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Abstract

We apply the large-Nc expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon

potential. The operator structures contributing to next-to-next-to-leading order in the large-Nc

counting are constructed. For the TV and parity-violating case we find a single operator structure

at leading order. The TV but parity-conserving potential contains two leading-order terms, which

however are suppressed by 1/Nc compared to the parity-violating potential. Comparison with

phenomenological potentials, including the chiral EFT potential in the TV parity-violating case,

leads to large-Nc scaling relations for TV meson-nucleon and nucleon-nucleon couplings.

PACS numbers: 11.15.Pg, 11.30.Er, 13.75.Cs
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I. INTRODUCTION

Time-reversal-invariance violation, or equivalently (assuming the validity of the CPT

theorem [1–3]) CP violation, is an important component in the search for physics beyond

the standard model (BSM). While the standard model contains CP-violating mechanisms

in the complex phase of the Cabibbo-Kobayashi-Maskawa matrix and the QCD θ term,

the predicted effects are much smaller than current experimental bounds on CP-violating

observables. A signal of T violation beyond these predictions would be a clear indication

of BSM physics. Among the considered time-reversal-invariance-violating (TV) observables,

the neutron electric dipole moment (EDM) has received particular experimental interest,

with the current upper limit |dn| < 3.0 × 10−26 e cm (90% C.L.) [4, 5]. However, more

information than the measurement of a single observable is necessary to obtain detailed

information about the underlying TV mechanisms.

Additional observables that have been considered include the EDMs of light nuclei,

neutron-nucleus reactions, and nuclear decay parameters (see, e.g., Refs. [6–9]). In all of

these processes, TV nucleon-nucleon (NN) forces play an important role. TV interactions

can either be parity-conserving (PC) or parity-violating (PV), with the latter expected to

give larger contributions to observables such as EDMs. These forces are the manifestation

on the hadronic level of TV interactions among fundamental degrees of freedom. Because

QCD is nonperturbative at low energies, a direct derivation of NN forces from the underly-

ing theory is complicated, so various phenomenological parameterizations of TV NN forces

have been developed. A general parameterization analogous to Wigner’s approach to the

T-conserving (TC) potential [10] was given in Ref. [11]. In phenomenological applications

it is common to use a single-meson-exchange picture, with one strong (TC) and one TV

meson-nucleon vertex [12–15]. More recently, TV interactions have been constructed in the

effective field theory (EFT) framework, see, e.g., Refs. [16–19] and references therein. In

all of these approaches, the TV short-distance physics is captured in the values of TV cou-

pling constants: either meson-nucleon couplings and/or NN contact terms. However, the

values of the couplings have not been derived from the underlying theory and couplings are

constrained only weakly – if at all – by experiment.

In the following we apply the 1/Nc expansion of QCD [20, 21] to the TV NN potential,

where Nc is the number of colors. The large-Nc analysis was first applied to the TCPC NN
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potential in Refs. [22, 23], and more recently to three-nucleon forces [24] and to the TCPV

potential [25, 26]. The large-Nc expansion analysis allows us to capture dominant QCD

effects of embedding the fundamental TV interactions in the nonperturbative environment

of the nucleon. As a result, we find a hierarchy of terms in the TV potentials: In the TVPV

case there is a single leading-order (LO) operator structure, with corrections suppressed by

a single factor of 1/Nc. For TVPC interactions we find two LO terms, with subleading

corrections again suppressed by 1/Nc. However, the leading TVPV and TVPC operators

do not contribute at the same order: the dominant TVPV operator contributes at O(Nc),

while the TVPC potential receives contributions starting at O(1). This hierarchy has to be

superimposed on any suppression coming from the underlying BSM physics. At low energies

it can be combined with the chiral suppressions that originate in the nonperturbative regime

of QCD. The large-Nc and chiral suppressions are independent and complementary and,

given the difficulty in obtaining experimental constraints, taken together they provide useful

additional theoretical constraints that simplify the analysis of TV observables by reducing

the number of unknowns that need to be considered in phenomenological applications.

