
∑

ii′
S +

i S −i′ , (1)

where the sums run over all given i-Nilsson levels of total
number n, G > 0 is the overall pairing interaction strength,
{εi} are the single-particle energies obtained from the Nilsson
model, ni = a†i↑ai↑ + a†i↓ai↓ is the fermion number operator for
the i-th Nilsson level, and S +

i = a†i↑a
†

i↓ [S −i = (S +
i )† = ai↑ai↓] is

pair creation [annihilation] operator, The up and down arrows
in these expressions refer to time-reversed states.

According to the Richardson-Gaudin method [30], the ex-
act k-pair eigenstates of (1) with νi′ = 0 for even systems or
νi′ = 1 for odd systems, in which i′ is the label of the Nilsson
level that is occupied by an unpaired single particle, can be
written as

|k; ξ; νi′〉 = S +(x(ξ)
1 )S +(x(ξ)

2 ) · · · S +(x(ξ)
k )|νi′〉, (2)

where |νi′〉 is the pairing vacuum state with the seniority νi′

that satisfies S −i |νi′〉 = 0 and n̂i|νi′〉 = δii′νi|νi′〉 for all i. Here,
ξ is an additional quantum number for distinguishing different
eigenvectors with the same quantum number k and

S +(x(ξ)
µ ) =

n∑
i=1

1

x(ξ)
µ − 2εi

S +
i . (3)

in which x(ξ)
µ (µ = 1, 2, · · · , k) satisfy the following set of

Bethe ansatz equations (BAEs):

1 − 2G
∑

i

ρi

x(ξ)
µ − 2εi

− 2G
k∑

µ′=1(,µ)

1

x(ξ)
µ − x(ξ)

µ′

= 0, (4)

where the first sum runs over all i-levels and ρi = −Ωi/2 with
Ωi = 1 − δii′νi′ . For each solution, the corresponding eigenen-

ergy is given by

E(ξ)
k =

k∑
µ=1

x(ξ)
µ + νi′εi′ . (5)

Through the Heine-Stieltjes correspondence, one can find
solutions of (4) by solving the second-order Fuchsian equa-
tion [26]:

A(x)y′′(x) + B(x)y′(x) − V(x)y(x) = 0, (6)

where A(x) =
∏n

i=1(x − 2εi) is an n-degree polynomial, the
polynomial B(x) is given as

B(x)/A(x) =

n∑
i=1

2ρi

x − 2εi
−

1
G
, (7)

and V(x) are called Van Vleck polynomials [31] of degree n−
1, which are determined according to Eq. (6). In search for
polynomial solutions of Eq. (6), we write

y(x) =

k∑
µ=0

aµxµ, V(x) =

n−1∑
µ=0

bµxµ, (8)

where {aµ} and {bµ} are the expansion coefficients to be deter-
mined. Substitution of (8) into Eq.(6) yields two matrix equa-
tions. By solving these two matrix equations, we can obtain
the solutions [26] of {aµ} and {bµ}.

Furthermore, if we set ak = 1 in y(x), the coefficient ak−1
becomes equal to the negative sum of the y(x) zeros, ak−1 =

−
∑k
µ=1 xµ, and hence, yields the corresponding eigen-energy

according to Eq. (5),

Ek = −ak−1 + νi′εi′ . (9)

III. THE GROUND-STATE PHASE TRANSITION IN Nd,
Sm, AND Gd ISOTOPES

The main objective of this work is to reveal the ground-state
phase transition and its relationship with the pairing interac-
tion in Nd, Sm, and Gd isotopes from the Nilsson mean-field
plus standard pairing model perspective. Model calculations
for Nd, Sm, and Gd isotopes are performed for valence neu-
trons in the sixth HO shell with 22 Nilsson levels (orbits) for
valence neutrons. The quadrupole deformation and hexade-
capole deformation parameters in the Nilsson model are ob-
tained from Ref. [32]. Hence, the single-particle energies εβ
in the model Hamiltonian (1) for these three isotopic chains
are determined by the Nilsson model results. As an approxi-
mation, only valence neutron pair-excitations are considered,
while proton pair-excitations, which only contribute to excited
states of the model, are not included.

The total binding energy of a nuclear system in the model
is given by

EB = E(core)
B + EB(ν) + EB(π), (10)
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where E(core)
B is the binding energy of the core, taken to be

that of 132Sn, which is reasonably approximated by a con-
stant and given by the experimental binding energy of 132Sn,
and EB(ν) and EB(π) are the ground state energy of the model
of the neutron and the proton sector, respectively, calculated
from (1). With the previous mentioned approximation, EB(π)
is taken as a constant because the number of valence protons
is fixed in a chain of isotopes, with which the ground state
energy EB(π) calculated from (1) is almost a constant for a
chain of isotopes. Furthermore, possible residual interactions
between protons and neutrons are also neglected.

