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A model to calculate particle-induced reaction cross sections with statistical Hauser-Feshbach the-
ory including direct reactions is given. The energy average of scattering matrix from the coupled-
channels optical model is diagonalized by the transformation proposed by Engelbrecht and Wei-
denmüller. The ensemble average of S-matrix elements in the diagonalized channel space is ap-
proximated by a model of Moldauer [Phys.Rev.C 12, 744 (1975)] using newly parametrized channel
degree-of-freedom νa to better describe the Gaussian Orthogonal Ensemble (GOE) reference calcu-
lations. Moldauer approximation is confirmed by a Monte Carlo study using randomly generated
S-matrix, as well as the GOE three-fold integration formula. The method proposed is applied to
the 238U(n,n’) cross section calculation in the fast energy range, showing an enhancement in the
inelastic scattering cross sections.

PACS numbers: 24.60.-k,24.60.Dr,24.60.Ky

I. INTRODUCTION

Neutron scattering in the keV to MeV energy range is
one of the most important processes in many fields, for
which better understanding of nuclear reaction mecha-
nisms is always crucial. In particular, accurate neutron
reaction cross sections are needed for applications such
as radiation transport simulations for nuclear technology,
particle detector response, nuclear reaction rate calcula-
tion for nuclear astrophysics, and so forth. When we
calculate the nuclear reaction cross section for a system
where the dynamical or static nuclear deformation is in-
volved, the simple regime of the spherical optical model
plus the Hauser-Feshbach theory [1] has to be extended to
the coupled-channels scheme (e.g. Ref. [2]). Rotational
bands built on intrinsic or vibrational levels dominate
the low-lying excitation spectra for statically deformed
nuclei, and it is well known that these excited rotational
states are strongly populated by the collective motion of
target nucleus.

Typically, the direct reaction channels in the statistical
model have been considered in a perturbed way, in which
a flux going into the direct channels is subtracted from
the total compound nucleus formation cross section [3],
i.e., the direct and compound cross sections are assumed
to be independent. Such approximation has a great ad-
vantage to reduce computational burden, and therefore,
many Hauser-Feshbach codes, such as Empire [4], TALYS
[5], CCONE [6], CoH3 [7, 8], etc., employ this approxi-
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mation to calculate nuclear reaction cross sections. How-
ever,it was shown that the existence of direct reaction
channels changes the compound reaction cross sections
[9]. Therefore it is important to assess the independence
of the direct and compound reaction mechanisms quan-
titatively, which exists implicitly in the approximation
aforementioned.

Statistical models for the compound nuclear reaction
connect energy average S-matrix elements (or transmis-
sion coefficients) to energy average cross sections. While
the statistical Hauser-Feshbach theory provides such a
link, it has to be modified by the width fluctuation cor-
rection that accounts for statistical properties in the res-
onances. The width fluctuation correction enhances the
cross section in the elastic channel, and reduces all other
channels to fulfill the unitarity condition. When strongly
coupled channels exist, the energy average S-matrix, 〈S〉,
is no-longer diagonal. The imposed unitarity condition
yields additional correlations between the elastic and
other channels, hence the cross sections will be further
modified [10].

Kawai, Kerman, and McVoy (KKM) [10] obtained a
formula for the compound nuclear reaction including the
direct channels at the strong absorption limit. The ac-
tual calculations of KKM are, unfortunately, very limited
[11, 12]. In parallel to KKM, inclusion of the direct reac-
tion in the statistical theory was proposed by Engelbrecht
and Weidenmüller [13], in which 〈S〉 is diagonalized by
a unitary transformation. The statistical model calcu-
lation is performed in the diagonalized space, just like
the no-direct reaction cases. Hofmann et al. [14] and
Moldauer [15] performed the Engelbrecht-Weidenmüller
(EW) transformation to examine the effects of the di-
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rect channels on the compound nuclear reaction. A more
general and rigorous theory was proposed by Nishioka,
Weidenmüller, and Yoshida (NWY) [16] based on the
so-called Gaussian Orthogonal Ensemble (GOE) [17] to-
gether with the EW transformation. However, the NWY
equation obtained is almost impossible to calculate. The
most recent study on this subject is by Capote et al.
[18], who studied the impact of the EW transformation
on a realistic calculation of inelastic scattering on 238U
using the coupled-channels optical model code ECIS [19].
An enhancement of the inelastic scattering cross section
was found [18], yet the compound reaction model imple-
mented in ECIS is limited and further investigation was
needed.