The paper is organized as follows: Sec. II introduces the framework for analyzing NN

potentials in the large-Nc expansion. In Sec. III we construct the TVPV and TVPC poten-

tials at leading order (LO), next-to-leading order (NLO), and next-to-next-to-leading order

(NNLO) in the large-Nc counting. These potentials are compared with phenomenological

forms in Sec. IV, which allows us to extract the large-Nc scaling of the various TV couplings.

We conclude in Sec. V.

II. THE NN POTENTIAL IN THE 1/Nc EXPANSION

Following Ref. [23], we define the NN potential as the matrix element

V (p−,p+) = 〈(p′
1, C), (p′

2, D)|H|(p1, A), (p2, B)〉. (1)

Here, A, . . . , D collectively represent the spin and isospin components of the nucleons and

pi (p
′
i) denotes the incoming (outgoing) momentum of the ith nucleon, while

p± = p′ ± p , (2)

where

p =
1

2
(p1 − p2) , p′ =

1

2
(p′

1 − p′
2) . (3)
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The on-shell condition is given by p+ · p− = 0. The momenta are taken to be independent

of Nc, i.e., p ∼ ΛQCD. Our analysis does not depend on a low-momentum expansion of the

potential, unlike in chiral or pionless EFTs. The Hamiltonian H is the nuclear Hamiltonian

in the Hartree expansion, which in the large-Nc limit can be written as [23, 27]

H = Nc

∑

s,t,u

vstu

(

S

Nc

)s(
I

Nc

)t(
G

Nc

)u

, (4)

where the coefficients vstu are functions of the momenta p±. The operators S, I, and G are

given by

Si = q†
σi

2
q , Ia = q†

τa

2
q , Gia = q†

σiτa

4
q , (5)

and when evaluated between single-nucleon states scale as [23]

〈N ′|Si|N〉 ∼ 1 , 〈N ′|Ia|N〉 ∼ 1 , 〈N ′|Gia|N〉 ∼ Nc . (6)

In the large-Nc formalism, it is consistent to interpret the potential as originating from one-

meson exchanges [23, 28, 29]. In this picture, a factor of p+ arises from relativistic corrections

and is therefore suppressed by the nucleon mass mN . Since mN scales as Nc and we consider

momenta ∼ N0
c , each power of p+ introduces a suppression by 1/Nc. The coefficients vstu

are constructed such that the resulting Hamiltonian has specific symmetry properties. In

the following, H is rotationally invariant, even under particle interchange, time-reversal odd,

and we consider both parity-odd and parity-even cases. The transformation properties under

time reversal (T), parity (P), and particle interchange (P12) of the various building blocks

are given in Tables I and II. There, [AB]ij2 denotes the symmetric and traceless rank-two

tensor, constructed from the vector quantities Ai, Bj as

[AB]ij2 ≡ AiBj + AjBi −
2

3
δijA · B . (7)

For a review of how to construct the TCPC NN potential see [24]. In the next Section we

apply those methods to obtain the TV NN potentials.

III. THE TIME-REVERSAL-INVARIANCE-VIOLATING POTENTIALS

A. The TVPV potential

We first consider the TVPV potential. By using the 1/Nc-counting rules for the momenta,

spin, and isospin operators, as well as their transformation properties under time reversal,
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p+ p− ~σ1 · ~σ2 (~σ1 + ~σ2)
z (~σ1 − ~σ2)

z
~σ1 × ~σ2 [σ1σ2]

ij
2

T - + + - - + +

P - - + + + + +

P12 - - + + - - +

TABLE I. Transformation properties of momenta and spin operators under time reversal (T),

parity (P), and particle interchange (P12).