There are several quantities related to the binding energies
of adjacent nuclei in a chain of isotopes. They are the odd-
even mass difference defined by

P(Z,N) = EB(Z,N + 1) + EB(Z,N − 1)
−2EB(Z,N), (11)

where EB(Z,N) is the binding energy of a nucleus with proton
number Z and neutron number N, the two-neutron separation
energy S 2n defined by [33]

S 2n(Z,N) = EB(Z,N) − EB(Z,N − 2), (12)

the α-decay energy Qα defined as [33]

Qα(Z,N) = EB(Z − 2,N − 2) − EB(Z,N)
+EB(2, 2), (13)

where EB(2, 2) is the binding energy of 4He, and the double
β−-decay energy Q2β− defined by [33]

Q2β− (Z,N) = EB(Z + 2,N − 2) − EB(Z,N)
+2Mn − 2Mp, (14)

where Mn and Mp are neutron and proton mass, respectively.
These quantities have been recognized as qualified effective
order parameters to identify the phase transitions in both even-
even and odd-A nuclei. Furthermore, these quantities only de-
pend on the number of nucleons with abundant experimen-
tal data available [2, 4–6]. However, through the analysis
of these quantities and their odd-even differences [25], it is
observed that nearly all the odd-even differences reach their
extreme values (maximum or minimum) around the critical
point, which, therefore, are more sensitive and suitable to be
used as effective order parameters to manifest the shape phase
transition. Hence, in the following, besides the odd-even mass
differences P(Z,N), the odd-even differences of two-neutron
separation energy, α-decay energy and double β−-decay en-
ergy will be calculated, where the odd-even difference of the
two-neutron separation energy is given by

D(S 2n(Z,N)) = S 2n(Z,N − 1) − S 2n(Z,N), (15)

the odd-even difference of the α-decay energy is given by

D(Qα(Z,N))
= Qα(Z,N − 1) − Qα(Z,N)
= (EB(Z,N) − EB(Z,N − 1))
−(EB(Z − 2,N − 2) − EB(Z − 2,N − 3)), (16)

and the odd-even difference of double β−-decay energy is
given by

D(Q2β− (Z,N))
= Q2β− (Z,N − 1) − Q2β− (Z,N)
= (EB(Z,N) − EB(Z,N − 1))
−(EB(Z + 2,N − 2) − EB(Z + 2,N − 3)). (17)

It is clearly shown in (15), (16), and (17) that the binding
energies contributed from the valence protons in related nuclei
to these odd-even differences are canceled out, which justifies
the validity of the approximation with EB(π) taken as a con-
stant in our model calculation.

For each isotopic chain, the neutron pairing interaction
strength G used in the standard pairing model are adjusted by
fitting the binding energies and the odd-even mass differences.
The neutron pairing strengths G determined for 144−155Nd,
146−159Sm, and 148−161Gd are shown in Table I.

TABLE I: Pairing interaction strength G determined from the binding
energies and the odd-even mass differences of 144−157Nd, 146−157Sm,
and 148−159Gd.

Nucleus G (MeV) Nucleus G (MeV)
144Nd 0.520 145Nd 0.527
146Nd 0.415 147Nd 0.437
148Nd 0.385 149Nd 0.423
150Nd 0.374 151Nd 0.418
152Nd 0.392 153Nd 0.454
154Nd 0.414 155Nd 0.465
146Sm 0.470 147Sm 0.420
148Sm 0.340 149Sm 0.320
150Sm 0.295 151Sm 0.300
152Sm 0.275 153Sm 0.240
154Sm 0.246 155Sm 0.300
156Sm 0.290 157Sm 0.336
148Gd 0.415 149Gd 0.360
150Gd 0.265 151Gd 0.130
152Gd 0.200 153Gd 0.075
154Gd 0.170 155Gd 0.060
156Gd 0.210 157Gd 0.050
158Gd 0.233 159Gd 0.150

A. Odd-even mass differences

In recent work [25], it is observed that the odd-even mass
difference may serve as one of the effective order parameters
to identify the ground state phase transition. The odd-even
mass difference P(Z,N) of the three chains of isotopes are cal-
culated according to Eq. (11). This quantity is more sensitive
to pairing correlations compared to the binding energies. As
shown in Fig. 1, the odd-even mass differences of the three
chains of isotopes calculated from the present model are very
close to the corresponding experimental values.