In the case of a spherical nucleus, we obtained a sim-
ple relationship between the channel degree-of-freedom
νa and the optical model transmission coefficients Ta by
applying the Monte Carlo technique to GOE [20], which
yields an almost equivalent compound nucleus cross sec-
tions to the GOE three-fold integration formula [17].
Such an empirical approach facilitates computations of
the Hauser-Feshbach theory in the fast energy range,
where the number of open channels tends to be too large
to handle. Starting with the approach by Moldauer [15],
and adding the idea of GOE three-fold integration, we
extend Moldauer’s approach to the actual cross section
calculation for deformed nuclei. Since we will show in
this paper that our model produces almost identical re-
sults to the NWY theory, the calculated nuclear reaction
cross sections should be within reasonable uncertainties
for many realistic cases. This could be particularly im-

portant to calculate nuclear reaction cross sections for
actinides or in the rare earth region, where the static
nuclear deformation is large.

II. THEORY

A. Hauser-Feshbach theory with width fluctuation
correction

In the case of nuclear reaction without direct channels,
the Hauser-Feshbach theory with the width fluctuation
correction reads

σab =
π

k2
a

TaTb∑
c Tc

Wab = σHF
ab Wab , (1)

where σab is the energy average cross section from chan-
nel a to b, σHF

ab is the Hauser-Feshbach cross section, ka
is the wave-number of projectile, Wab is the width fluc-
tuation correction factor, and Tc is the transmission co-
efficient in channel c calculated with the optical model
S-matrix element Tc = 1 − | 〈Scc〉 |2. Hereafter we omit
the kinematic factor of π/k2

a, unless otherwise specified.
The width fluctuation correction factor is given by

the Gaussian Orthogonal Ensemble (GOE) model of
Verbaarschot, Weidenmüller, and Zirnbauer [17]. This
model gives an ensemble average of the fluctuation part,
SabS∗cd, and the width fluctuation correction factor can
be calculated as a ratio to σHF

ab . The so-called GOE triple-
integral formula is [17]

SabS∗cd =
1

8

∫ ∞
0

dλ1

∫ ∞
0

dλ2

∫ 1

0

dλ µ(λ, λ1, λ2)
∏
c

1− Tcλ√
(1 + Tcλ1)(1 + Tcλ2)

J(λ, λ1, λ2) , (2)

where

µ(λ, λ1, λ2) =
λ(1− λ)|λ1 − λ2|√

λ1(1 + λ1)
√
λ2(1 + λ2)(λ+ λ1)2(λ+ λ2)2

, (3)

J(λ, λ1, λ2) = δabδcdSaaS
∗
ccTaTc

(
λ1

1 + Taλ1
+

λ2

1 + Taλ2
+

2λ

1− Taλ

)(
λ1

1 + Tcλ1
+

λ2

1 + Tcλ2
+

2λ

1− Tcλ

)
+ (δacδbd + δadδbc)TaTb

{
λ1(1 + λ1)

(1 + Taλ1)(1 + Tbλ1)
+

λ2(1 + λ2)

(1 + Taλ2)(1 + Tbλ2)
+

2λ(1− λ)

(1− Taλ)(1− Tbλ)

}
. (4)

The compound cross section is readily calculated as
SabS∗ab = |Sab|2 = σab when 〈S〉 is provided, beside the
time-consuming three-fold integration [21]. The GOE
model is believed to be a correct answer to the calcu-
lation of the compound cross section. However, it is not
so practical to apply Eq. (2) to realistic cases. For exam-
ple, a compound nucleus after a particle or photon emis-
sion is often left in the continuum state, where the decay
channel is not well defined. Even if we approximate the
transition to one of the continuum bins by a pseudo-single

level, the calculation time will be enormous when there
are many open channels. Alternatively, there are several
models to evaluate Wab. We adopt Moldauer’s model
[15, 22–24], since Hilaire, Lagrange, and Koning [25] re-
ported that this model is practically accurate enough.
The width fluctuation correction factor can be evaluated
numerically as

Wab =

(
1 +

2δab
νa

)∫ ∞
0

dt

Fa(t)Fb(t)
∏
k Fk(t)νk/2

, (5)
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Fk(t) = 1 +
2

νk

Tk∑
c Tc

t , (6)

where νa is the channel degree-of-freedom, which is re-
lated to the channel transmission coefficient Ta. There
are, again, several models to express νa by Ta, which
were derived by a Monte Carlo study, such as that of
Moldauer [26], Ernebjerg and Herman [27], or of LANL
[20]. We here employ the most recent model from LANL
[20], because it produces almost identical Wab compared
to the GOE triple-integral calculation [9].