~τ1 · ~τ2 (~τ1 + ~τ2)
z (~τ1 − ~τ2)

z (~τ1 × ~τ2)
z [τ1τ2]

zz
2

T + + + - +

P + + + + +

P12 + + - - +

TABLE II. Transformation properties of isospin operators under time reversal (T), parity (P), and

particle interchange (P12).

parity, and particle interchange, we construct the TVPV potential up to NNLO in the

large-Nc counting. There is one operator structure at LO, O(Nc),

V
/T /P
Nc

= Nc U
1
/T /P (p

2
−)p− · (~σ1 τ

z
1 − ~σ2 τ

z
2 ) . (8)

At NLO, O(N0
c ), five additional operators contribute,

V
/T /P
N0

c

=U2
/T /P (p

2
−)p− · (~σ1 − ~σ2)

+ U3
/T /P (p

2
−)p− · (~σ1 − ~σ2)~τ1 · ~τ2

+ U4
/T /P (p

2
−)p− · (~σ1 − ~σ2) [τ1 τ2]

zz
2

+ U5
/T /P (p

2
−)p+ · (~σ1 × ~σ2) [τ1 τ2]

zz
2

+ U6
/T /P (p

2
−)p+ · (~σ1 × ~σ2)~τ1 · ~τ2 .

(9)
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The NNLO, O(N−1
c ), operators are given by

V
/T /P

N−1
c

= N−1
c

[

U7
/T /P (p

2
−)p− · (~σ1 τ

z
2 − ~σ2 τ

z
1 )

+ U8
/T /P (p

2
−)p

2
+ p− · (~σ1 τ

z
1 − ~σ2 τ

z
2 )

+ U9
/T /P (p

2
−)p+ · (~σ1 + ~σ2) (~τ1 × ~τ2)

z

+ U10
/T /P (p

2
−)p+ · (~σ1 × ~σ2) (~τ1 + ~τ2)

z

+ U11
/T /P (p

2
−) [(p+ × p−)p−]

ij
2 [σ1σ2]

ij
2 (~τ1 − ~τ2)

z

+ U12
/T /P (p

2
−) [(p+ × p−)p+]

ij
2 [σ1 σ2]

ij
2 (~τ1 × ~τ2)

z
]

.

(10)

The U i
/T /P

(p2
−) are arbitrary functions of p− ∼ N0

c and do not change the large-Nc scaling of

the corresponding operator structures. While corrections to the LO term in the potential

are suppressed by single powers of 1/Nc, for a given isospin sector the first correction is

suppressed by 1/N2
c : the LO term in the potential is an isovector, while the 1/Nc-suppressed

terms are purely isoscalar and isotensor pieces. The NNLO contributions are again only of

isovector form.

B. The TVPC potential

The TVPC potential can be constructed analogously. In this case, the LO contribution

appears at O(N0
c ), and is therefore suppressed compared to the LO terms of the TVPV

potential. There are two LO operators,

V
/TP
N0

c

=U1
/TP (p

2
−)p

i
− p

j
+ [σ1σ2]

ij
2 ~τ1 · ~τ2

+ U2
/TP (p

2
−)p

i
− p

j
+ [σ1σ2]

ij
2 [τ1 τ2]

zz
2 .

(11)

The NLO, O(N−1
c ), operators are given by

V
/TP

N−1
c

= N−1
c

[

U3
/TP (p

2
−) (p− × p+) · (~σ1 × ~σ2) (~τ1 − ~τ2)

z

+ U4
/TP (p

2
−) (p− × p+) · (~σ1 − ~σ2) (~τ1 × ~τ2)

z

+ U5
/TP (p

2
−)p

i
− p

j
+ [σ1σ2]

ij
2 (~τ1 + ~τ2)

z
]

.

(12)
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For completeness, we also show the result for the NNLO, O(N−2
c ) operators, even though

this order is not considered for the TVPV case,

V
/TP

N−2
c

= N−2
c

[

U6
/TP (p

2
−)p

i
− p

j
+ [σ1σ2]

ij
2

+ U7
/TP (p

2
−)p

2
+ pi

− p
j
+ [σ1σ2]

ij
2 ~τ1 · ~τ2

+ U8
/TP (p

2
−)p

2
+ pi

− p
j
+ [σ1σ2]

ij
2 [τ1 τ2]

zz
2

]

.

