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Abstract
By extending the dynamical coupled-channels analysis performed in our previous work

[Phys. Rev. C 88, 035209 (2013)] to include the available data of photoproduction of π meson

off the neutron, the transition amplitudes for the photo-excitation of the neutron to nucleon reso-

nances, γn → N∗, at the resonance pole positions are determined. The combined fits to the data

for both the proton- and neutron-target reactions also revise our results for the resonance pole po-

sitions and the γp → N∗ transition amplitudes. Our results allow an isospin decomposition of the

γN → N∗ transition amplitudes for the isospin I = 1/2 N∗ resonances, which is necessary for test-

ing hadron structure models and gives crucial inputs for constructing models of neutrino-induced

reactions in the nucleon resonance region.
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I. INTRODUCTION

Extracting the parameters, such as masses, widths, and form factors, associated with
the N and ∆ resonances (collectively referred to as N∗) from the data of meson-production
reactions is an important task for understanding Quantum Chromodynamics (QCD) in the
nonperturbative domain. It is usually done by performing a comprehensive partial-wave
analysis of πN and γN reactions with various final states including πN , ππN , ηN , KΛ,
KΣ, and ωN etc. within the on-shell K-matrix approaches [1–4] and the dynamical-model
approaches [5–7]. Here, the unitarity is a key essential element in accomplishing such a
comprehensive analysis and making a reliable extraction of resonance parameters, because
it not only ensures the conservation of probability in multichannel reaction processes but also
properly defines the analytic structure of the scattering amplitudes in the complex-energy
plane. The latter is crucial for extracting from the data correctly the resonance parameters
defined at the poles of scattering amplitudes.

Among the N∗ resonance parameters, transition amplitudes for the photo- and electro-
excitation of the nucleon to N∗ resonances, γ(∗)N → N∗, have been a particular focus of in-
terest in the N∗ spectroscopy because of its crucial role in understanding the electromagnetic
properties as well as the quark-gluon substructure of N∗ resonances (see, e.g., Ref. [8]). In
fact, the dynamical-model studies [9–12] of photon- and electron-induced meson-production
reactions off the proton target revealed the large meson-cloud effect on the transition ampli-
tudes at low Q2 whereas it decreases when Q2 is increased, implying that the (constituent)
quark-gluon core of N∗ surrounded by dense meson clouds at long distance scales gradually
emerges at shorter distance scales. In this regard, new extensive measurements of ep → e′X
with X = πN, ππN,KY are planned at CLAS12 [13], aiming at precise determinations
of the γ(∗)p → N∗ transition amplitudes in the Q2 region where such a transition to the
“core-dominated” region is expected to occur.

However, for the I = 1/2 N∗ resonances, the γ(∗)N → N∗ transition amplitudes for
both the proton (N = p) and neutron (N = n) are necessary to uniquely determine the
isospin structure of the photo- and electro-excitation couplings. The information on such
isospin-decomposed transition amplitudes are also important for investigating the neutrino-
induced reactions in the N∗ resonance region (see, e.g., Ref. [14]) because those are the
basic ingredients for constructing the vector-current matrix elements associated with the
weak interactions. The analysis of the photo- and electro-production reactions on both the
proton and neutron targets is required to determine the isospin structure of the γ(∗)N → N∗

transition amplitudes for the I = 1/2 N∗ resonances1, and such combined analyses have
been done so far by several analysis groups [15, 16] within the coupled-channels framework.

In Ref. [5], we reported on the N∗ parameters extracted within the dynamical coupled-
channels (DCC) model developed in Ref. [17]. Our approach is to fit the meson production
data and to also search for the resonance poles by solving the following coupled integral
equations for the partial-wave amplitudes, Tβ,α(pβ, pα;W ), which are specified by the total
angular momentum J , parity P , and total isospin I (these indices are suppressed in the
following equations),

Tβ,α(pβ, pα;W ) = Vβ,α(pβ, pα;W ) +
∑

δ

∫

p2dpVβ,δ(pβ, p;W )Gδ(p;W )Tδ,α(p, pα;W ) , (1)

1 For the I = 3/2 N∗ resonances, the γ(∗)p → N∗ and γ(∗)n → N∗ transition amplitudes are the same, and

thus in principle only the data for either the proton- or neutron-target reaction is required. However, it

is still highly desirable to have the data for both reactions so that one can have more constraints on the

transition amplitudes for I = 3/2 N∗ resonances as well.
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with

Vβ,α(pβ, pα;W ) = vβ,α(pβ, pα) + Zβ,α(pβ, pα;W ) +
∑

N∗

n

Γβ,N∗

n
(pβ)ΓN∗

n,α(pα)

W −M0
N∗

n

. (2)

Here, the subscripts α, β, δ = πN, ηN,KΛ, KΣ, π∆, ρN, σN represent reaction channels
considered, for which the π∆, ρN , and σN channels are the resonant components of the
three-body ππN channel. [Indices for the orbital angular momentum (L) and total spin
(S) of each reaction channel are suppressed.] Gδ(p,W ) is the Green’s function of channel
δ; M0