B. Generalized transmission coefficient

When direct reaction channels exist, in other words,
the optical model S-matrix is not diagonal, the Hauser-
Feshbach cross section in Eq. (1) should be further modi-
fied. In this case the energy average S-matrix is given by
the coupled-channels calculation. When combining the
coupled-channels method with the Hauser-Feshbach the-
ory, the existing cross section calculation codes, such as
Empire [4], TALYS [5], CCONE [6], and CoH3 [7], adopt
a “direct cross section eliminated” transmission coeffi-
cient. This is defined as the probability of formation of
compound nucleus on the n-th state by a nucleon having
the orbital angular momentum and spin of l, j:

T
(n)
lj =

∑
JΠ

∑
c

gJc

(
1−

∑
c′

|
〈
SJΠ
cc′
〉
|2
)
δnc,nδlc,lδjc,j ,

(7)
where the suffix c indicates the quantum number in the
channel, JΠ is the total spin and parity, and gJc is the
spin factor

gJc =
2J + 1

(2jc + 1)(2Ic + 1)
. (8)

Ic is the spin of the nucleus state. Equation (7) gives a
partial-wave contribution to the total compound forma-
tion cross section when the target is in its n-th state

σCN(n) =
π

k2
n

∑
lj

2j + 1

2s+ 1
T

(n)
lj , (9)

where s is the intrinsic spin of incoming particle. Be-
cause we eliminate the off-diagonal elements in 〈S〉 by
Eq. (7), the meaning of the transmission coefficient is
different from the no-direct reaction case. We call this a
generalized transmission coefficient.

The statistical model calculation is performed in the
direct cross section eliminated space, assuming the chan-
nels are diagonal. Such assumption implies that the di-
rect and compound cross sections are independent, and
the unitarity condition is fulfilled only for the total reac-
tion cross section. Therefore the scattering cross sections
are given by an incoherent sum of the direct and com-
pound components. For example, the inelastic scattering

cross section is written as

σab = σDI
ab +

T ′aT
′
b∑

c T
′
c

Wab , (10)

where the direct cross section σDI
ab is usually given by

the coupled-channels calculation, and we denote the gen-
eralized transmission coefficients by T ′. Often another
approximation is made in addition to Eq. (7), which con-
sists in replacing the decay channel transmission coef-

ficients T
(n)
lj by the ground state T

(0)
lj calculated at a

shifted energy, T
(n)
lj (E) = T

(0)
lj (E − E(n)

x ), where E
(0)
x is

the excitation energy of n-th level. This is not the case
in our study. Making use of the time-reversal property
of S-matrix, the transmission coefficients for each n-th
state can be calculated automatically by Eq. (7). Note
that the impact of this approximation is small when the
optical potential depends weakly on the incident energy.

C. Engelbrecht-Weidenmüller transformation

A rigorous treatment of off-diagonal elements in 〈S〉 is
to perform the Engelbrecht-Weidenmüller (EW) trans-
formation [13]. The particle penetration is expressed in
terms of Satchler’s transmission matrix [28]

Pab = δab −
∑
c

〈Sac〉 〈S∗bc〉 , (11)

where the S-matrix elements 〈Sab〉 are usually given by
the coupled-channels calculation. Since P is Hermitian,
this can be diagonalized by a unitary transformation [13]

(UPU†)αβ = δαβpα , 0 ≤ pα ≤ 1 , (12)

and the same matrix U diagonalizes the scattering ma-
trix, i.e., 〈

S̃
〉

= U 〈S〉UT . (13)

We use Greek subscripts for channel indices in the diago-
nalized space, and Latin subscripts for the normal space.

Since
〈
S̃
〉

is diagonal, a new transmission coefficient

in the diagonal channel space is defined as

Tα = 1−
∣∣∣〈S̃αα〉∣∣∣2 = pα , (14)

and the statistical model calculation is performed in the
diagonal channel space to evaluate the fluctuating part〈
S̃αβS̃

∗
γδ

〉
. Finally a back-transformation from the chan-

nel space to the cross-section space reads

σab =
∑
αβγδ

U∗αaU
∗
βbUγaUδb

〈
S̃αβS̃

∗
γδ

〉
. (15)

Nishioka, Weidenmüller, and Yoshida (NWY) [16] ob-
tained an equivalent formula for the fluctuation cross sec-
tion, which expressed in terms of the non-diagonal 〈S〉.
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Although NWY does not require the P -matrix diagonal-
ization, a hefty computational burden is still involved.
Instead of calculating NWY, we follow the procedure
given above: the EW transformation is applied to non-
diagonal 〈S〉, and the GOE triple-integral of Eq. (2) is ap-
plied to the diagonalized channel space. This is the most
accurate procedure to calculate the cross sections when
〈S〉 is not diagonal, and we consider this is the reference
GOE cross section, as this is equivalent to NWY. Based
on this, we further develop a technique, which is feasible
in realistic cross section calculation cases, yet yields prac-
tically the same results to the reference GOE. We follow
Moldauer’s prescription [15], in which the Engelbrecht-
Weidenmüller (EW) transformation [13] is invoked, al-
though an approximation — the decay amplitudes are
normally distributed and their real and imaginary parts
are uncorrelated — was made to cross sections in the
diagonalized space.

