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Starting from a set of different two- and three-nucleon interactions from chiral effective field theory, we use

the importance-truncated no-core shell model for ab initio calculations of excitation energies as well as electric

quadrupole (E2) and magnetic dipole (M1) moments and transition strengths for selected p-shell nuclei. We

explore the sensitivity of the excitation energies to the chiral interactions as a first step towards and systematic

uncertainty propagation from chiral inputs to nuclear structure observables. The uncertainty band spanned by the

different chiral interactions is typically in agreement with experimental excitation energies, but we also identify

observables with notable discrepancies beyond the theoretical uncertainty that reveal insufficiencies in the chiral

interactions. For electromagnetic observables we identify correlations among pairs of E2 or M1 observables

based on the ab initio calculations for the different interactions. We find extremely robust correlations for E2

observables and illustrate how these correlations can be used to predict one observable based on an experimental

datum for the second observable. In this way we circumvent convergence issues and arrive at far more accurate

results than any direct ab initio calculation. A prime example for this approach is the quadrupole moment of the

first 2+ state in 12C, which is predicted with an drastically improved accuracy.

PACS numbers: 21.60.De,21.30.-x,21.10.Ky,23.20.-g, 21.10.-k,27.20.+n

I. INTRODUCTION

Over the past decade there has been substantial progress in

the construction of nuclear forces from chiral effective field

theory (EFT), both, on the formal level and on practical as-

pects [1–3]. Recently several different regularization schemes

have been implemented and are being explored in many-body

calculations. An example are coordinate-space regulators

leading to fully local two-nucleon (NN) and three-nucleon

(3N) interactions up to N2LO that can be used in quantum

Monte Carlo calculations [4]. Using a mixed local and non-

local regularization scheme Epelbaum et al. have presented a

new family of improved chiral NN interactions ranging from

leading-order (LO) to next-to-next-to-next-to-next-to leading

order (N4LO) with five different cutoff values [5, 6]. This

family of interactions allows for a systematic study of order-

by-order convergence and cutoff dependence of nuclear struc-

ture observables, a critical aspect that was often ignored in

previous nuclear structure applications. The LENPIC collab-

oration [7] is exploring these interactions in few- and many-

body calculations [8] and is developing the consistent chiral

3N interactions. In a complementary development, new fit-

ting strategies for chiral NN+3N interactions at N2LO are ex-

ploited to quantify the statistical uncertainties related to the

parameter fits [9]. Moreover, novel fit procedures are utilized

that improve the description of bound-state properties for nu-

clei beyond the few-body domain [10, 11] compared to the

previous generation of chiral interactions [12–17]. There are

also efforts to include the delta resonance as an explicit de-
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gree of freedom to accelerate the convergence of the chiral

order expansion [18].

These developments on chiral interactions enable numer-

ous applications in nuclear structure physics. To probe

the predictive power of chiral interactions without introduc-

ing uncontrolled approximations, ab initio many-body ap-

proaches are the methods of choice. In addition to the tra-

ditional ab initio many-body methods such as the no-core

shell model (NCSM) [19–21] and the Green’s function Monte

Carlo (GFMC) method [22–24] there are also recent devel-

opments like the coupled-cluster (CC) methods [25–31], the

self-consistent Green’s function methods [32–34], and the in-

medium similarity renormalization group (IM-SRG) [35–37]

that extend the range of ab initio nuclear structure calcula-

tions to medium-mass and heavy nuclei regime up to the tin

isotopes. The importance truncated no-core shell model (IT-

NCSM) [38, 39] bridges the gap between the traditional and

novel many-body methods, it can include the 3N interaction

explicitly and can probe ground-state and excitation energies

as well as spectroscopic observables in p- and lower sd-shell

nuclei. These observables constitute a comprehensive testbed

for the theoretical predictions of chiral EFT.

Typically, these ab initio approaches attempt to estimate

uncertainties resulting from truncations and incomplete con-

vergence with respect to the many-body space. However, in

many applications of nuclear structure theory, such as the p-

shell spectroscopy, the uncertainties entering through the chi-

ral inputs have not been explored, so far. The combination

of reliable many-body approaches and new chiral interactions

will allow for a systematic propagation of theory uncertain-

ties to the nuclear structure observables. As a preparatory

step, we study sensitivity and correlations of different spec-

troscopic observables for a set of chiral NN+3N interactions.