N∗

n
is the mass of the nth bare excited nucleon state N∗

n in a given partial wave; the
hadron-exchange potential vβ,α is derived from the effective Lagrangians by making use of
the unitary transformation method2 [18, 19]; the energy-dependent Zβ,α(pβ, pα;W ) term [17]
is the effective one-particle-exchange potential that is derived with the projection operator
method [20] and produces the three-body ππN cut; the vertex interaction Γα,N∗

n
defines

the N∗
n → α decay (note Γα,N∗

n
= Γ†

N∗

n,α
). Similar approach is also taken in Ref. [6]. The

differences between our approach and the other coupled-channels analyses [2–4], which only
consider the on-shell matrix elements of Tα,β(pα, pβ;W ), have been discussed in detail in
Refs. [5, 17, 21]. Here we only mention that these models can be qualitatively obtained
from Eq. (1) by keeping only the on-shell part of the propagator Gδ(p;W ), and Refs. [2, 4]
further replace the hadron-exchange interaction Vβ,α by phenomenological forms such as the
polynomials of on-shell momenta. If the data are complete (as explained, e.g., in Ref. [22])
and the high accuracy fits can be achieved, all approaches are acceptable for extracting the
resonance pole positions. However, more investigations are needed to examine under what
ideal conditions all approaches should give the same resonance parameters defined at the
poles of the scattering amplitudes. Furthermore, it is practically impossible to get complete
data. Thus it is essential to impose theoretical constraints on both the determinations of the
partial-wave amplitudes and the extractions of N∗ parameters. This is accomplished in our
approach by implementing the well-established hadron-exchange mechanisms, as defined by
vβ,α in Eq. (2), in the fits. This also allows us to provide interpretations of the structure of
the extracted N∗ resonances, such as the meson-cloud effects on the γ(∗)N → N∗ transitions.

For the calculations of the γN reaction amplitudes, we use the so-called helicity-LSJ
mixed-representation [17], in which the initial γN state is specified by their helicities, λγ

and λN , while the final meson-baryon state is specified by L, S, J and I as in Eq. (1),

Tβ,γN(λ)(pβ, q;W ) = Vβ,γN(λ)(pβ, q;W )

+
∑

δ

∫

p2dpTβ,δ(pβ, p;W )Gδ(p;W )Vδ,γN(λ)(p, q;W ) , (3)

Vβ,γN(λ)(pβ, q;W ) = vβ,γN(λ)(pβ, q) +
∑

N∗

n

Γβ,N∗

n
(pβ)ΓN∗

n,γN(λ)(q)

W −M0
N∗

n

, (4)

where λ = λγ − λN . Here we note that the summation in Eq. (3) runs over only hadronic
meson-baryon channels. We take γN channel perturbatively since the electromagnetic in-
teractions are much smaller than the strong ones and their effect on the resonance param-
eters are expected to be just the order of isospin breaking. The potential vβ,γN(λ)(pβ, q) is

2 The potential derived with the unitary transformation method becomes energy independent. The off-shell

behavior of the potential is also defined within this method.

3



again derived from the effective Lagrangians by making use of the unitary transformation
method. On the other hand, in Ref. [6] the potential for electromagnetic interaction is simply
parametrized with polynomials.

In our previous work performed in Ref. [5], we analyzed the available data of πp, γp →
πN, ηN,KΛ, KΣ reactions in the region of W . 2.1 GeV. Then 24 physical N∗ resonances,
which are defined at the poles of the scattering amplitudes in the complex energy plane,
were successfully extracted. Their properties, including the γp → N∗ transition amplitudes,
were also extracted by evaluating the residues of the scattering amplitudes at the resonance
poles.

As a first step towards understanding the isospin structure of the photo- and electro-
excitation of the nucleon to the I = 1/2 N∗ resonances, in this work we extend our previous
DCC analysis [5] by further including the available data of π photoproductions off the
neutron and making a combined analysis of meson production reactions off the proton and
neutron targets. We then present the extracted γn → N∗ transition amplitudes, together
with the improved results for resonance pole masses, πN elastic residues, and the γp → N∗

transition amplitudes. In this work, we focus on studying the transition amplitudes at the
photon point, Q2 = 0.

Our procedures of resonance extraction have been given in detail in Refs. [5, 12, 23–
25]. We therefore will only recall in Sec. II the formulae that are needed for presenting the
parameters of the extracted γN → N∗ transitions. In Sec. III, we present our fits to the
data. The extracted γn → N∗ transition amplitudes are presented in Sec. IV, along with the
revised values of resonance pole positions and the γp → N∗ transition amplitudes presented
in Ref. [5]. In Sec. V, we give a summary and discussions on the necessary future works.

II. FORMULAS FOR THE γN → N∗ TRANSITION AMPLITUDES

To define the γN → N∗ transition amplitudes, we recall here some formula that can be
derived [5, 17, 25] from Eqs. (1) and (3) within the considered dynamical coupled-channels
model. The on-shell S matrix elements of the meson-baryon reactions, MB → M ′B′, in the
center-of-mass system are given for each partial wave by

SM ′B′,MB(W ) = δM ′B′,MB + 2iFM ′B′,MB(W ). (5)

Here W is the total scattering energy and we have suppressed indices for the angular mo-
menta, parity, and isospin quantum numbers associated with the channels MB and M ′B′.
The on-shell scattering amplitudes FM ′B′,MB(W ) are related to the T matrix elements given
by Eq. (1) as follows:

FM ′B′,MB(W ) = −[ρM ′B′(kon
M ′B′ ;W )]1/2TM ′B′,MB(k

on
M ′B′ , kon

MB;W )[ρMB(k
on
MB;W )]1/2, (6)

with

ρMB(kMB;W ) = π
kMBEM(kMB)EB(kMB)

W
, (7)

where Eα(kα) =
√

m2
α + k2

α is the energy of a particle α with mass mα and three-momentum
~kα (kα ≡ |~kα|). For a givenW , which can be complex, the on-shell momentum for the channel
MB, kon

MB, is defined by W = EM(kon
MB) + EB(k

on
MB).
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As the energyW approaches to a pole positionMR in the complexW plane, the scattering
amplitudes take the following form,

FM ′B′,MB(W → MR) = −RM ′B′,MB

W −MR
+BM ′B′,MB, (8)

where RM ′B′,MB is the residue of FM ′B′,MB(W ) at the resonance pole MR and BM ′B′,MB is
the “background” contribution. Both RM ′B′,MB and BM ′B′,MB are constant and in general
complex. The pole position (MR) and the residue (RM ′B′,MB) are fundamental quantities
that characterize the extracted resonance.