The back-transformation can be re-written as [14],

σab =
∑
α

|Uαa|2|Uαb|2σαα

+
∑
α6=β

U∗αaU
∗
βb (UαaUβb + UβaUαb)σαβ

+
∑
α6=β

U∗αaU
∗
αbUβaUβb

〈
S̃ααS̃

∗
ββ

〉
, (16)

where σαβ is a width fluctuation corrected cross section
in the diagonalized channel space,

σαβ =
pαpβ∑
γ pγ

Wαβ . (17)

When omitting σαα, σαβ , and
〈
S̃ααS̃

∗
ββ

〉
from Eq. (16),

we can obtain a simple relation∑
a

σab = Λ , (18)

where Λ is the dimension of coupled equations. This is
given in Appendix. This relation is useful to implement
the EW transformation in a Hauser-Feshbach code.

Replacing the energy average (angle-bracket) by the
ensemble average (overline), the GOE triple-integral for-

mula gives a new term of
〈
S̃ααS̃

∗
ββ

〉
in Eq. (16) by setting

a = b = α and c = d = β. Moldauer [15] estimated this in
terms of the channel degree-of-freedom νa and the width
fluctuation corrected cross section σαβ as

S̃ααS̃∗ββ '
(

2

να
− 1

)1/2(
2

νβ
− 1

)1/2

σαβ . (19)

This estimation was partially confirmed by a GOE Monte

Carlo study [29], when S̃ααS̃∗ββ is real. We generalize this

expression by expanding to the case of complex S̃ααS̃∗ββ .

The Jacobian of Eq. (4) for a = b = α and c = d = β,

J ∝ SααS
∗
ββTαTβ , (20)

is real when Im(SααSββ) = 0. This requires an extra
phase factor as

S̃ααS̃∗ββ ' e
i(φα−φβ)

(
2

να
− 1

)1/2(
2

νβ
− 1

)1/2

σαβ ,

(21)

where φα = tan−1 S̃αα.

D. Decay to uncoupled states

Actual cross section calculations involve many uncou-
pled or very weakly coupled states, such as the neutron
emission to the continuum, the photon emission in the
neutron radiative capture process, and nuclear fission.
In the generalized transmission calculation scheme, in-
clusion of these channels is straightforward; the denom-
inator of Eq. (10),

∑
c T
′
c, includes the transmission co-

efficients for all uncoupled channels. The particle emis-
sion transmission coefficients may be given by the optical
model, the photon channel is calculated with the Giant
Dipole Resonance (GDR) model, etc.

In the case of EW transformation, the penetration ma-
trix may have two blocks

P =

(
P1

P2

)
, (22)

where P1 is the coupled channels P matrix, and P2 is
the diagonal part that accounts for decaying into the un-
coupled states. The unitary transformation is performed
to P1 only, and the summation in the denominator of
σαβ in Eq. (17) runs over both the eigenvalues of P1 and
the diagonal elements of P2. Finally the uncoupled cross
section is calculated by

σab =
∑
α

|Uαa|2σαβδβb . (23)

E. Monte Carlo technique for sampling S-matrix

The aim of this paper is twofold; (a) understanding
the limitation of generalized transmission coefficient in
Eq. (7), in which no diagonalization procedure is re-
quired, and (b) when the diagonalization is essential, how
accurate the approximation of Eq. (21) will be. To this
end, we have to explore a large parameter space spanning
over various S-matrix elements and the number of chan-
nels Λ. A natural approach is to employ the Monte Carlo
technique, which facilitates model comparisons in a large
multi-parametric space. In Ref. [9], we performed an ex-
act GOE simulation of S-matrix elements where the well-
known statistical properties in resonances, such as the
Wigner distribution for the level spacing, are automati-
cally involved. The ensemble average of the GOE gen-
erated S-matrix elements could be distributed nonuni-
formly inside a unit circle on the complex plane depend-
ing on a scattering system considered. Here we do not
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study such particular correlations in the S-matrix ele-
ments, but sample the matrix elements randomly to in-
vestigate general cases. We draw a diagonal element of
S-matrix from a uniform distribution inside the unit cir-
cle on the complex plane. The diagonal elements are
generated by

〈Saa〉 = eiφ
√

1− Ta , 1 ≤ a ≤ Λ , (24)

where 0 ≤ φ < 2π and 0 <
√

1− Ta < 1 are the sam-
pled phase and transmission coefficient from the uniform
distribution. For the off-diagonal elements, we impose
another condition of | 〈Sab〉 |2 < 0.5| 〈Saa〉 || 〈Sbb〉 |. The
sampled S-matrix is converted into P , and the matrix is
diagonalized to obtain its eigenvalues. If negative eigen-
values emerge, we discard this S, and re-sample. The
constructed matrix has a dimension of Λ× Λ.

