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The astrophysical capture process α+ d →
6Li + γ is studied in a three-body model. The initial

state is factorized into the deuteron bound state and the α+ d scattering state. The final nucleus
6Li(1+) is described as a three-body bound state α + n + p in the hyperspherical Lagrange-mesh
method. The contribution of the E1 transition operator from the initial isosinglet states to the
isotriplet components of the final state is estimated to be negligible. An estimation of the forbidden
E1 transition to the isosinglet components of the final state is comparable with the corresponding
results of the two-body model. However, the contribution of the E2 transition operator is found to
be much smaller than the corresponding estimations of the two-body model. The three-body model
perfectly matches the new experimental data of the LUNA collaboration with the spectroscopic
factor 2.586 estimated from the bound-state wave functions of 6Li and deuteron.

PACS numbers: 11.10.Ef,12.39.Fe,12.39.Ki

I. INTRODUCTION

In the Big Bang nucleosynthesis (BBN) model of the
Universe estimations of the primordial abundance of the
light 2H, 3He and 4He nuclei are in very good agreement
with astrophysical observations [1]. However, the situ-
ation is very different for the primordial abundance of
the 6Li and 7Li nuclei [2–6]. Recent observations of 6Li
in metal-poor stars [3] suggest a large production of this
isotope. The data for the 6Li/7Li ratio of about 0.05
is almost three orders of magnitude larger than estima-
tions from the BBN model [7]. Understanding of this
phenomenon is one of the open problems in nuclear as-
trophysics.
In BBN the light 6Li nucleus is produced mainly

through the radiative capture process

α+ d→6 Li + γ (1)

at low energies within the range 50 ≤ Ecm ≤ 400 keV [7].
This process was experimentally studied in detail at en-
ergies around the 3+ resonance of Ecm =0.711 MeV and
above [8, 9]. Until recently the direct measurement of the
cross section of the process at low energies was not pos-
sible due to serious experimental difficulties [10, 11]. In
Ref. [11] breakup of the 6Li nucleus in the field of heavy
ion 208Pb was studied with the aim to extract data on
the cross section of the inverse process at astrophysical
energies in laboratory conditions. However, dominance
of the nuclear breakup over the Coulomb induced pro-
cess did not allow to implement this idea. The LUNA
collaboration has recently reported new data at two as-
trophysical energies E=94 keV and E=134 keV [12]. The
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results turn out to be much lower than the old data from
Ref. [10]. Recently in Ref.[13] a way to improve the ac-
curacy of the direct experiment has been proposed based
on the photon angular distribution calculated in the po-
tential model. The results provide the best kinematic
conditions for the measurement of the 2H(α, γ)6Li reac-
tion.
From the theoretical side, different two-body and

three-body potential models [14–21] and ab initio ap-
proaches [22] have been developed. These studies have
demonstrated that the main contribution to the process
at energies around and beyond the 3+ resonance comes
from the E2 transition. However, at low astrophysical
energies the situation is different. Here the dominant
contribution comes from the E1-transition operator. The
most realistic two-body model of Ref.[19] is based on the
well-known asymptotic form of the two-body α+d bound-
state wave function at low energies and a complicated po-
tential derived from the original Woods-Saxon potential
via the integro-differential transformation at higher en-
ergies. Recently these results have been reproduced with
a much simpler α − d potential of the Gaussian form
describing both bound state (ANC, binding energy) and
scattering state (phase shifts in the S, P , D-waves) prop-
erties [21] of the α+ d system.
On the other hand, in the two-body models the E1

transition is forbidden by the isospin-selection rule, since
both initial and final states are isospin singlet. To over-
come this problem, an appropriate correction to the E1-
transition operator was introduced to take into account
the difference between the mass of the alpha-particle and
the twice the deuteron mass. Without this correction the
E1 transition does not contribute to the S-factor of the
process. However, this drawback has been common for
all the models developed so far.
There is another possible development for the estima-

tion of the E1- and E2- transition matrix elements for
the 4He(d, γ)6Li capture process. In realistic three-body
models the E1 transition is allowed from the initial Ti = 0
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states to the Tf = 1 components of the final 6Li(1+)
bound state of the α+n+ p system. Indeed, the ground
state of the 6Li nucleus contains a small isospin-triplet
component. The norm square of this component of the
three-body wave function in hyperspherical coordinates
[23, 24] is about 1.13 ×10−5. However, it still can make
some additional contribution to the process.