(13)

The U i
/TP

(p2
−) are again arbitrary functions that do not scale with Nc. As in the TVPV

case, for a given isospin sector the first corrections are suppressed by 1/N2
c , e.g., here the

LO isoscalar and isotensor terms only get corrections at NNLO.

IV. COMPARISON WITH PHENOMENOLOGICAL TV POTENTIALS

In the following we compare our results with existing parameterizations of the TV po-

tentials and extract the large-Nc scaling of the corresponding couplings. If available at all,

experimental constraints on the TV couplings are very weak (see, e.g., Ref. [30]), so we

are unable to compare our results to data. However, the hierarchy of couplings established

in our analysis should prove helpful in identifying the most relevant couplings on which to

focus in future TV studies.

A. General parameterization

1. TVPV potential

A general parameterization of the TVPV and TVPC Hamiltonians to first order in p+

was given in Ref. [11]. We follow the notational conventions of Ref. [31], but adapt them to

our definition of the potential as a function of p− and p+. The resulting potential can be
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written as

V/T /P =
[

ḡ1(p
2
−) + ḡ2(p

2
−)~τ1 · ~τ2 + ḡ3(p

2
−) [τ1 τ2]

zz
2

]

p− · (~σ1 − ~σ2)

+
(

ḡ4(p
2
−) + ḡ5(p

2
−)
)

p− · (~σ1τ
z
1 − ~σ2τ

z
2 )

+
(

ḡ4(p
2
−)− ḡ5(p

2
−)
)

p− · (~σ1τ
z
2 − ~σ2τ

z
1 )

+
[

ḡ6(p
2
−)− ḡ10(p

2
−) +

(

ḡ7(p
2
−)− ḡ11(p

2
−)
)

~τ1 · ~τ2

+
(

ḡ8(p
2
−)− ḡ12(p

2
−)
)

[τ1 τ2]
zz
2 +

(

ḡ9(p
2
−)− ḡ13(p

2
−)
)

(~τ1 + ~τ2)
z
]

p+ · (~σ1 × ~σ2)

+ ḡ14(p
2
−) [(p+ × p−)p−]

ij
2 [σ1σ2]

ij
2 (~τ1 − ~τ2)

z

+
(

ḡ15(p
2
−)− ḡ16(p

2
−)
)

p+ · (~σ1 + ~σ2) (~τ1 × ~τ2)
z . (14)

The functions ḡi(p
2
−) are related to Fourier transforms of the functions gi(r) of Ref. [31].

Because p− is independent of Nc, the Fourier transform does not alter the large-Nc scaling

and the relations derived below for the ḡi(p
2
−) should also hold for the corresponding gi(r).

Comparison with Eqs. (8)-(10) shows that these structures are reproduced in the large-Nc

analysis up to NNLO, with the exception of the term proportional to (ḡ6 − ḡ10), which is

suppressed even further. On the other hand, Eq. (10) contains an additional term, propor-

tional to U12
/T /P

(p2
−), which is not included in Eq. (14) because it is second order in p+. The

following large-Nc scaling relations for the couplings can be extracted:

ḡ1 ∼ N0
c , ḡ2 ∼ N0

c , ḡ3 ∼ N0
c ,

(ḡ4 + ḡ5) ∼ Nc , (ḡ4 − ḡ5) ∼ N−1
c ,

(ḡ6 − ḡ10) ∼ N−2
c , (ḡ7 − ḡ11) ∼ N0

c , (ḡ8 − ḡ12) ∼ N0
c ,

(ḡ9 − ḡ13) ∼ N−1
c , ḡ14 ∼ N−1

c , (ḡ15 − ḡ16) ∼ N−1
c . (15)

In the large-Nc limit, the order-Nc TVPV interactions proportional to ḡ4 + ḡ5 dominate.