With the generated S-matrix, dimensionless cross sec-
tions — total cross section of σT, shape elastic scattering
σSE, direct inelastic scattering σDI

ab , compound formation
σCN — are calculated in a common way,

σT = 2(1−<〈Saa〉) , (25)

σSE = |1− 〈Saa〉 |2 , (26)

σDI
ab = | 〈Sab〉 |2 , (27)

σCN = 1− | 〈Saa〉 |2 = Ta , (28)

and the reaction cross section reads σR = σCN +
∑
b σ

DI
ab .

Here we implicitly assumed that a is the particle incom-
ing channel. Since | 〈S〉 |2 ≤ 1, clearly 0 ≤ σT ≤ 4. We
generate several hundred of S-matrices for each Λ = 2 ∼
7 case.

III. SIMULATION USING RANDOM S-MATRIX

A. Simulation for Engelbrecht-Weidenmüller
transformation

Here we compare two methods to calculate the com-
pound cross sections. The first method is to employ the
generalized transmission coefficients in Eq. (7). Using
the randomly generated S-matrix this is written simply
as

T ′a = 1−
∑
c

| 〈Sac〉 |2 . (29)

The compound reaction cross sections are defined in the
direct cross section eliminated space,

σ′ab =
T ′aT

′
b∑

c T
′
c

W ′ab , (30)

where we use Eq. (2) to calculate W ′ab. The second
method is to perform the EW transformation. The cross

section is given by Eq. (15), with S̃αβS̃∗γδ by Eq. (2).
This procedure yields the correct results, and is thus our
reference GOE cross section.

The calculated cross sections with the generalized
transmission coefficients are shown in Fig. 1 by the ratio
to the reference GOE cross sections, as a function of the
strength of direct channels

∑
b σ

DI
ab /σ

R for Λ = 2 ∼ 7. In
the case of Λ > 2, the inelastic scattering are summed

σINL =
∑
b(a6=b)

σab . (31)

Because we generated the S-matrix from the uniform
distribution, such comparisons tend to produce extreme
cases where the coupling of direct channels is too strong.
Nevertheless a general tendency can be clearly seen; when
the generalized transmission coefficient is used, the elas-
tic channel is overestimated and the inelastic channel is
underestimated. The impact of EW transformation is
large, when there are a few channels open (e.g. Fig. 1
(a)), and the direct cross sections are large. Under such
circumstances the approximated method to calculate the
cross section by employing the generalized transmission
coefficients leads to incorrect answers.

The underestimation in the inelastic channels de-
creases as the number of channels Λ increases. That said,
we expect that the approximation with the generalized
transmission coefficients works well at the strong absorp-
tion limit, where the elastic enhancement factor Wa is 2
[9]. In our Monte Carlo technique, Wa is approximately
given by

Wa ' σaa/
T ′a∑
c T
′
c

, (32)

where σaa is the compound elastic scattering cross sec-
tion. Figure 2 shows the inelastic channel underestima-
tion as a function of the elastic enhancement. The un-
derestimation will be very small at the strong absorption
limit (Wa = 2), where the width fluctuation correction to
the inelastic channels fades out due to a large number of
open channels. In other words, the EW transformation
is essential when the elastic enhancement largely changes
the inelastic channels.

B. Uncoupled states

To investigate the uncoupled channel in the EW trans-
formation, we construct S with Λ = 3 as in

S =

 Saa Sba
Sab Sbb

Scc

 , (33)

where the channel c is uncoupled to the channels a and b.
The calculated cross sections with the generalized trans-
mission coefficients are shown by the ratio to the EW
transformation in Fig. 3. As opposed to the coupled in-
elastic scattering channel, the cross section to the un-
coupled channel increases very slightly, but is almost not
influenced by the channel coupling. This suggests, in
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FIG. 1. (Color Online) Ratio of calculated cross sections us-
ing randomly generated S-matrix, as a function of the direct
reaction strength. The ratio is that of generalized transmis-
sion coefficient calculations to the EW transformation case.
The top panel (a) is for a number of channels of Λ = 2 and
3, the middle panel (b) is for Λ = 4 and 5, and the bottom
panel (c) is for Λ = 6 and 7.
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FIG. 2. (Color Online) Ratio of calculated inelastic scatter-
ing cross section with the generalized transmission coefficient
calculations to the EW transformation case, as a function of
the elastic enhancement factor Wa.
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FIG. 3. (Color Online) Ratio of the cross sections calculated
with the generalized transmission coefficient calculations to
the cross sections calculated with EW transformation case,
for Λ = 3 and the third channel is uncoupled.

the case of neutron-induced reactions on deformed nu-
clei, that the inelastic scattering cross sections will be
enhanced mainly at the expense of the elastic channel,
while the neutron capture and fission cross sections will
practically not change.