Moreover, both the theoretical P(Z,N) values as functions
of N and the corresponding experimental values for even-even
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Nd, Sm, and Gd shown in panel (a) of Fig. 1 have a peak
or a valley at N = 90. The sudden increase or decrease in
P(Z,N) for these nuclei at N = 90 is obvious, which may
be regarded as one of the effective order parameters to iden-
tify the QPT in these nuclei. Similar transitional behavior can
also be observed in P(Z,N) values for odd-A Nd, Sm, and Gd
as shown in panel (b), in which P(Z,N) drops to its minimum
at N = 89. It is known that N ≈ 90 nuclei, such as 150Nd,
152Sm, 154Gd with mass number A ≈ 150 are near the criti-
cal point of the first-order quantum phase transition, namely,
the critical point of spherical (vibrational) to the axially de-
formed (rotational) shape phase transition [8]. The above
conclusion, however, is made based on the analysis within
the collective model or the interacting boson model. In the
Nilsson mean-field plus standard pairing model, the quantum
phase transition in these nuclei is interpreted as the competi-
tion between the local single-particle energies provided from
the Nilsson mean-field, in which the quadrupole-quadrupole
interaction is replaced by the deformation, and the pairing in-
teraction. Therefore, the critical behavior of P(Z,N) described
in this model is mainly due to the fact that the pairing interac-
tion strength in these nuclei reaches a critical point. The same
conclusion also applies to other odd-even differences shown
below.

B. Odd-even differences of two-neutron separation energy

The two-neutron separation energy has also been taken as
an effective order parameter to identify the phase transition,
which was investigated extensively in both experimental and
theoretical approaches for even-even and odd-A systems [7,
8].

As shown in Fig. 2, the odd-even differences of two-neutron
separation energy D(S 2n) also has a valley near N ≈ 90
for even-even Nd, Sm, and Gd (Fig. 2(a)) and odd-A nu-
clei (Fig. 2(b)), which may also be regarded as a signature
of the ground state phase transition. The odd-even differ-
ences of two-neutron separation energy D(S 2n) obtained from
this model reproduce the experimental data remarkably well.
Namely, both the theoretical and experimental value of D(S 2n)
for Nd, Sm, and Gd reach the minimum value at N = 90 for
the even-even cases or at N = 91 for the odd-A cases as shown
in Fig. 2. Our results indicate that the odd-even differences of
two-neutron separation energy may be can serve as an effec-
tive order parameter to identify the phase transition, at least
for Nd, Sm, and Gd isotopes in the present model.

C. Odd-even differences of α-decay and double β−-decay
energy

The odd-even differences of α-decay energy D(Qα) and
double β−-decay energy D(Q2β− ) in Sm and Eu isotopic chains
were investigated previously [25], and the results suggested
show that D(Qα) and D(Q2β− ) all reach their maximal val-
ues around N ≈ 90 based on experimental data but without
theoretical model calculations. The odd-even differences of
α-decay energy D(Qα) and double β−-decay energy D(Q2β− )
for Sm, Gd, and Nd are also calculated in the present model
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FIG. 1: (Color online) The odd-even mass differences (in MeV) for
145−155Nd, 147−157Sm, and 149−159Gd. Experimental values are denoted
as “Exp.”, which are taken from [33], the theoretical values calcu-
lated in the the Nilsson mean-field plus standard pairing model are
denoted as “Th.” for the even-even cases (upper panel) and the odd-A
cases (lower panel).

according to (16) and (17). As shown in Fig. 3, the present
model results of D(Qα) closely follow the experimental trends
for Sm and Gd isotopes. For even-even cases, there is a peak
in D(Qα) around the critical point at N = 90 for Sm and Gd as
shown in Fig. 3(a). Similarly, D(Qα) for odd-A nuclei exhibits
the same behavior at the critical point. D(Qα) reaches its max-
imum around N = 91 for Sm and Gd as shown in Fig. 3(b).
The emergence of the apparent peak in D(Qα) with the vari-
ation of N may also provide a sign of the ground state phase
transition. Similar peak also emerges in the odd-even differ-
ences of double β−-decay energy D(Q2β− ). As shown in Fig. 4,
in comparison with the corresponding experimental data, the
calculated results of D(Q2β− ) from the present model for Nd
and Sm reproduce the critical phenomenon observed experi-
mentally, in which the dramatic change occurs at N = 90 in
these even-even nuclei and at N = 91 in these odd-A nuclei.