The residues RM ′B′,MB defined in Eq. (8) can be calculated by using the definition

RM ′B′,MB =
1

2πi

∮

CMR

dW [−FM ′B′,MB(W )], (9)

where CMR
is an appropriate closed-path in the neighborhood of the point W = MR, circling

W = MR in a counterclockwise manner. It can be shown that for partial waves with one or
more bare states (this is the case of our current model for all partial waves), RM ′B′,MB can
also be calculated [5, 12, 23] with

RM ′B′,MB = [ρM ′B′(kon
M ′B′ ;MR)]

1/2Γ̄R
M ′B′(kon

M ′B′ ,MR)Γ̄
R
MB(k

on
MB,MR)[ρMB(k

on
MB;MR)]

1/2.
(10)

Here Γ̄R
MB(k

on
MB,MR) is the (renormalized) dressed MB → N∗ vertex that contains the

meson cloud arising from the coupling to the meson-baryon continuum states.
As for the γN → M ′B′ reactions, the on-shell scattering amplitudes are given in the

helicity-LSJ mixed-representation by

FM ′B′,γN(λ)(W ) = −[ρM ′B′(kon
M ′B′ ;W )]1/2TM ′B′,γN(λ)(k

on
M ′B′ , kon

γN ;W )[ργN (k
on
γN ;W )]1/2, (11)

where kon
γN is given by W = kon

γN +EN(k
on
γN). The amplitude FM ′B′,γN(λ)(W ) also has a form

close to the resonance pole position MR,

FM ′B′,γN(λ)(W → MR) = −RM ′B′,γN(λ)

W −MR

+BM ′B′,γN(λ). (12)

Then, the residue at the resonance pole MR, RM ′B′,γN(λ), can be calculated using the same
formula (9) as the MB → M ′B′ cases, or can be calculated using the similar formula to
Eq. (10),

RM ′B′,γN(λ) = [ρM ′B′(kon
M ′B′ ;MR)]

1/2Γ̄R
M ′B′(kon

M ′B′ ,MR)Γ̄
R
γN(λ)(k

on
γN ,MR)[ργN (k

on
γN ;MR)]

1/2,
(13)

where the quantity Γ̄R
γN(k

on
γN ,MR) is the dressed γN → N∗ vertex, as illustrated in Fig. 1,

multiplied by an appropriate wave-function renormalization factor. The details on how to
compute Γ̄R

MB(k
on
MB,MR) and Γ̄R

γN (k
on
γN ,MR) etc. have been given in Refs. [5, 12, 23].

With the renormalized vertex Γ̄R
γN(λ)(MR), the helicity amplitudes for the γN → N∗

transitions evaluated at the resonance pole position MR, A3/2 and A1/2, can be written
as [5, 12]

A3/2 = C × Γ̄R
γN(+3/2)(k

on
γN ;MR), (14)

A1/2 = C × Γ̄R
γN(−1/2)(k

on
γN ;MR), (15)
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FIG. 1. Graphical representation of dressed γN → N∗ transition vertex.

with

C =

√

EN(k
on
γN)

mN

1√
2K

√

(2JR + 1)(2π)32|kon
γN |

4π
, (16)

where JR is the spin of the resonance state and K = (M2
R −m2

N)/(2MR).
By fitting to the data, the model parameters included in the potentials (2) and (4) are

determined. We then can compute the on-shell dressed γN → N∗ vertices at the resonance
pole position Γ̄R

γN(λ)(k
on
γN ;MR) and determine the helicity amplitudes Aλ by using Eqs. (14)-

(16). In practice, however, we use an alternative formula from Ref. [26] to calculate the
helicity amplitudes and unambiguously fix their phases. The formula is given with the
residues RπN,γN(λ) and RπN,πN as follows:

A3/2 = N ×RπNγN(+3/2), (17)

A1/2 = N ×RπNγN(−1/2), (18)

N = a×
√

kon
πN

K

2π(2JR + 1)MR

mNRπN,πN
, (19)

with a =
√

2/3 for I=3/2 N∗ and a = −
√
3 for I=1/2 N∗; the phase is fixed so that

−π/2 ≤ arg(N/a) ≤ π/2.

III. COMBINED ANALYSIS OF MESON PRODUCTIONS OFF THE PROTON

AND NEUTRON TARGETS

In this work, we have performed combined fits to the data for both the proton- and
neutron-target reactions. The same database as used in our previous work [5] is employed
for the proton-target reactions, πp → MB and γp → MB with MB = πN, ηN,KΛ, KΣ,
while for the neutron-target reactions we include ∼ 3, 200 data points of γ ‘n’ → πN as
summarized in Table I.