C. Simulation for Moldauer’s estimation

Because the term of S̃ααS̃∗ββ in Eq. (16) is a quantity
in the diagonalized channel space, we can evaluate this
with the GOE triple-integral of Eq. (2) whenever 〈S〉
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c
Tc.

is diagonal. We replace S̃αα by 〈Saa〉, and apply the
Monte Carlo technique to calculate SaaS∗bb by sampling
the diagonal S-matrix, as well as the number of channels
Λ that is randomly varied from 2 to 200. We generated
500 such random S-matrices, and the calculated |SaaS∗bb|
is shown by the symbols in Fig. 4. When there are many
open channels,

∑
c Tc � 1, this term will be negligible.

Applying two different estimates for νa obtained by
Moldauer [26] and at LANL [20], Eq. (21) can be evalu-
ated very easily. Figure 5 shows the ratio of Eq. (21) to
the GOE results, using two functional forms for νa. Since
SaaS∗bb is complex due to the factor of SaaS∗bb in Eq. (2),
the ratio is taken for the absolute value (the module).
It can be seen clearly that the updated systematics of
νa at LANL produces an excellent agreement with GOE,
except for in the very small

∑
c Tc region, where all sta-

tistical models tend to fail [20].

D. Simulation for cross section

Our next step is to confirm whether Eq. (16) with the

estimation for S̃ααS̃∗ββ in Eq. (21) is a good approxima-
tion for the actual cross section calculations. To this end,
we calculate the cross sections using the randomly gen-
erated non-diagonal S-matrix again, and compare with
the reference GOE cross sections.

The calculated cross sections for the compound elastic
and inelastic channels are shown by the deviation from
GOE in Fig. 6, as a function of total cross section σT.
The standard deviation is 0.83% for the Λ = 2 case, and
0.29% for Λ = 5. From this comparison, we conclude that
Moldauer’s model of Eq. (19) with the additional phase
factor provides a very good approximation to the GOE
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FIG. 5. (Color Online) Comparison of Moldauer’s estimate for

|SaaS∗
bb| given by Eq. (19) for various Ta values and channels,

shown by the ratios to the GOE calculation. Two different
estimates for the channel degree-of-freedom ν, Refs. [26] and
[20], are used; the top panel (a) is for smaller

∑
c
Tc case, and

the bottom panel (b) is for larger
∑

c
Tc case.

triple-integral formula when the off-diagonal elements in
the S-matrix exist. In reality, because the actual direct
channel coupling is much weaker than our randomly gen-
erated S-matrix, and the number of channels tends to be
larger, Eqs (16) and (21) should provide an excellent al-
ternative procedure to calculate compound reaction cross
sections, leading to almost identical cross sections as the
rigorous GOE formula [16].

IV. COUPLED-CHANNELS AND
HAUSER-FESHBACH MODEL IN A REALISTIC

CASE

We now calculated compound cross sections for neu-
tron induced reactions on 238U in the fast energy range
with the coupled-channels Hauser-Feshbach code CoH3,
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FIG. 6. (Color Online) Compound elastic and inelastic cross
sections calculated with randomly sampled S-matrix as well

as using Moldauer’s estimate for |S̃ααS̃∗
ββ |, as a function of

the dimensionless total cross section. The results are shown
by the deviation from the GOE results. The top panels are
for the two channels case, and the bottom panels are for the
five channels.

and implement the EW transformation as well as all the
necessary formulae given previously. Note that the in-
tention here is not to provide the best evaluated cross
section, but to study how large the impact of the EW
transformation on actual cross section calculations will
be. Albeit it is redundant, we summarize here the proce-
dure of cross section calculation including the EW trans-
formation as a practical recipe for applications.

• For a given total spin and parity JΠ, solve the
coupled-channels equation. The coupled-channels
S-matrix is converted into P -matrix by Eq. (11),
then diagonalized by UPU† to obtain the eigenval-
ues pα and the eigenvector U . We also need the
diagonalized S-matrix, S̃ = USUT .

• Calculate the transmission sum for all open chan-
nels as

T =
∑
α

pα +
∑
k

Tk(uncoupled) . (34)

• Calculate the channel cross section matrix in the
transformed space

σαβ =
pαpβ
T

Wαβ , (35)

where the width fluctuation factor Wαβ is given by
Eq. (5).