The consistence between the experimental and the theoreti-
cal results shown in Figs. 1-4 indicates that the present model
describes the ground state quantities of these nuclei rather
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FIG. 2: (Color online) The odd-even differences of the two-neutron
separation energy (in MeV) for 147−155Nd, 149−157Sm, and 151−159Gd.
Experimental values are denoted as “Exp.”, which are taken from
[33], the theoretical values calculated from the present model are
denoted as “Th.” for the even-even cases (upper panel) and the odd-
A cases (lower panel).

well. Since there are obvious changes in these odd-even differ-
ences around N = 90, which coincides with the critical point
of spherical (vibrational) to the axially deformed (rotational)
shape phase transition [8], these quantities may be taken as the
effective order parameters to manifest the ground state phase
transition in these nuclei.

D. Pairing strength

To gain the insight into the possible microscopic origin
of the ground state phase transition described in the present
model, the variation of the neutron pairing interaction strength
G as a function of the neutron number N is studied. Figure 5
displays the pairing interaction strength G obtained from fit-
ting the odd-even mass differences and the absolute value of
the pairing interaction strength difference |∆G|, which is de-
fined as |∆G(Z,N)| = |G(Z,N + 2) −G(Z,N)|, as functions of
N. It is clearly shown that |∆G| and G vary non-monotonically
with the increasing of the neutron number N for both the even-
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FIG. 3: (Color online) The odd-even differences of the α-decay en-
ergy (in MeV) for 147−157Sm and 149−159Gd. Experimental values are
denoted as “Exp.”, which are taken from [33], theoretical values
calculated from the present model are denoted as “Th.” for (Upper
panel) even-even nuclei and (Lower panel) odd-A nuclei.

even and the odd-A cases. Particularly, |∆G| reaches its mini-
mum value or becomes flattening at the critical point N values,
where the odd-even differences all reach the extreme values as
shown in Fig. 1-4. Although the behaviors of G and |∆G| of
the even-even cases shown in Fig. 5(a) are a little different
from those of the odd-A cases shown in Fig. 5(b) simply due
to the effect of an extra unpaired neutron in the odd-A cases,
an intimate link between the critical behaviors of the odd-even
differences shown in Fig. 1-4 and the variation of G and |∆G|
at the critical points is obvious. Generally, the empirical for-
mula of G is taken as (G1 ± G2

N−Z
A ) 1

A (MeV) with −(+) for
neutron (proton), where G1 and G2 are adjusted to yield the
odd-even mass differences [12]. In the present model, we fit-
ted the neutron pairing interaction strength G, of which the
results are shown in Table I, and found that, when N values
are smaller than the critical point value Nc, the neutron pair-
ing interaction strength G can indeed be empirically expressed
as G = G1/A−G2/A2 (MeV), while G follows the same empir-
ical formula G = G′1/A − G′2/A

2 (MeV) with different fitting
parameters G′1 , G1 and G′2 , G2 when N ≥ Nc. Hence,
the empirical formula of G for N ≤ Nc and that for N ≥ Nc
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FIG. 4: (Color online) The odd-even differences of the double β−-
decay energy (in MeV) for 145−155Nd and 147−157Sm. Experimental
values are denoted as “Exp.”, which are taken from [33], the theo-
retical values calculated from the present model are denoted as “Th.”
for the even-even cases (upper panel) and the odd-A cases (lower
panel).

are different, which indicates that the derivative of the neutron
pairing interaction strength G with respect to N for these iso-
tope chains is discontinues at the critical point Nc in the model
according to the present analysis. Since only a few values of
N are used in the fitting, further analysis for more isotopes
in a chain should be made in order to verify the present con-
clusion. The results shown in Figs. 1-4 seem to be directly
correlated with the flattening of G and approach to the min-
imum value or flattering in |∆G| near the critical point in the
present model as shown in Fig. 5.

E. The information entropy

As suggested in the previous studies [29, 34], the informa-
tion (Shannon) entropy seems suitable to reveal the (pairing)
phase transition. To confirm that the noticeable changes in
P(Z,N), D(S 2n), D(Qα), and D(Q2β− ) around N ≈ 90 in these
isotopes are indeed related with the (pairing) phase transition
in the ground state described in the present model, the in-
formation (Shannon) entropy under the preset model for the
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FIG. 5: (Color online) The absolute value of the pairing interac-
tion strength difference |∆G| (in MeV) determined under the present
model for even-even nuclei (upper panel) and the odd-A nuclei (lower
panel) for 153−163Nd, 155−165Sm, and 157−167Gd, in which the inset
shows the pairing interaction strength G (in MeV) for these isotopes.

even-even Sm is also calculated. The information entropy
measures the correlations among the mean-field single-pair
product states with k pairs in the ground state |g〉 ≡ |k; x; ν j′〉g
of the model [29, 34], and is defined as