The fitting procedures are the same as explained in Ref. [5] and will not be repeated here.
The results of our fits to the data for the neutron-target reactions are presented in Sec. IIIA.
As for the fits to the much more extensive data for the proton-target reactions, however, we
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TABLE I. Observables and number of the data points considered in this coupled-channels analysis.

The data are taken from the database of the INS DAC Services [27].

Reactions Observables Number of data points

γn → π−p dσ/dΩ 2305

Σ 308

T 94

P 88

γn → π0n dσ/dΩ 148

Σ 216

will only present a small sample of the selected results in Sec. III B to indicate the differences
with our fits presented in Ref. [5]. The values of determined model parameters are given in
the supplemental material [28].

A. Fits to the data for the neutron-target reactions

The results of our fits to the γ ‘n’ → π−p data are presented in Figs. 2 and 3 for the
differential cross section (dσ/dΩ), Fig. 4 for the photon asymmetry (Σ), Fig. 5 for the target
polarization (T ), and Fig. 6 for the recoil polarization (P ). Clearly, the results are reasonably
good in the considered energy region up to W = 2 GeV. However, it should be noted that
more data for polarization observables would be highly desirable to determine γn → N∗

transition amplitudes. In this regard, a number of new data for meson photoproductions
using the polarized photon beam and/or the polarized deuteron target will be available soon
from the electron and photon beam facilities such as JLab, ELSA, and MAMI. The main
purpose of these experimental efforts is to obtain precise data for the “(over-)complete” set of
observables for the γ ‘n’ → MB reactions withMB = πN, ηN,KΛ, KΣ, · · · , which, together
with the data of the reactions on the proton target, are crucial for obtaining definitive
information for the isospin structure of photo-excitation amplitudes of the nucleon. For a
reference, in Fig. 7 we present the results of all 16 observables for the γ ‘n’ → π−p reaction
at W = 1662 MeV and W = 1924 MeV, which respectively correspond to Eγ = 1 GeV and
Eγ = 1.5 GeV with Eγ being the incoming photon energy in the Lab frame. The calculated
results of all observables for γn → π−p as well as γn → π0n for W ≤ 2 GeV are available
upon request.

While the results of our fits to the γ ‘n’ → π−p data are reasonably good, we also see
some deviations of our curves from the data points at several energies. One reason for
this would be due to an inconsistency between different data sets. For example, there are
significant differences between the dσ/dΩ data at W = 1240 and 1241 MeV in magnitude
for cos θ > 0, even though they have just 1 MeV difference in W . These two data sets were
extracted from the γd → π−pp reaction by different experiment/analysis groups in Ref. [29]
and in Refs. [30–32], respectively. This kind of inconsistency could arise from the differences
in the methods employed for extracting the information on the γ ‘n’ reactions from the
γd reactions, e.g., the momentum cuts taken for the data selection and/or the initial/final
state interactions taken into account, etc. The γ ‘n’ → πN data are thus “biased” by the
employed analysis methods. To avoid such inconsistency, ideally one should directly analyze
the original γd reaction data. Nevertheless, as a first step toward a reliable extraction of
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FIG. 2. (Color online) Fitted result for dσ/dΩ of γ ‘n’ → π−p.

the γn → N∗ amplitudes, we follow the previous analyses by using the available γ ‘n’ → πN
data in this work. The model parameters obtained in this work are then used as starting
values for the γd analysis that will be presented elsewhere.

Our fits to the γ ‘n’ → π0n data are shown in Fig. 8 for dσ/dΩ and Fig. 9 for Σ. Here
we see the data for dσ/dΩ are very limited, while reasonably good fits to the Σ data have
been achieved. The γ ‘n’ → π0n data are usually extracted from the γd → π0pn reaction.
However, the γd → π0pn process is more complicated than γd → π−pp because the final-state
interactions between the outgoing pn pair are expected to be more sizable, as demonstrated,
e.g., in the study [33] of the γd → πNN and νd → lπNN reactions in the ∆(1232) resonance
region. To improve the fits to the data with π0n final state, it would be more essential to
directly analyze the γd reactions within our DCC approach in a fully consistent way, rather
than using the γ ‘n’ → πN data extracted by other experiment/analysis groups.
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FIG. 3. (Color online) Fitted result for dσ/dΩ of γ ‘n’ → π−p (continued).
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FIG. 4. (Color online) Fitted result for Σ of γ ‘n’ → π−p.

B. Fits to the data for the proton-target reactions

Since the amount of the data for the proton-target reactions are much more than those
for the neutron-target reactions, our model parameters determined in this work are still
mainly constrained by the proton-target reactions, except for the ones associated with the
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FIG. 5. (Color online) Fitted result for T of γ ‘n’ → π−p.
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FIG. 6. (Color online) Fitted result for P of γ ‘n’ → π−p.

γn → N∗ transitions. Accordingly, the quality of the fits to the data for the proton-target
reactions is similar to the results we presented in Ref. [5] (hereafter we refer the model of
Ref. [5] to as “the 2013 model”). Nevertheless, there are some differences that are worth
mentioning:

1. Figure 10 shows the total cross sections for the γp → πN and inclusive γp → X
reactions, where the solid and dashed curves are given by the DCC model of this work
and the 2013 model [5], respectively. We see that both models give almost the same
cross sections for γp → πN . However, it turns out that the γp → X total cross
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FIG. 7. (Color online) Differential cross section and all polarization observables for γ ‘n’ → π−p.