The aim of present study is to estimate the E1- and
E2-transition contribution to the S-factor of the afore-
mentioned process in a three-body model. The initial
three-body wave function is factorized into the deuteron
bound-state and the α+d scattering wave functions. The
final 6Li(1+) state is described as a α+p+n three-body
bound system. The hyperspherical wave function on the
Lagrange mesh basis available for the 6Li(1+) bound-
state [23, 24] will be used.

In section 2 we describe the model, in section 3 we
discuss obtained numerical results and finally, in the last
section we make conclusions.

II. THEORETICAL MODEL

A. Cross sections of the radiation capture process

The cross sections of the radiative capture process
reads

σE(λ) =
∑

JiTiπi

∑

JfTfπf

∑

Ωλ

(2Jf + 1)

[I1] [I2]

32π2(λ+ 1)

h̄λ ([λ]!!)
2 k2λ+1

γ C2
S

×
∑

lωIω

1

k2ωvω
| 〈ΨJfTfπf ‖MΩ

λ ‖ΨJiTiπi

lωIω
〉 |2, (2)

where Ω =E or M (electric or magnetic transition), ω
denotes the entrance channel, kω, vω , Iω are the wave
number, velocity of the α − d relative motion and the
spin of the entrance channel, respectively, Jf , Tf , πf (Ji,
Ti, πi) are the spin, isospin and parity of the final (ini-
tial) state, I1, I2 are channel spins, kγ = Eγ/h̄c is the
wave number of the photon corresponding to the energy
Eγ = Eth + E with the threshold energy Eth = 1.474

MeV. The wave functions ΨJiTiπi

lωIω
and ΨJfTfπf present

the initial and final states, respectively. They are given
in a common form for the both two-body and three-body
models. The reduced matrix elements are evaluated be-
tween the initial and final states. The constant C2

S is the
spectroscopic factor [25]. We also use short-hand nota-
tions [I] = 2I + 1 and [λ]!! = (2λ+ 1)!!.

The electric-transition operator in the Jacobi coordi-

nates can be written as [23]

ME
λµ(~x, ~y) =e
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λµ(~x)+

+ e

λ−1
∑

k>0

αλk

(−A3

A

)k
[

Ẑ1
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with

ME
λµ(~x) =

(

x√
µ12

)λ

Yλµ(x̂) ≡ rλYλµ(r̂), (4)

ME
λµ(~y) =

(

y√
µ12

)λ

Yλµ(ŷ) ≡ RλYλµ(R̂), (5)

and

αλk =

(

4π[λ]!

[k]![λ− k]!

)1/2

, (6)

where 1
µ12

= 1
A1

+ 1
A2

and 1
µ(12)3

= 1
A12

+ 1
A3

are

the reduced masses. The Jacobi coordinates x (between
the proton and neutron), y (between the p + n and the
α-particle) and relative r, R coordinates are related as

x =
√
µ12r, y =

√
µ(12)3R. (7)

B. Wave functions

In the present three-body model the initial state is fac-
torized as

ΨJ′M ′,T ′0
i (~x, ~y) =

udl′(r)

r

uL′(R)

R

×
{

YL′(ŷ)⊗ {Yl′(x̂)⊗ χs′(1, 2)}j′
}

J′M ′

× ζT
′,0

1/2,1/2(1, 2), (8)

where s′ and L′ are spin and orbital angular momentum
of the entrance channel, respectively, and l′ is the orbital
angular momentum of the deuteron. Although in the
present study we restrict ourselves to the S-wave com-
ponent of the deuteron and hence the quantum numbers
s′ = 1 and l′ = 0 are fixed, we aim to derive the ana-
lytical expressions of the matrix elements for a general
case of arbitrary s′ and l′. In addition, udl′(r) is the ra-
dial wave functions of the deuteron and uL′(R) is the
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scattering wave function of the α − d pair. The latter
asymptotically behaves as

uL′(R) →
R→∞

FL′(kωR) cos δL′(E) +GL′(kωR) sin δL′(E),

(9)
where FL′ and GL′ are Coulomb functions, and δL′(E) is
the phase shift in the L′-wave at energy E. The parity
of the state is defined from the intrinsic parities of the α
particle and deuteron, which are positive and the orbital
momentum L′.
The spin and isospin wave functions of the two nucle-

ons as a bound state of deuteron read, respectively,

χs′m′(1, 2) = {χ1/2(1)⊗ χ1/2(2)}s′m′ (10)

and

ζT
′,0

1/2,1/2(1, 2) = {ζ1/2(1)⊗ ζ1/2(2)}T ′,0. (11)