From the two relations containing ḡ4 and ḡ5 it follows that these two couplings are equal up

to corrections of relative order 1/N2
c , i.e., up to corrections expected to be of order 10%:

ḡ4 = ḡ5
(

1 +O(1/N2
c )
)

. (16)

Terms proportional to p+ are absent at LO and start to contribute at NLO, leading to the

order-N0
c scaling of (ḡ7 − ḡ11) and (ḡ8 − ḡ12), the same order as some of the terms in the

static potential.
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2. TVPC potential

The general parameterization of the TVPC Hamiltonian up to first order in the relative

momentum contains 18 terms [11]. Here we only show those that have a corresponding

term in Eqs. (11)-(13), following some of the notational conventions of Ref. [32]. The terms

proportional to g̃1 through g̃8 vanish because of the on-shell condition p− · p+ = 0. The

potential can then be written as

V/TP =
[

g̃9(p
2
−)− g̃13(p

2
−) +

(

g̃10(p
2
−)− g̃14(p

2
−)
)

~τ1 · ~τ2

+
(

g̃11(p
2
−)− g̃15(p

2
−)
)

[τ1 τ2]
zz
2 +

(

g̃12(p
2
−)− g̃16(p

2
−)
)

(~τ1 + ~τ2)
z
]

pi
− p

j
+ [σ1σ2]

ij
2

+ g̃17(p
2
−) (p− × p+) · (~σ1 × ~σ2)(~τ1 − ~τ2)

z

+ g̃18(p
2
−) (p− × p+) · (~σ1 − ~σ2)(~τ1 × ~τ2)

z. (17)

Identifying the operators structures with those of Eqs. (11)-(13), the following large-Nc

scalings for the functions g̃i(p
2
−) (we use the tilde to distinguish them from the TVPV

functions ḡi(p
2
−)) are extracted:

(g̃9 − g̃13) ∼ N−2
c , (g̃10 − g̃14) ∼ N0

c , (g̃11 − g̃15) ∼ N0
c ,

(g̃12 − g̃16) ∼ N−1
c , g̃17 ∼ N−1

c , g̃18 ∼ N−1
c . (18)

Contrary to what was observed in the TVPV case, in the TVPC potential terms proportional

to p+ are already present at LO. This leads to a relative suppression of 1/Nc, so that the

dominant TVPC interactions proportional to g̃10− g̃14 and g̃11− g̃15 are of order N
0
c . Again,

the next-order terms are only suppressed by a single factor of 1/Nc. The terms proportional

to U7
/TP

(p2
−) and U8

/TP
(p2

−) in Eq. (13) contain more than one power of p+ and thus were not

considered in Ref. [11].

B. One-meson exchange potential

1. TVPV Potential

The TVPV potential is commonly parameterized in terms of one-meson exchanges with

one TCPC and one TVPV meson-nucleon coupling [14, 15, 33, 34]. Following Ref. [13], we

consider π, η, ρ, and ω exchanges. The Lagrangian describing the TCPC meson-nucleon
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interactions is given by

Lst = gπN̄iγ5τ
aπaN + gηN̄ iγ5ηN

− gρN̄

(

γµ − i
ξV
2Λ

σµνqν

)

τaρaµN − gωN̄

(

γµ − i
ξS
2Λ

σµνqν

)

ωµN , (19)

where qν = pν − p′ν , while the TVPV Lagrangian reads

L/T /P = N̄
(

ḡ(0)π τaπa + ḡ(1)π π0 + ḡ(2)π (3τ zπ0 − τaπa)
)

N

+ N̄
(

ḡ(0)η η + ḡ(1)η τ zη
)

N

+ N̄
(

ḡ(0)ρ τaρaµ + ḡ(1)ρ ρ0µ + ḡ(2)ρ (3τ zρ0µ − τaρaµ)
) σµνqνγ5

2Λ
N

+ N̄
(

ḡ(0)ω ωµ + ḡ(1)ω τ zωµ

) σµνqνγ5
2Λ

N . (20)

In comparison to Ref. [13] we have replaced χV,S/mN → ξV,S/Λ in Lst and 1/mN → 1/Λ in

L/T /P , where Λ ∼ 1GeV is independent ofNc. This prevents spurious factors ofmN ∼ Nc from

appearing in the expression for the potentials; see Ref. [25] for an analogous discussion for the

TCPV case. The TVPV potential derived from these Lagrangians is given in Refs. [13, 31].