The left panels [right panels] are the results at W = 1662 MeV (Eγ = 1000 MeV) [W = 1924 MeV

(Eγ = 1500 MeV)]. The results for the observables for which no data are presented are predictions

from our current DCC model.

section predicted with the 2013 model [5] visibly overestimates (underestimates) the
data at 1.55 . W . 1.8 GeV (1.4 . W . 1.5 GeV). This deviation from the data is
mostly due to the uncertainty of the γN → π∆, σN, ρN → ππN processes because
at present we have included only the γp → πN, ηN,KΛ, KΣ data in our analysis
and the ππN production processes are indirectly constrained through the coupled-
channels effect. To eliminate the deviation from the data mentioned above, in this
work we have included the data for γp → X total cross section at W . 1.75 GeV
into our analysis. As a result, the overestimation of the γp → X total cross section at
1.55 . W . 1.8 GeV has been improved significantly in our current model. However,
the underestimation at 1.4 . W . 1.5 GeV still remains although some improvements
are observed. To resolve this underestimation, we would need to extend our analysis by
including the γN → ππN data and by adding some new non-resonant mechanisms for
γN → ππN . This requires tremendous efforts and time-consuming numerical tasks,
and thus we leave it for our future work.

2. In Fig. 11, the results of the fits from this work and the 2013 model [5] are presented
for dσ/dΩ and Σ of γp → π0p. Overall, a significant improvement has been achieved
for these observables in the high W region with W & 1.87 GeV. We further find that
the improvements for dσ/dΩ are made mostly in the forward angle region, in which
the t-channel vector-meson exchange processes dominate the cross sections and thus
mainly contribute to the improvement. On the other hand, the fitted results for Σ
are improved in almost the entire range of cos θ, which means that model parameters
associated with bare N∗ states are also modified significantly. As a result, values of the
γp → N∗ transition amplitudes for high-mass N∗ resonances are significantly modified
as well, as will be discussed in Sec. IV.

3. In Fig. 12, the results of the fits from this work and the 2013 model [5] are presented
for dσ/dΩ (1.4 . W . 1.5 GeV) and Σ (1.77 . W . 2.1 GeV) of γp → π+n. Similarly
to the γp → π0p case, the results for dσ/dΩ are improved particularly in the forward
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-1

0Σ

-1

0Σ

-1

0Σ

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

-1

0Σ

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

1484 MeV 1504 MeV 1526 MeV 1544 MeV 1561 MeV 1582 MeV 1602 MeV 1621 MeV

1641 MeV 1657 MeV 1675 MeV 1692 MeV 1709 MeV 1724 MeV 1742 MeV 1758 MeV

1773 MeV 1788 MeV 1803 MeV 1818 MeV 1832 MeV 1846 MeV 1860 MeV 1874 MeV

1887 MeV 1899 MeV 1912 MeV

FIG. 9. Fitted result for Σ of γ ‘n’ → π0n.

12



1200 1400 1600 1800 2000
W (MeV)

0

100

200

300

400

500

600

σ 
(µ

b)

γ p      X

γ p      π0
 p

γ p      π+
 n

FIG. 10. (Color online) Total cross sections for the inclusive γp → X and γp → πN reactions.

Solid curves are the results from the current analysis, while the dashed curves are the ones obtained

from the 2013 model [5].

0

1.5

dσ
/d

Ω
 (

µb
/s

r)

0

1.5

dσ
/d

Ω
 (

µb
/s

r)

-0.5 0 0.5
cosθ

0

1

dσ
/d

Ω
 (

µb
/s

r)

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

1869 MeV 1910 MeV 1934 MeV

1959 MeV 2006 MeV 2029 MeV

2052 MeV 2075 MeV 2099 MeV

-0.5
0

0.5
Σ

-0.5
0

0.5

Σ

-0.5 0 0.5
cosθ

-0.5
0

0.5

Σ

-0.5 0 0.5
cosθ

-0.5 0 0.5
cosθ

1872 MeV 1898 MeV 1921 MeV

1939 MeV 1964 MeV 1998 MeV

2027 MeV 2059 MeV 2092 MeV

FIG. 11. (Color online) dσ/dΩ (left panels) and Σ (right panels) of γp → π0p. Red solid curves

(blue dashed curves) are the result from the current analysis (the 2013 model [5]).

region, while the improvement for Σ extends over the entire cos θ region.

The fits to the data of the production of KΛ and KΣ off the proton target have also
been improved significantly both for photon- and pion-induced reactions. This is, however,
not much relevant to the purpose of this paper and will not be presented here.

IV. EXTRACTED RESONANCE PARAMETERS

We now turn to discuss the extracted N∗ resonance parameters, which are defined at
the poles of the scattering amplitudes in the complex W plane. In Table II, we list the
pole mass (MR) and πN elastic residue (RπN,πN) for each extracted N∗ resonance. Here the
corresponding results of the 2013 model [5] are also presented for a comparison. Overall,
no significant difference is found in the results between the two models, implying that pole
positions and coupling strengths to the πN channel are more or less well determined for
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N∗ resonances below W = 2 GeV. However, some difference can also be seen for the N∗

resonances with large imaginary parts for MR, such as the P31 and D35 resonances and
the second P11, P33, D33 resonances. This would reflect the fact that analysis dependence
comes more into N∗ resonances located far from the physical real energy axis and their
parameters are in practice less well determined, although in principle the pole parameters
should be unique. In particular, we do not find the second D33 resonance in the current
work, suggesting that the pole of this resonance has disappeared or moved far away from
the complex-W region close to the physical real energy axis. One can see qualitatively that
there are some correlation in the change of values between Im(MR) and RπN,πN , i.e., a larger
change in Im(MR) leads to a larger change in RπN,πN . This is perhaps related to the fact
that the contribution of a resonance to the πN partial-wave amplitude is roughly determined
by the ratio −iRπN,πN/Im(MR) at W ∼ Re(MR). Since the πN partial-wave amplitudes
are well determined and have almost no difference between the current and 2013 models,
the values of the RπN,πN residues tend to vary to “compensate” the change in the extracted
values of Im(MR) such that the total πN partial-wave amplitudes remain the same.