We explore the excitation spectra of 6Li, 10B, and 12C and
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quantify the sensitivity of excitation energies on the choice

of the underlying chiral interactions. The variation of the un-

derlying interactions also provides an opportunity to detect

and map-out correlations among pairs of nuclear structure ob-

servables, particularly electromagnetic moments and transi-

tion strengths.

This paper is structured as follows: In Sec. II we intro-

duce the different chiral interactions and the technical aspects

of the many-body treatment. The sensitivity analysis of the

excitation spectra for selected p-shell nuclei is presented in

Sec. III. In Sec. IV correlations in electromagnetic observ-

ables are studied and we conclude in Sec. V.

II. FROM CHIRAL HAMILTONIANS TO OBSERVABLES

A. NN+3N interactions from chiral EFT

In this work we investigate interactions from three differ-

ent chiral schemes that are obtained at N2LO or N3LO using

different regularization and fit procedures. The first NN in-

teraction we introduce is developed by Entem and Machleidt

(EM) [12] at N3LO. The non-local regulator function uses a

fixed cutoff of 500 MeV/c. This potential provides an accu-

rate description of NN phase shifts with a comparable preci-

sion as more phenomenological high-precision potentials like

Argonne V18 [40] and CD-Bonn [41]. The EM potential is

widely used in nuclear structure physics and has been a stan-

dard choice in the ab initio field.

The N2LOopt interaction by Ekström et al. [10] is a re-

cently developed chiral interaction at N2LO. The fits of the

low-energy constants (LECs) have been performed with the

Practical Optimization Using No Derivatives (for Squares)

(POUNDerS) algorithm [42]. This potential also uses a cut-

off of Λχ = 500 MeV/c and an additional spectral function

regularisation (SFR) with a cutoff of Λ̃χ = 700 MeV/c.

The NN interaction by Epelbaum, Glöckle, Meißner

(EGM) [14] at N2LO uses the same non-local regular-

ization with an additional SFR cutoff. This potential

is constructed for a sequence of five cutoff combinations

(Λχ/Λ̃χ) = {(450/500), (600/500), (550/600), (450/700),

(600/700)}MeV/c and provides a slightly less precise repro-

duction of the NN data than the other two NN interactions.

The pion-nucleon LECs ci are fitted independently of the reg-

ularization to the pion-nucleon scattering data [43] and differ

from the values used for the EM and N2LOopt interactions.

With the sequence of cutoff parameters it offers the unique

opportunity to study the effect of the regularization on nuclear

structure observables and, thus, to draw conclusions about the

theoretical uncertainties originating from the chiral inputs.

For chiral interactions with non-local regulators the cut-

off variation provides a legitimate diagnostic tool to estimate

the uncertainties at an individual chiral order. Nevertheless,

a variation of the chiral order is crucial to study the conver-

gence of the interactions and future works will combine a

chiral order and cutoff variation for a more elaborate uncer-

tainty analysis. Note, for chiral interactions with local regu-

lators, physical observables show generally a small sensitiv-

ity to variations in the cutoff [4, 5, 44]. Thus, novel studies

with a semi-local regularization must include information of

the chiral order convergence to extract the uncertainties of the

currently available NN forces [8].

The above NN forces are augmented by 3N forces at N2LO.

The EM and N2LOopt NN forces are combined with the local

3N force using a cutoff of 500 MeV/c [13]. The LECs c1,3,4 of

the two-pion exchange term are adopted from the NN interac-

tion. The parameter cD is fitted to the triton beta-decay half-

life [45] and cE is fixed by the A = 3 and 4He binding energy,

for the EM and N2LOopt NN interaction, respectively. This

yields (cD, cE) = (−0.2,−0.205) for the EM interaction and

(−0.39,−0.398) for the N2LOopt interaction. Although, the

N2LOopt interactions is originally a NN force for brevity we

use this expression also to refer to the corresponding NN+3N

interaction introduced in this work. The EGM NN forces at

N2LO are typically combined with a consistent non-local 3N

force at N2LO. While this NN+3N force is used in several ap-

plications to neutron matter [46–48], nuclear structure physics

beyond the lightest nuclei is fairly unknown. The LECs of the

3N force are fitted to the triton ground-state energy and the

neutron-deuteron doublet scattering length [16]. The partial-

wave decomposed 3N matrix elements at N2LO can be de-

rived explicitly [13, 16, 49] or via a numerical partial-wave

decomposition [50, 51]. The latter approach is also applica-

ble to compute the complicated 3N contributions at N3LO for

future investigations.