Using our conventions and transforming to momentum space it takes the form

V meson
/T /P =

[

−
ḡ
(0)
η gη
2mN

Y (η)(p2
−) +

ḡ
(0)
ω gω
2Λ

Y (ω)(p2
−)

]

(~σ1 − ~σ2) · p−

+

[

−
ḡ
(0)
π gπ
2mN

Y (π)(p2
−) +

ḡ
(0)
ρ gρ
2Λ

Y (ρ)(p2
−)

]

~τ1 · ~τ2 (~σ1 − ~σ2) · p−

+

[

−
ḡ
(2)
π gπ
2mN

Y (π)(p2
−) +

ḡ
(2)
ρ gρ
2Λ

Y (ρ)(p2
−)

]

3

2
[τ1τ2]

zz
2 (~σ1 − ~σ2) · p−

+

[

−
ḡ
(1)
π gπ
2mN

Y (π)(p2
−) +

ḡ
(1)
ω gω
2Λ

Y (ω)(p2
−)

]

(~σ1 τ
z
1 − ~σ2 τ

z
2 ) · p−

+

[

ḡ
(1)
η gη
2mN

Y (η)(p2
−)−

ḡ
(1)
ρ gρ
2Λ

Y (ρ)(p2
−)

]

(~σ2 τ
z
1 − ~σ1 τ

z
2 ) · p− , (21)

where Y (a)(p2
−) =

1
p
2

−

+m2
a

.

Comparison of Eq. (21) with Eqs. (8)-(10) shows that the meson-exchange potential

contains the LO term of Eq. (8), as well as three of the five NLO terms of Eq. (9) and one

NNLO term of Eq. (10). Because the meson-exchange potential in the form of Eq. (21) is

linear in the momenta and does not include any relativistic corrections, it does not contain
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any of the operator structures that are proportional to a single factor of p+, nor terms that

contain tensor structures of p− and p+.

Now, using the known large-Nc scalings of the strong couplings, it is possible to determine

the constraints that the large-Nc analysis places on the TVPV meson-nucleon couplings. The

Nc scaling of the strong couplings is [23, 25, 28]

gπ ∼ N3/2
c , gη ∼ N1/2

c .

gω ∼ N1/2
c , gω ξS ∼ N−1/2

c ,

gρ ∼ N−1/2
c , gρ ξV ∼ N1/2

c . (22)

As stated above, the scale Λ is independent of Nc, Λ ∼ N0
c . The same holds for the

momentum p− and the meson masses ma (a = π, η, ω, ρ), so we also have

Y (a)(p2
−) ∼ N0

c . (23)

Requiring the coefficient functions U i
/T /P

(p2
−) to be of order N0

c and not further suppressed,

Eq. (21) allows to set constraints on the Nc scalings of the TVPV meson-nucleon couplings.

Because there are contributions of more than one TVPV coupling to a single operator struc-

ture in Eq. (21), in principle only upper limits can be extracted for their scaling. However,

at large distances pions dominate compared to the heavier meson exchanges. Therefore,

pion couplings should saturate the upper limits and we obtain

ḡ(0)π ∼ N−1/2
c , ḡ(0)ρ . N1/2

c ,

ḡ(1)π ∼ N1/2
c , ḡ(1)ω . N1/2

c ,

ḡ(2)π ∼ N−1/2
c , ḡ(2)ρ . N1/2

c ,

ḡ(0)η . N1/2
c , ḡ(0)ω . N−1/2

c ,

ḡ(1)η . N−1/2
c , ḡ(1)ρ . N−1/2

c . (24)

In the last two pairs of bounds obtained for ḡ
(0)
η , ḡ

(0)
ω and ḡ

(1)
η , ḡ

(1)
ρ at least one of each pair of

couplings must saturate the bound. In the pion sector a clear hierarchy between the various

couplings is predicted. The isovector coupling ḡ
(1)
π dominates, while ḡ

(0)
π and ḡ

(2)
π are both

suppressed by a factor of 1/Nc, which agrees with the (ḡ
(0)
π − ḡ

(2)
π ) ∼ N

−1/2
c scaling found in

the Skyrme model [35].
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2. TVPC Potential