In Table III, we present a comparison of the helicity amplitudes for the γp → N∗ transition
evaluated at the resonance pole positions. The notation of the presented values follows the
one used in Ref. [34]. In contrast to the πN elastic residue RπN,πN , visible differences
from the 2013 model are observed for most of the helicity amplitudes, except for the very
well-established resonances such as the first P33 and S11 resonances. This is due to the
significant improvement in the fits to the γp reaction data in this work, as seen in Figs. 10-
12. In particular, it is found that the change in the helicity amplitudes for N∗ resonances
with the mass MR ∼ 1.7 GeV, in particular for N∗(1708)3/2+, originates mostly from
reducing the overestimation of the γp → X total cross sections in our previous 2013 model
(Fig. 10). We also observe that the improvement in fitting the polarization observables for
γp → πN, ηN,KΛ, KΣ reactions at W & 1.8 GeV (the right panels of Figs. 11 and 12
for the case of Σ for γp → πN) is related to the changes in the helicity amplitudes of the
higher N∗ resonances. It is worth mentioning that the N(1651)5/2− resonance has small
Ā1/2, while the value of Ā3/2 is rather large. In a constituent quark model, this N∗ state is
assigned as a member of the [70, 48] representation of SU(6)×O(3), and thus the γp → N∗
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TABLE II. Comparison of N∗ pole mass (MR) and πN elastic residue (RπN,πN ) between this work

and the 2013 model [5]. MR is listed as (Re(MR),−Im(MR)) in units of MeV, while RπN,πN =

|RπN,πN |eiφ is listed as (|RπN,πN |, φ) in units of MeV for |RπN,πN | and degree for φ. The range of

φ is taken to be −180◦ ≤ φ < 180◦. The N∗ resonances for which the asterisk (*) is marked locate

in the complex energy plane slightly off the sheet closest to the physical real energy axis, yet are

still expected to visibly affect the physical observables.

MR RπN,πN

JP (L2I2J ) This work 2013 model This work 2013 model

N baryons 1/2−(S11) (1490, 102) (1482, 98)* (70, −42) (63, −44)

(1652, 71) (1656, 85) (45, −73) (53, −70)

1/2+(P11) (1376, 75) (1374, 76) (38, −70) (37, −69)

(1741, 139) (1746, 177) (15, 80) (20, 3)

3/2+(P13) (1708, 65) (1703, 70) (9, −4) (8, −3)

(1765, 160) (1763, 159) (30, −105) (29, −106)

3/2−(D13) (1509, 48) (1501, 39) (30, −9) (26, −11)

(1702, 148)* (1702, 141)* (< 1, −176) (2, 104)

5/2−(D15) (1651, 68) (1650, 75) (26, −27) (28, −31)

5/2+(F15) (1665, 52) (1665, 49) (36, −22) (34, −20)

∆ baryons 1/2−(S31) (1597, 69) (1592, 68) (21, −111) (20, −111)

(1713, 187) (1702, 193) (20, 73) (19, 65)

1/2+(P31) (1857, 145) (1854, 184) (11, −118) (23, −123)

3/2+(P33) (1212, 52) (1211, 51) (55, −47) (53, −47)

(1733, 162) (1734, 176) (17, −108) (8, −118)

3/2−(D33) (1577, 113) (1592, 122) (13, −67) (18, −62)

- (1707, 170)* - (11, 49)

5/2−(D35) (1911, 130) (1936, 105) (4, −30) (2, −32)

5/2+(F35) (1767, 88) (1765, 94) (11, −61) (11, −62)

7/2+(F37) (1885, 102) (1872, 103) (49, −30) (46, −35)

transition amplitudes are exactly zero [35]. However, we find that within the current DCC
model the large nonzero value of A3/2 for the N(1651)5/2− resonance mostly comes from
the bare N∗ contribution. This seems to be in contradiction with the above argument based
on the naive quark-model and a discussion made in Ref. [36].

One can see from Table III that the γp → N∗ transition amplitudes defined by poles are
essentially complex. Thus they are different from the helicity amplitudes listed by Particle
Data Group [37], which are from the fits by using the Breit-Wigner parametrization and
the resulting values are real by definition. According to a resonance theory based on the
Gamow vectors (see, e.g., Ref. [38]), the transition amplitudes defined with the residue at
poles of the scattering amplitudes are transition matrix elements associated with the exact
complex-energy eigenstates of the full Hamiltonian of the considered system obtained under
the purely outgoing boundary condition. Thus the transition amplitudes defined by poles
have a clear connection to the underlying theory, i.e., QCD, while the phenomenological
Breit-Wigner parameters do not. If the phase φ of the transition amplitudes is small, the
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TABLE III. Comparison of helicity amplitudes for the γp → N∗ transition obtained from this

work and the 2013 model [5]. The presented values follow the notation in Ref. [34], i.e., A1/2,3/2 =

Ā1/2,3/2 × eiφ with φ taken to be in the range −90◦ ≤ φ < 90◦. The units of Ā1/2,3/2 and φ are

10−3 GeV−1/2 and degree, respectively. Each resonance is specified by the isospin and spin-parity

quantum numbers as well as the real part of the resonance pole mass.