The antisymmetry condition requires S′ + T ′ + l′ to be
odd. Since for the deuteron l′ = 0 and S′ = 1, the initial
three-body system is in the isosinglet state T ′ = 0. The
final three-body wave function of the 6Li(1+, 0) ground
state in the hyperspherical basis reads as

ΨJM,T0
f (~x, ~y) =

1

ρ5/2

∑

γ,k

χγk(ρ)
{

YL
lxly (x̂, ŷ)⊗ χS(~ξ)

}

JM

× Φ
lxly
k (α) ζT,0

1/2,1/2(1, 2), (12)

where ρ (hyperradius) and α (hyperangle) are defined as

ρ2 = x2 + y2, α = arctan(y/x). (13)

Hyperangle α varies between 0 and π/2. The hyperspher-
ical harmonics are defined as [23, 24]

Φ
lxly
k (α) = N

lxly
k (cosα)lx(sinα)lyP ly+1/2,lx+1/2

n (cos 2α),
(14)

where P
ly+1/2,lx+1/2
n (cos 2α) are the Jacobi polynomials

and N
lxly
k is the normalisation factor (see Ref.[23] for

details).
The astrophysical S-factor of the process is expressed

in terms of the cross section as [26]

S(E) = E σE(λ) exp(2πη), (15)

where η is the Coulomb parameter.

C. Isospin transition matrix elements

We rewrite the charge operators of the proton and neu-
tron in Eq.(3) with the help of the isospin operators as

Ẑ1 =
1

2
+ m̂t1, Ẑ2 =

1

2
+ m̂t2. (16)

Then the matrix element of the isospin operator

T̂y =

[(

1

2
+ m̂t1

)

+

(

1

2
+ m̂t2

)](

−A3

A

)λ

+ Z3

(

A12

A

)λ

(17)

of the first term in the Eq.(3) between the initial and
final three-body isospin wave functions reads as

〈ζT,0
1/2,1/2|T̂y|ζ

T ′,0
1/2,1/2〉 =

[

(

−A3

A

)λ

+ Z3

(

A12

A

)λ
]

δT,T ′ .

(18)

The matrix element of the second isospin operator

T̂x =

(

1

2
+ m̂t1

)(

− A2

A12

)λ

+

(

1

2
+ m̂t2

)(

A1

A12

)λ

(19)

can be evaluated using the angular momentum algebra

〈ζT,0
1/2,1/2|T̂x|ζ

T ′,0
1/2,1/2〉 =

1

2

[

(

− A2

A12

)λ

+

(

A1

A12

)λ
]

δT,T ′

+
1

2

[

(

− A2

A12

)λ

−
(

A1

A12

)λ
]

× (δT,0δT ′,1 + δT,1δT ′,0) . (20)

The isospin operator in the last term of Eq.(3) is evalu-
ated in the same way as the second term.
From last equation one can note that the E1 transition

is allowed from the isospin-singlet states to the isospin-
triplet components of the final 6Li(1+) three-body bound
state. The spin-angular parts of the matrix elements for
the E1- and E2-transition operators in the three-body
model are given in Appendix A.

III. NUMERICAL RESULTS

A. Details of the calculations

The radial wave function udl′(r) of the deuteron is
the solution of the bound-state Schrödinger equation
with the central Minnesota potential VNN [27, 28] with
h̄2/2mN = 20.7343 MeV fm2. The Schrödinger equa-
tion is solved using a highly accurate Lagrange-Laguerre
mesh method [29]. It yields Ed=-2.202 MeV for the
deuteron ground-state energy with the number of mesh
points N = 40 and a scaling parameter hd = 0.40.
The scattering wave function uL(E,R) of the α−d rel-

ative motion is calculated as a solution of the Schrödinger
equation using the Numerov method with an appropri-
ate potential subject to the boundary condition Eq.(9).
In present study we use the well-known deep potential
of Dubovichenko [30] with a small modification in the
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S-wave [21]: V
(S)
d (R) = −92.44 exp(−0.25R2) MeV. The