Constraints exist on the spin and parity of the exchanged bosons in the TVPC potential,

and these exclude, e.g., one-pion exchange [12]. Here we consider the potential of Ref. [32],

which includes ρ(770) and h1(1170) exchanges. These are the lightest mesons that con-

tribute to the TVPC potential. However, our analysis can straightforwardly be extended if

additional/different mesons are considered. The relevant interactions are [32]

Lst = −gρN̄

(

γµ − i
ξV
2Λ

σµνqν

)

τaρaµN − ghN̄γµγ5hµN,

L/TP = −i
g̃ρ
2Λ

N̄σµνqν(~τ × ~ρµ)
zN −

g̃h
2Λ

N̄σµνγ5qνhµN, (25)

with the same replacements of χV /mN → ξV /Λ and 1/mN → 1/Λ for the vector meson

couplings as in the TVPV case. The potential in momentum space then reads (cf. Ref. [32])

V meson
/TP =

g̃ρgρ
2mNΛ

Y (ρ)(p2
−)(~τ1 × ~τ2)

z (p− × p+) · (~σ1 − ~σ2)

+
g̃hgh
2mNΛ

Y (h)(p2
−)p

i
− p

j
+ [σ1σ2]

ij
2 . (26)

To extract the large-Nc scaling of the TVPC meson-nucleon couplings we take the strong

hNN coupling to scale as [23, 28]

gh ∼ N−1/2
c . (27)

Comparison with Eqs. (11)-(13) shows that the ρ-meson exchange term corresponds to the

NLO term proportional to U4
/TP

(p2
−), while the h1-meson term corresponds to the NNLO

term proportional to U6
/TP

(p2
−). The TVPC meson-nucleon couplings therefore scale as

g̃ρ ∼ N1/2
c , g̃h ∼ N−1/2

c . (28)

The potential of Eq. (26) does not contain any of the LO terms in the large-Nc counting.

These are related to the exchange of additional mesons. For example, inclusion of the

isovector a1 meson results in a term that matches the operator structure of the U1
/TP

(p2
−)

term [32]. Given that the mass of the a1(1260) is close to that of the h1(1170) meson, the

large-Nc analysis suggests that a1 exchange should not be neglected in phenomenological

applications.
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C. Effective field theory

TVPV interactions have also been analyzed in effective field theory, see, e.g., Refs. [16–19]

and references therein. In a chiral EFT the interactions are parameterized in terms of pion

exchanges and nucleon-nucleon contact terms. The LO potential is [19, 36]:

V EFT
/T /P =− i

C̄1

2
(~σ1 − ~σ2) · p− − i

(

gA[ḡ
(0)
π − ḡ

(2)
π ]

2Fπ

1

(p2
− +M2

π)
+

C̄2

2

)

~τ1 · ~τ2 (~σ1 − ~σ2) · p−

− i
gAḡ

(1)
π

2Fπ

1

(p2
− +M2

π)
(~σ1τ

z
1 − ~σ2τ

z
2 ) · p− . (29)

Here C̄1,2 are NN contact terms, Fπ = 92.4 MeV is the pion decay constant, and ḡ
(0,1,2)
π

are the TVPV pion-nucleon couplings defined in Eq. (20). The term proportional to ḡ
(1)
π in

V EFT
/T /P

reproduces the LO term in the large-Nc analysis. V EFT
/T /P

also contains two terms that

are NLO in the 1/Nc expansion. This suggests that, even though all three terms appear

at the same order in chiral EFT, the one-pion exchange contribution proportional to ḡ
(1)
π is

dominant in a combined chiral and large-Nc analysis. ḡ
(0,1,2)
π are all assumed to be natural

(i.e., of order 1) in the chiral EFT analysis, but in fact ḡ
(0)
π and ḡ

(2)
π are suppressed compared

to ḡ
(1)
π by a factor of 1/Nc. Comparison with Eqs. (8)-(10) also leads to C̄1 ∼ N0

c , C̄2 . N0
c

for the NN contact terms. However, since naturalness is difficult to define quantitatively

and 1/Nc = 1/3 in the physical world, it seems reasonable to retain all terms in Eq. (29) in

phenomenological applications.