• When calculating the elastic and inelastic scatter-
ing cross sections in the physical space for a set of
coupled levels, each level may include several chan-
nels denoted by indices a, b, . . . Given a fixed set of
incoming (a) and outgoing (b) channels, sum over
a and b when a ∈ (ground state), and b ∈ (ground
or excited state). Summation α and β runs over all
the diagonal space, and calculate the cross section
as in Eq .(16) with Eqs. (17) and (21).

• For uncoupled levels, run a over the channels that
belong to the ground state. The cross section is
given by Eq. (23).

We employed the dispersive coupled-channels optical
potential by Soukhovitskii et al. [30], with the defor-
mation parameters of β2 = 0.214, β4 = 0.00931, and
β6 = −0.0148 taken from the Finite Range Droplet
Model [31]. We coupled five levels in the ground state
rotational band, 0+, 2+, 4+, 6+, and 8+. Although di-
rect inelastic scattering to the vibrational bands can be
observed, we consider them as uncoupled levels to sim-
plify the calculations, otherwise a different optical model
would be needed.

The photon strength function is calculated with the
Giant Dipole Resonance (GDR) model with the param-
eters of Ullmann et al. [32]. The level density of 239U
is calculated with Gilbert and Cameron’s composite for-
mula [33, 34], and the level density parameter is slightly
adjusted to reproduce the average resonance spacing of
D0 = 20.26 ± 0.72 eV [35]. The fission barrier parame-
ters are taken from Iwamoto’s study [6], and adjusted to
roughly reproduce the evaluated fission cross section at
1 MeV in ENDF/B-VII [36]. Note that the fission chan-
nel is not important, since we are mainly interested in
the cross sections in the sub-threshold fission region.

Figure 7 shows the comparison of calculated inelas-
tic scattering cross sections for the 2+, 4+, 6+, and 8+

states. The dashed curves are calculated with the gen-
eralized transmission coefficients as in Eq. (10). We also
depict the evaluated cross sections in JENDL-4 [6, 37]
for comparison, since these cross sections were calculated
with a similar optical model with the coupled-channels
Hauser-Feshbach code, CCONE [6], in which the gener-
alized transmission coefficients are adopted. The solid
curves are the result of EW transformation. The trans-
formation always increases the inelastic scattering cross
section to the level that has the direct component, which
we already observed in Fig. 1 in the randomly generated
S-matrix model. Because the compound formation cross
section σCN remains the same, the increase in the inelas-
tic channels reduces the enhancement in the compound
elastic channel. However, the reduction in the elastic
scattering cross section is not so visible, since the shape
elastic scattering σSE dominates the elastic channel in
this energy range.



9

 0

 500

 1000

 1500

 2000

 0  1  2  3  4

(a) 44.9 keV 2+

23
8 U

(n
,n

’) 
[m

b]

Neutron Incident Energy [MeV]

JENDL-4
without EWT

with EWT

 0

 100

 200

 300

 400

 500

 0  1  2  3  4

(b) 148.4 keV 4+

23
8 U

(n
,n

’) 
[m

b]

Neutron Incident Energy [MeV]

JENDL-4
without EWT

with EWT

 0

 20

 40

 60

 80

 0  1  2  3  4

(c) 307.2 keV 6+

23
8 U

(n
,n

’) 
[m

b]

Neutron Incident Energy [MeV]

JENDL-4
without EWT

with EWT

 0

 2

 4

 6

 8

 10

 0  1  2  3  4

(d) 518.1 keV 8+

23
8 U

(n
,n

’) 
[m

b]

Neutron Incident Energy [MeV]

JENDL-4
without EWT

with EWT

FIG. 7. (Color Online) Calculated 238U(n,n’) reaction cross sections with the EW transformation (solid curves) compared with
the modified transmission calculation (dashed curves), as well as with the evaluated cross sections in JENDL-4 (dot-dashed
curves).

The calculated capture, total inelastic, and fission cross
sections are shown in Fig. 8, as a ratio of the EW trans-
formation case to the generalized transmission case. The
total inelastic scattering includes both the coupled and
uncoupled levels. As we already saw in Fig. 3, the gener-
alized transmission calculation gives slightly larger cross
sections for the uncoupled capture and fission channels.
However, the change in these cross sections are less than
2%, while uncertainties in the calculated capture and fis-
sion cross sections are much larger in general.

The ratios approach to unity as the neutron incident
energy increases, and the impact of the EW transforma-
tion disappears above a few MeV. Above that energy, the
compound elastic scattering cross section can be basically
ignored, because there are many open channels. Under
such circumstances the Hauser-Feshbach theory is justi-
fied, and the cross sections can be calculated without the
EW transformation.