A1/2 A3/2

This work 2013 model This work 2013 model

Particle JP (L2I2J) Ā1/2 φ Ā1/2 φ Ā3/2 φ Ā3/2 φ

N(1490)1/2−(S11) 161 8 161 9 - - - -

N(1652)1/2−(S11) 36 −28 40 −44 - - - -

N(1376)1/2+(P11) −40 −9 −50 −12 - - - -

N(1741)1/2+(P11) −47 −24 86 −74 - - - -

N(1708)3/2+(P13) 131 7 234 2 −34 12 −70 −7

N(1765)3/2+(P13) 122 −11 145 −30 −71 2 −44 −1

N(1509)3/2−(D13) −28 0 −38 3 101 4 94 7

N(1703)3/2−(D13) 13 51 26 64 31 −71 54 −42

N(1651)5/2−(D15) 9 21 5 −22 49 −12 33 −23

N(1665)5/2+(F15) −44 −11 −53 −5 60 −2 38 3

∆(1597)1/2−(S31) 105 1 113 −1 - - - -

∆(1713)1/2−(S31) 40 13 35 5 - - - -

∆(1857)1/2+(P31) −1 −90 52 −10 - - - -

∆(1212)3/2+(P33) −133 −16 −133 −15 −257 −3 −257 −3

∆(1733)3/2+(P33) −48 63 −72 71 −94 74 −136 82

∆(1577)3/2−(D33) 128 19 129 17 120 47 117 41

∆(1911)5/2−(D35) 48 −22 53 −21 11 −34 35 −15

∆(1767)5/2+(F35) 37 −8 8 83 −24 −81 −18 −90

∆(1885)7/2+(F37) −69 −14 −62 −9 −83 2 −76 2

Breit-Wigner amplitudes can be a good approximation of the pole amplitudes. In fact, our
DCC model give Ā1/2 = −0.133 GeV−1/2 and Ā3/2 = −0.257 GeV−1/2 for the first P33

resonance, while the (real) Breit-Wigner amplitudes are A1/2 = −0.135±0.006 GeV−1/2 and

A1/2 = −0.255 ± 0.005 GeV−1/2 [37]. However, if φ is large, there exists no clear relation
between them. This argument is of course applicable also to the γn → N∗ transition
amplitudes.

The extracted γn → N∗ transition amplitudes are listed in Table IV. Here only the results
for the isospin I = 1/2 nucleon resonances are presented because γp → ∆∗ and γn → ∆∗ give
the same value. In the same table, we also present the results obtained by the Bonn-Gatchina
(BoGa) analysis [34] for a comparison. The results from ours and BoGa show a reasonable
agreement for the transition amplitudes, for which the BoGa analysis assigns relatively
small uncertainties for the extracted amplitudes. In particular, our results for the first S11,
D13, and F15 resonances, which correspond respectively to N(1535)1/2−, N(1520)3/2−, and
N(1680)5/2+ in the PDG notation, are in good agreement with the BoGa results. However,
some disagreement is also seen for several N∗ resonances. The BoGa analysis gives positive
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TABLE IV. Comparison of our helicity amplitudes for the γn → N∗ transition with the ones

extracted by Bonn-Gatchina (BoGa) analysis [34]. See the caption of Table III for the notation of

the table. No resonances corresponding to N(1765)3/2+ and N(1703)3/2− are found in BoGa.

A1/2 A3/2

This work BoGa This work BoGa

Particle JP (L2I2J) Ā1/2 φ Ā1/2 φ Ā3/2 φ Ā3/2 φ

N(1490)1/2−(S11) −112 16 −103± 11 8± 5 - - - -

N(1652)1/2−(S11) −1 −45 25± 20 0± 15 - - - -

N(1376)1/2+(P11) 95 −15 35± 12 25± 25 - - - -

N(1741)1/2+(P11) 195 −8 −40± 20 −30± 25 - - - -

N(1708)3/2+(P13) −59 6 −80± 50 −20± 30 −28 −19 −140± 65 5± 30

N(1765)3/2+(P13) −34 −5 - - 40 6 - -

N(1509)3/2−(D13) −43 −1 −49± 8 −3± 8 −110 5 −114± 12 1± 3

N(1703)3/2−(D13) −40 −46 - - −77 −57 - -

N(1651)5/2−(D15) −76 2 −61± 7 −10± 5 −38 −5 −89± 10 −17± 7

N(1665)5/2+(F15) 35 −12 33± 6 −12± 9 −56 −4 −44± 9 8± 10

TABLE V. The isovector and isoscalar helicity amplitudes for γN → N∗, as defined by Eqs. (20)

and (21). See the caption of Table III for the notation of the table.