The fact that the LO chiral EFT potential in the TVPC case contains the leading term

in the 1/Nc expansion is different from the TCPV case. There pion exchange constitutes

the sole LO contribution to the potential in the chiral counting, but the analysis of Ref. [25]

shows it is actually suppressed by sin2 θW/Nc compared to other mechanisms.

V. CONCLUSIONS

We applied the 1/Nc expansion to the TVPV and TVPC NN potentials. In the TVPV

case, the LO terms are of order Nc, while the LO contributions in the TVPC case are of

order N0
c . In both cases first corrections are suppressed by a single power of 1/Nc. However,

to the order we considered, the expansion in a given isospin sector is in 1/N2
c , as it is in the

TCPV and TCPC cases [25]. In terms of a meson-exchange picture, the LO in Nc TVPV
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potential corresponds to π and ω exchanges. Using the known large-Nc scaling of the strong

meson-nucleon couplings, we derived bounds on the scaling of the TVPV meson-nucleon

couplings. In the pion sector, we find that the isovector coupling ḡ
(1)
π scales as N

1/2
c , while

both isoscalar and isotensor couplings ḡ
(0)
π and ḡ

(2)
π are smaller by a factor of 1/Nc. The

NLO potential also contains terms that are not reproduced in the meson-exchange picture.

These terms are proportional to p+ and correspond to relativistic corrections. In the TVPC

case, the commonly considered ρ and h1 exchanges only start to contribute at NLO in the

large-Nc counting. The LO potential is generated by the exchange of additional mesons,

e.g., the a1 meson. While these are heavier than the ρ and h1 mesons, from the large-Nc

point of view all meson masses scale as N0
c and the a1 contribution should be considered.

Comparison with the TVPV potential V EFT
/T /P

derived at LO in chiral EFT shows that it

reproduces the leading large-Nc operator, together with some subleading terms in the large-

Nc expansion. In particular, the pion-exchange term proportional to ḡ
(1)
π contributes to the

leading large-Nc operator. This is in contrast to the TCPV case, where the pion-exchange

contribution, despite being the LO term in the chiral power counting, only generates sub-

leading terms in the 1/Nc expansion. The extracted large-Nc scalings of the pion-nucleon

couplings show that the TCPV pion-nucleon coupling h
(1)
π is 1/Nc-suppressed relative to

the TVPV pion coupling ḡ
(1)
π . This has the effect that the LO chiral TVPV single-pion

exchange potential is enhanced compared to the LO chiral TCPV single-pion exchange. It is

interesting to note that, according to the recent analysis of Ref. [9], this strong-interaction

enhancement of the isovector TV pion exchange may increase the sensitivity of experiments

involving neutron scattering on nuclear targets to TV effects.

The chiral suppressions discussed in Refs. [16, 17] and the large-Nc scalings derived here

are independent and complementary. Possible sources of T violation within the Standard

Model and beyond can be studied in an EFT framework, where the new physics mechanisms

and their characteristic energy scales enter through dimension six operators. Taken together

with the combined effect of chiral symmetry breaking, isospin breaking, and large Nc sup-

pressions, they give rise to a rich structure of hierarchies that can be accessed by studying

their implications for observables like the EDMs of the nucleon and light nuclei [18]. We

plan to address these phenomenological issues in connection with the 1Nc expansion in a

future publication.

Given the difficulty of obtaining experimental constraints on the TV couplings, future
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lattice QCD calculations, while themselves highly complex, could contribute significantly to

a better understanding of CP-violating effects in nuclear systems. In particular, calculations

of the pion-nucleon couplings ḡ
(I)
π (I = 0, 1, 2) could check the hierarchy predicted by our

large-Nc analysis.
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