IH(|g〉) = −

d∑
i=1

|wi|
2 logd(|wi|

2), (18)

where {wi} are the expansion coefficients of |g〉 in terms of
the mean-field single-pair product states, and d is the dimen-
sion of the space spanned by all possible single-pair prod-
uct states, namely, k pairs distributed over the n levels of
the Nilsson mean-field. The information entropy IH varies
within the closed interval [0, 1]. IH = 0 corresponds to the
ground state without the pairing interaction among valence
nucleons. In this case, all valence nucleons are in the local-
ized normal state. While IH = 1 corresponds to the phase,
in which the pairing interaction is extremely strong leading to
the ground state with pair condensate, referred to as the delo-
calized superconducting phase. Obviously, the variation of IH
as a function of the pairing interaction strength G sketches the
evolution from the localized normal phase towards the delo-
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FIG. 6: (Color online) The information entropy IH (solid line) and
its derivative dIH/dG (dashed line) of the ground state of even-even
150−156Sm as functions of G (in MeV). The shadowed area indicating
the width of the peak in dIH/dG is provided to guide to the eye.

calized superconducting phase. Since the behavior of IH and
its derivative dIH/dG as a function of the pairing interaction
strength G for these nuclei are quite similar, only those for
even-even 150−156Sm are shown in Fig. 6. It is evident that
IH and dIH/dG for even-even 150−156Sm calculated from the
present model indicate that the system undergoes the phase
transition from the localized normal phase with G = 0 and
IH = 0 to the delocalized superconducting (pair condensate)
phase with sufficiently large G and IH ∼ 1 for a given va-
lence neutron number N. Particularly, it is shown in Fig. 6
that the width of the peak in dIH/dG is different from nucleus
to nucleus. The width of the peak in dIH/dG becomes the nar-
rowest at N = 90 as shown in Fig. 6(b), which corresponds to
the position, at which P(Z,N), D(S 2n), D(Qα), and D(Q2β− )
all reach their extremal values shown in Figs. 1-4. The po-
sition of the extremal values in the odd-even differences is
consistent to the position of the peak with the narrowest width
in dIH/dG, of which the critical point value is Gc ' 0.27 in
the present model for even-even Sm. The results demonstrate
that the ground state phase transition is indeed much more
sensitive to the variation of the pairing interaction strength G
around N ≈ 90, which thus naturally explains the critical be-
havior in the present model, and confirms that the odd-even
differences P(Z,N), D(S 2n), D(Qα) and D(Q2β− ) are suitable
to be taken as the order parameters of the ground state phase
transition, at least in these isotopes.

IV. V. CONCLUSION

In summary, the Nilsson mean-field plus standard pairing
model is applied to describe the ground state phase transi-

tion in Nd, Sm, and Gd isotopes. In comparison with the
corresponding experimental data, the calculated results of the
model for these isotopes, including the odd-even mass dif-
ferences, the odd-even differences of two-neutron separation
energy, α-decay and double β−-decay energy, reproduce the
critical phenomena reasonably well. It is shown that both
the theoretical and the experimental values of the odd-even
differences for Nd, Sm, and Gd reach their extremal values
at the critical point of the model around N ≈ 90, which are
consistent with the results obtained from the collective model
and the interacting boson model studied previously [4, 8].
From the analysis of the information entropy and its deriva-
tive dIH/dG in Sm isotopes, it is confirmed that the phase
transition in the present model is much more sensitive to the
variation of the pairing interaction strength G around N ≈ 90,
which thus provides the origin of the critical behaviors in the
model, and confirms that these odd-even differences are in-
deed suitable to be taken as the order parameters of the ground
state phase transition, at least in these isotopes. Moreover,
it is shown that the variation of |∆G| and G in the model is
not monotonic with the increasing of the neutron number N.
It seems that |∆G| reaches the minimum or becomes flatten-
ing around N ≈ 90, at which these odd-even differences all
reach their extreme values. Therefore, our analysis provides
a microscopic picture that the ground state phase transitional
behaviors may be driven by the competition between the Nils-
son mean-field and the pairing interaction based on the present
model. It has been recognized that the emergence of the col-
lective phenomena in these nuclei are related to the compe-
tition between the pairing interaction and the deformation-
driven quadrupole-quadrupole interaction [4, 7]. However, the
analysis shown in this work is based on the Nilsson mean-
field plus standard pairing model, in which the quadrupole-
quadrupole interaction is replaced by the deformation. Nev-
ertheless, the phase transitional behaviors in these nuclei can
still be clearly described in the present model.
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