AT=1
1/2 AT=0

1/2 AT=1
3/2 AT=0

3/2

Particle JP (L2I2J) ĀT=1
1/2 φ ĀT=0

1/2 φ ĀT=1
3/2 φ ĀT=0

3/2 φ

N(1490)1/2−(S11) 134 11 26 −11 - - - -

N(1652)1/2−(S11) 19 −28 18 −27 - - - -

N(1376)1/2+(P11) −68 −14 27 −21 - - - -

N(1741)1/2+(P11) −120 −11 75 −3 - - - -

N(1708)3/2+(P13) 96 7 36 8 −9 −63 −30 −2

N(1765)3/2+(P13) 79 −7 46 −18 −56 −4 −17 14

N(1509)3/2−(D13) 8 −7 −36 −2 106 4 −5 11

N(1703)3/2−(D13) 21 −29 −22 −63 54 −61 −24 −48

N(1651)5/2−(D15) 42 4 −34 0 44 −9 6 −39

N(1665)5/2+(F15) −39 −12 −5 −11 58 −3 2 27

Ā1/2 for the second S11 resonance, while in our analysis Ā1/2 is negative and very small. To
obtain a more conclusive result for this transition amplitude, however, we would also need
to take into account ηn photoproduction data, as discussed in Ref. [34]. We hope to make
this extended analysis by directly analyzing γd → ηpn reactions, rather than analyzing the
γ ‘n’ → ηn data provided by other experiment/analysis groups, and this will be presented
elsewhere. The origin of a significant disagreement in the transition amplitudes for the P11

resonances would also come from a couple of reasons: (a) The pole mass of the second P11

resonance from two analyses is different; i.e., MR = 1741− i139 MeV from our analysis and
MR = 1687− i100 MeV from BoGa. Since the value of the residue has a strong correlation
with the pole mass and more sensitive to the analysis model used in each analysis, one should
first determine the pole mass well to accomplish a precise determination of the residues. (b)
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The P11 resonances are found to give a small contribution to the γn → πN reactions within
our DCC model, and thus the γn → N∗ transition amplitudes are not well constrained by
the γn → πN data. Therefore, to get more convergent results, we would need to further
include the data associated with the other meson photoproductions off the neutron, such
as ππ, η, and K productions, into our fits to get convergent results. However, as already
mentioned, this is beyond the scope of the current work and will be performed elsewhere.

Combining the γn → N∗ and γp → N∗ transition amplitudes listed in Tables III and IV,
we can obtain the isovector (T = 1) and isoscalar (T = 0) parts of the γN → N∗ amplitude
for I=1/2 N∗ by using the following well-known relations:

AT=1
λ = (A

1/2p
λ − A

1/2n
λ )/2, (20)

AT=0
λ = (A

1/2p
λ + A

1/2n
λ )/2, (21)

where A
1/2p
λ and A

1/2n
λ are helicity amplitudes for γp → N∗ and γn → N∗ transitions,

respectively. The resulting values of the isospin-decomposed transition amplitudes within
our current DCC analysis is presented in Table V as a reference.

V. SUMMARY AND DISCUSSIONS

In this work, we have extended our DCC analysis [5] of the πp, γp → πN, ηN,KΛ, KΣ
reactions by further including the data for pion photoproductions off the neutron target,
γn → πN , in the fits. The helicity amplitudes for the γn → N∗ transition, defined by
the residues of the poles of the scattering amplitudes, have then been extracted. Through
this combined analysis of both the proton- and neutron-target reactions, the resonance pole
masses and the γp → N∗ transition amplitudes extracted from our previous analysis [5] have
also been revised accordingly. Our results allow an isospin decomposition of the γN → N∗

transitions, which is needed for testing the hadron structure calculations and investigating
the neutrino-induced reactions [14]. The extracted γn → N∗ transition amplitudes are
compared with the results of the BoGa analysis. It is found that two results are consistent
with each other overall. However, some significant disagreements also exist for several N∗

resonances, implying that further extensions of both analyses to analyze more complete data
on the neutron target will be needed to make progress.

As mentioned throughout this paper, in our current analysis we have used the γ ‘n’ → πN
data extracted from the γd → πNN data by other experiment/analysis groups. In most ex-
perimental analyses, the γn → πN cross sections and polarization observables are extracted
by simply applying momentum cuts to the deuteron data and choosing the kinematics where
the quasi-free mechanisms are assumed to dominate the reaction processes. Effects of the
nucleon Fermi motion inside the deuteron have also been included in some analyses, but
final πNN interactions are usually neglected. On the other hand, several theoretical investi-
gations [33, 39–42] have shown that the πNN final-state interaction has very large effects on
the γd → π0pn reaction. Similar large effects are expected also for the other neutral-meson
productions such as γd → M0pn with M0 = η, η′, ω, φ, · · · . To make further progress in
the study of the N∗ spectroscopy, an approach for investigating these meson production
reactions off the deuteron must be developed. Since the accuracy of the extracted γn → πN
data depends on the way of unfolding the many body effects from the raw data, it is highly
desirable to analyze directly the data of γd → πNN reactions based on a well-developed
reaction model. The DCC model employed in our analysis is particularly useful for the
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analysis of γ-d and also γ-nuclei reactions since the necessary off-shell amplitudes are read-
ily available. To complete such a analysis, a method to describe the πNN dynamics in
the ∆ and higher N∗ resonance region has to be explored. These necessary tasks towards
determining electromagnetic interactions associated with the N∗ resonances will be taken
step by step and presented elsewhere.
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bauer, C. Hanhart, S. Krewald, U.-G. Meißner, and K. Nakayama, ibid. 50, 101 (2014); 49,

44 (2013).

[7] L. Tiator, S. S. Kamalov, S. Ceci, G. Y. Chen, D. Drechsel, A. Svarc, and S. N. Yang, Phys.

Rev. C 82, 055203 (2010); G. Y. Chen, S. S. Kamalov, S. N. Yang, D. Drechsel, and L. Tiator,

ibid., 76, 035206 (2007).

[8] V. D. Burkert and T. S. H. Lee, Int. J. Mod. Phys. E 13, 1035 (2004).
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