B. SRG evolution and basis transformations

Although non-local chiral NN interactions are rather soft

due to the momentum cutoff in the regularisation, it is still dif-

ficult to converge NCSM-type calculations beyond the light-

est nuclei. Also the inclusion of the relevant 3N contributions

can be problematic for ab initio methods when a bare chi-

ral interaction is used. The similarity renormalization group

(SRG) [52–54] is a unitary transformation that softens the nu-

clear interaction and can be applied consistently in the two-

and three-body space. Therefore, this approach is used in a

variety of nuclear structure applications to soften the chiral

NN+3N interactions [29, 34, 36, 55–57].

The SRG flow equation for the Hamiltonian H is given by

d

dα
Hα = [ηα,Hα] , (1)

with the continuous flow-parameter α, which is related to a

momentum scale λSRG = α
−1/4 and the dynamic generator

ηα = (2µ)2 [Tint,Hα] , (2)

where µ is the reduced nucleon mass and Tint is the intrin-

sic kinetic-energy operator. It is important to note that the

SRG evolution induces irreducible many-body contributions

beyond the particle rank of the initial interaction. With the

canonical generator (2) it has been found [55–57], that it

is indispensable to include the induced three-body contribu-

tions. Therefore, for all results presented in this paper we use



3

an initial NN and NN+3N interaction and include all contri-

butions up to the three-body level, which correspond to the

NN+3N-induced and NN+3N-full nomenclature of previous

works [55, 56, 58].

We aim at many-body calculations performed in the

harmonic-oscillator (HO) representation. Thus the NN and

3N interactions that are obtained in a partial-wave momen-

tum representation need to be transformed to the HO space.

There are techniques to perform the evolution equation of the

SRG in the three-body momentum representation [59], how-

ever, for applications in localized systems, such as nuclei, the

discrete HO Jacobi basis is the most efficient scheme for the

SRG evolution. Therefore, we immediately transform the 3N

momentum matrix elements to the HO Jacobi representation,

performing the SRG transformation subsequently.

The HO machinery, comprehensively described in [58],

is utilized to perform the Moshinsky transformation to the

particle-basis representation. Eventually, the matrix elements

are stored in the so-called JT -coupled scheme [55, 58], which

is the starting point for a number of ab initio many-body meth-

ods [30, 33, 34, 36, 37, 55, 60–63].

III. EXCITATION SPECTRA

In a first step we study the excitation spectra of various p-

shell nuclei using the different chiral Hamiltonians introduced

in Sec. II A. The focus will be on the sensitivity of the differ-

ent excited states on the chiral inputs, giving rise to systematic

theory uncertainties that result from the various choices made

during the construction of the chiral interactions. This in-

cludes, for instance, the different regularization schemes, chi-

ral orders as well as the fit procedures used for the LECs. An

additional source of uncertainty are the statistical uncertain-

ties of the LECs resulting from the fits. The latter uncertain-

ties have been exploited recently for few-body scattering and

ground-state observables [9], but remain to be investigated for

p-shell spectroscopy.

We employ the IT-NCSM with the SRG evolved Hamil-

toinians based on the chiral NN or NN+3N interactions dis-

cussed in Sec. II B. For all Hamiltonians the IT-NCSM calcu-

lation includes explicit 3N terms of the SRG-evolved Hamil-

tonians. We perform a full NCSM calculations up to Nmax = 6

for 6Li and Nmax = 4 for 12C and 10B. We efficiently pro-

ceed to larger Nmax with an importance truncation including a

threshold extrapolation towards the full NCSM space. The de-

tails of the IT-NCSM and the threshold extrapolation are dis-

cussed in [38, 39]. On should note that the threshold extrapo-

lation itself induces a theoretical uncertainty at the level of the

final observables, which is quantified systematically through

the extrapolation protocol [38]. For excitation energies this

uncertainty is of the order of 50 keV for the largest spaces.

The IT extrapolation is very robust for the discussed excita-

tion spectra in this work. The only exception is the first ex-

cited 0+ state in 12C for a single EGM interaction, where the

degeneracy with the first 4+ state causes inaccurate IT extrap-

olations, resulting in an unreliable assessment of the angular

momentum of this state.