potential parameters in the 3P0,
3P1,

3P2 and 3D1,
3D2,

3D3 partial waves are the same as in Ref. [30]. The po-
tential contains additional states in the S- and P -waves
forbidden by the Pauli principle. The above modifica-
tion allows to better describe the phase shifts in the
S-wave, and most importantly, reproduce the empirical
value Cαd = 2.31 fm−1/2 of the asymptotic normalization
coefficient (ANC) of the 6Li(1+) ground state derived
from α− d elastic scattering data [31].
In order to check the sensitivity of the E1- and E2-

transition matrix elements on the short-range part of the
α−dwave function, we also test the α−d potential V S

d ob-
tained from the initial Vd potential in the S- and P -waves
by a supersymmetric (SUSY) transformation [32]. The
resulting potential gives the same phase shifts and the
same ground-state energy as the initial potential. How-
ever, the forbidden state is removed and the role of the
Pauli principle is simulated by a short-range core.
The final 6Li(1+) ground-state wave function was cal-

culated using the hyperspherical Lagrange-mesh method
[23, 24, 33] with the same Minnesota NN-potential. For
the α−N nuclear interaction the potential of Voronchev
et al. [34] was employed, which contains a deep Pauli for-
bidden state in the S-wave. The potential was slightly
renormalized by a scaling factor 1.008 to reproduce
the experimental binding energy Eb=3.70 MeV. The
Coulomb α − p interaction is parameterized as VC(r) =
2e2 erf(r/RC) with a radius RC=1.2 fm. The Pauli for-
bidden states in the three-body configuration space are
eliminated with the help of the orthogonalising pseudopo-
tential (OPP) method [35, 36].
The hypermomentum expansion includes terms up to

Kmax = 20 which ensures a good convergence of the en-
ergy. The matter r.m.s. radius of the ground state (with
1.4 fm for the radius of the α-particle ) was found as
√

〈r〉2 = 2.25 fm, a value slightly lower than the exper-
imental data (2.32 ± 0.03 fm [37]). The ground state is
essentially S = 1 (96 percent). As noted above, the three-
body wave function includes also a small isotriplet com-
ponent lx = ly = S = T = 1 with the norm square 1.13
×10−5 which can give a contribution to the E1-transition
matrix elements.

B. Estimation of the astrophysical S-factor

First we estimate the allowed E1-transition contribu-
tion to the capture process 4He(d, γ)6Li in the three-
body model when the isospin changes. Here contribu-
tions come from the initial 3P0,

3P1,
3P2 partial waves

and the lx = ly = S = T = 1 components of the fi-
nal state. In Fig. 1 we show the corresponding esti-
mation for the astrophysical S-factor. As can be seen
from the picture the contribution is rather small which
means that the small isotriplet component of the 6Li(1+)
ground state does not make a significant contribution to
the capture process. Fig. 2 shows the estimated contri-
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FIG. 1. Contribution of the E1-transition operator from the
initial isosinglet state to the isotriplet component of the final
state for the astrophysical S-factor of the capture process α+
d →

6Li+γ.
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FIG. 2. Contribution of the E1-transition operator from the
initial isosinglet state to the isotriplet and isosinglet compo-
nents of the final state for the astrophysical S-factor of the
capture process α+ d →

6Li+γ.

bution of the E1-transition operator to the astrophysical
S-factor including the correction to the mass numbers
An=1.00866491597 a.u., An= 1.00727646677 a.u. and
A3=4.001506179127 a.u. This yields additional contribu-
tion to the S-factor, larger than isospin-transition terms
in Fig. 1 approximately by two orders of magnitude.
In Fig. 3 the contribution of the E2-transition operator

to the astrophysical S-factor is demonstrated for differ-
ent initial partial waves 3D1,

3D2 and 3D3. As can be
seen from the figure the estimations are essentially less
than the corresponding numbers for the two-body model
[21]. The magnitude of underestimation is larger at low
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astrophysical energies.
Additionally, unlike the two-body model, in the three-

body model there is a contribution of the initial 3S1-
state to the E2-transition matrix elements. However, our
numerical study shows this contribution to be very small.
For the energy range from 0.1 MeV to 1.0 MeV the S-
wave contribution to the astrophysical S-factor increases
from 1.×10−12 MeV b to 2.02×10−12 MeV b. This is
why we do not show the S-wave contribution in Fig. 3.
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FIG. 3. Contribution of the E2-transition operator to the
astrophysical S-factor of the capture process α+ d →

6Li+γ.
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FIG. 4. Convergence of the astrophysical S-factor for the
capture process α+ d →

6Li+γ with respect to the number of
integration points with the fixed step h = 0.05 fm.