V. CONCLUSION

An exact formula for the width fluctuation corrected
Hauser-Feshbach cross section, in which directly coupled
channels are involved, is used to perform the statisti-
cal model calculation based on Gaussian Orthogonal En-
semble (GOE) in the diagonalized space — the so-called
Engelbrecht-Weidenmüller (EW) transformation. Nish-
ioka, Weidenmüller, and Yoshida [16] obtained an equiv-
alent expression of the fluctuation cross section without
the diagonalization procedure. Nevertheless, the latter
has not been employed in practical cross section calcula-
tions, due to the complexity both in the formula itself and
technical difficulties in applying actual cases. To over-
come this problem, we have developed an approximated
method, which produces almost identical cross sections
as the theory of Nishioka et al., and is feasible to com-
pute cross sections in realistic cases without any of the
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difficulties the GOE inherently possesses. The method
combines Moldauer’s approximation [15] with a simple
relation between the channel degree-of-freedom and the
optical model transmission coefficient, recently obtained
by a GOE numerical study at LANL [20].

We have confirmed the Moldauer’s approximation for

the first time by our Monte Carlo approach, and found
that an extra phase factor should be included when
Im(SααSββ) 6= 0. The method was applied to the de-
scription of neutron induced reactions on 238U target
in the fast energy range, where the elastic and inelas-
tic scattering, the radiative neutron capture and the fis-
sion channels are relevant. We demonstrated that the
EW transformation indeed increases the calculated in-
elastic scattering cross sections, while modest changes
were seen in the uncoupled channels, including the fission
and capture cross sections. We concluded that conven-
tional methods calculating the Hauser-Feshbach theory
by adopting the generalized (direct cross section elimi-
nated) transmission coefficients lead to underestimation
of the inelastic scattering cross sections, when the di-
rect channels are strongly coupled. This underestima-
tion decreases as the number of open channels increases.
We believe this technique should be adopted by existing
Hauser-Feshbach codes, leading to more accurate predic-
tions of the scattering cross sections on collective nuclei.
To facilitate implementation of the EW transformation
in the Hauser-Feshbach codes, a special relation of the
unitary matrix in Eq. (16) is given in Appendix.
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Appendix: Sum-rule in the back-transformation

When setting the channel cross section matrices, σαα,

σαβ , and
〈
S̃ααS̃

∗
ββ

〉
in Eq. (16) to be

σ̃ = 〈S̃S̃∗〉 =

 1 · · · 1
...

. . .
...

1 · · · 1

 , (A.1)

where σ̃ denotes the Λ × Λ matrix whose elements are
given by Eq. (17), then the following equality is satisfied

∀b ∈ J1,ΛK ,
∑
a

σab = Λ . (A.2)

Proof: Inserting the expression of σ̃ and 〈S̃S̃∗〉 into
Eq. (16), we have

σab =
∑
α

|Uαa|2|Uαb|2 +
∑
α6=β

U∗αaU
∗
βb(UαaUβb + UβaUαb)

+
∑
α6=β

U∗αaU
∗
αbUβaUβb

=
∑
α

|Uαa|2|Uαb|2 +
∑
α6=β

U∗αaU
∗
βbUαaUβb

+
∑
α6=β

U∗αaU
∗
βbUβaUαb +

∑
α6=β

U∗αaU
∗
αbUβaUβb

=
∑
α

U∗αaUαa

∑
β

U∗βbUβb


+
∑
α6=β

U∗αaUβa
(
U∗βbUαb + U∗αbUβb

)
(A.3)

= S1 + S2 , (A.4)

where

S1 =
∑
a

∑
α

U∗αaUαa

∑
β

U∗βbUβb

 , (A.5)

S2 =
∑
a

∑
α 6=β

U∗αaUβa
(
U∗βbUαb + U∗αbUβb

)
. (A.6)

Since U is a unitary matrix,

∀b ∈ J1,ΛK ,
∑
β

U∗βbUβb = 1,
∑
α

U∗αaUαa = 1 ,

(A.7)
thus

S1 =
∑
a

1 = Λ . (A.8)

Once again, using the unitarity of U , one obtains∑
a

U∗αaUβa = δαβ . (A.9)

Therefore

S2 =
∑
a

∑
α 6=β

U∗αaUβa
(
U∗βbUαb + U∗αbUβb

)
=
∑
α 6=β

∑
a

U∗αaUβa
(
U∗βbUαb + U∗αbUβb

)
=
∑
α 6=β

δαβ
(
U∗βbUαb + U∗αbUβb

)
= 0 . (A.10)