We also have tested the SUSY transformed V S
d alpha−

d potentials. It turns out that this transformation in-
creases the S-wave contribution to the S-factor by about
12-13 percent in the energy range from 0.1 MeV to 1.0

MeV. But the total S-wave contribution is still negligi-
ble. The SUSY transformation of the P -wave potentials
yields very small increase of the S-factor by 0.52-0.60 per-
cent in the aforementioned energy range. The situation
is different from the beta- and M1-transition processes
[24, 33, 38], where the main contribution comes from the
S-wave α − d scattering state, hence a sensitivity of the
transition probability to the short-range behaviour of the
wave function was essential.
Fig. 4 demonstrates the convergence of the evaluated

S-factor in the three-body model for different choices of
the number of integration points N = 300, 500, 700 with
fixed step h = 0.05 fm. As one can see, the convergent
results are obtained with N=500 mesh points. In Fig. 5
we compare the E1- and E2-transition components. At
low energies the E1 transition dominates and at higher
energies the E2 component is stronger.
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FIG. 5. Comparison of the contributions of the E1- and E2-
transition operators to the astrophysical S-factor of the cap-
ture process α+ d →

6Li+γ.

Finally, in Fig. 6 we compare the obtained theoretical
results with the estimations of the two-body model [21]
and experimental data from Refs. [8–10, 12]. One can
see from the figure, that the results of the two-body and
three-body models differ essentially for the spectroscopic
factor C2

S=1. At the resonance energy they differ by a
factor of 0.565 which is consistent with the square of the
overlap integral I = 0.748 of the three-body bound state
wave function with the deuteron and the two-body α− d
bound state wave functions.
We have estimated the integral Pαd =

∫

|Ψ(~R)|2d~R
with Ψ(~R) = 〈Ψ3(~r, ~R)|ψd(~r)〉 and found its value to be
0.3867. That yields for the spectroscopic factor an es-
timation C2

S = 1/Pαd=2.586. As was shown in Fig. 6
with this value of the spectroscopic factor the three-body
model perfectly describes the new experimental data of
the LUNA collaboration, better than the two body mod-
els. Any value of the spectroscopic factor from the inter-
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FIG. 6. Comparison of the theoretical estimations obtained
in the two- and three-body models for the astrophysical S-
factor of the capture process α + d →

6Li+γ with available
experimental data.

val between 1.50 and 4.25 is able to describe these data
within the error bar.

IV. CONCLUSIONS

The astrophysical capture process α + d →6Li+γ has
been studied in the three-body model. The contribution
of the E1-transition operator has been estimated from
the initial isosinglet states to the isotriplet components
of the final 6Li(1+) bound state. It is shown that this
contribution is small. The most important contribution
of the E1 transition comes due to the mass difference of
the proton and neutron with the violation of the isospin
selection rule. The situation is close to the two-body
model where the E1 transition, forbidden by the isospin
selection rule, is only possible due to the mass difference
of the alpha particle and twice the deuteron mass. The
three-body model perfectly matches the new experimen-
tal data of the LUNA collaboration with the spectro-
scopic factor 2.586 derived from the overlap integral of
the 6Li and deuteron bound-state wave functions.
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Appendix A: Spin-angular matrix elements of the Eλ-transition operator in the three-body model

The spin-angular matrix elements of the Eλ-transition are given as

〈ψJM
f |ME

λµ(~x, ~y)|ψJ′M ′

i 〉 =〈 1

ρ5/2

∑

γ,k

χγk(ρ)
{

Y L
lxly (x̂, ŷ)⊗ χS(~ξ)

}

JM
Φ

lxly
k (α)|ME

λµ(~x, ~y)|
upnl′ (r)

r

uL′(R)

R

×
{

YL′(ŷ)⊗ {Yl′(x̂)⊗ χs′(1, 2)}j′
}

J′M ′

〉, (A1)

where

ME
λµ(~x, ~y) =AxM

E
λµ(~x) +AyM

E
λµ(~y) +

λ−1
∑

k>0

A(k)
xy

{

ME
λ−k(~x)⊗ME

k (~y)
}

λµ
, (A2)

and
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{
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