We start with the simple nucleus 6Li. Figure 1 shows the ex-

citation energies of the first four positive parity states obtained

with the different chiral NN and NN+3N interactions. To indi-

cate the uncertainty due to the convergence with respect to the

model space we compare the results at Nmax = 8 (dashed bars)

and Nmax = 10 (solid bars). The calculations are carried out

at ~Ω = 16 MeV and the SRG evolution up to α = 0.08 fm4

is performed at the three-body level. As illustrated for the 12C

spectrum in Ref. [65] once the SRG evolution is performed

consistently at the three-body level, excitation energies show

a negligible flow-parameter dependence. This remains true

even for heavier systems, where the absolute energies show

a sizable flow-parameter dependence [31, 55, 58]. Since the

SRG induced beyond-3N contributions predominantly cause

an overall shift of all energies, their impact cancels out for

the excitation energies. In addition to the spectra for the indi-

vidual interactions including the initial NN and NN+3N part,

respectively, Fig. 1 also shows a combined spectrum for all the

EGM interactions, where the bands indicate the spread of the

excitation energies obtained with the different cutoffs. We ob-

serve that the excitation energies obtained with the EM and the

N2LOopt Hamiltonians typically fall into the bands extracted

for the EGM interactions.

A first inspection of the spectra reveals that the sensitivity

of the different excited states to the Hamiltonian is quite dif-

ferent. Whereas the excitation energy of the first 0+ state is

largely unaffected by the different choices of chiral interac-

tions or the inclusion of the chiral 3N force, the excitation en-

ergies of the 3+ and the 1+ states show a sizable variation. The

inclusion of the chiral 3N interaction causes a shift of the en-

ergies in the same direction for all Hamiltonains, leading to a

higher 2+ and a lower 3+ excitation energy for the full NN+3N

interactions. In the case of the EGM interactions, the band

constructed from the cutoff dependence of the 3+ excitation

energy nicely overlaps with the experimental energy. For the

2+ excitation energy there is a clear discrepancy and the chiral

3N interaction shifts the state further away from the experi-

mental energy in all cases. However, the first 2+ state in the

experimental spectrum is a broad resonance and there is a nar-

row second 2+ state about 1 MeV above. Thus the inclusion of

continuum degrees of freedom, e.g., through the NCSM with

continuum [60, 66, 67], will be important to understand and

disentangle these 2+ states. The slow convergence of the cal-

culated 2+ state might serve as a first indication for these con-

tinuum effects. For the 0+ excitation energy, the EGM band

is closer to experiment although it does not overlap either—

experimentally this state is a narrow resonance.

Figure 2 shows a similar analysis of the excitation spectrum

of 12C. The excitation energies of the lowest positive-parity

states obtained in IT-NCSM calculations are shown for all in-

teractions. Obviously, the structure of excitation spectrum of
12C is richer than for 6Li. Previous investigations have shown

that some of the excitation energies, e.g., for the first 1+ and 4+

states, are very sensitive to the 3N interaction. Furthermore,

in comparison to experiment there are clear discrepancies of

the 1+ excitation energy obtained for the EM interaction when

including the 3N interaction [55, 65]. The behaviour of these

states for different chiral interactions is, therefore, highly in-
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FIG. 1. (color online) Excitation spectrum of 6Li for the EM, the N2LOopt and all five cutoff combinations of the EGM NN and NN+3N

interactions. The parameters of the IT-NCSM calculations are Nmax = 10, ~Ω = 16 MeV, and α = 0.08 fm4. The dashed bars correspond

to Nmax = 8 calculations. Bands in the last but one column on the right indicate the cutoff dependence of the EGM potential. Experimental

excitation energies are taken from [64].
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FIG. 2. (color online) Excitation spectrum of 12C. IT-NCSM calculations are performed for Nmax = 8 (solid bars) and 6 (dashed bars),

remaining parameters as in Fig. 1. Experimental excitation energies are taken from [64].

teresting. Note, the excited 0+ states are expected to have a

distinct cluster structure that cannot be described accurately

in tractable HO model spaces [68]. Therefore, it is not clear

whether the 0+ state obtained in the IT-NCSM corresponds

the first excited 0+ state (Hoyle state) or the second one (see

Ref. [65] for a more detailed discussion). For these reasons,

we will not include this 0+ state into the following discussion

on the sensitivity to the Hamiltonian.

Comparing the spectra for the different interactions con-

firms the sensitivity of the 1+ and 4+ excitation energies to the

underlying interaction, also the higher-lying 2+ state shows a

large sensitivity. For all these states the sensitivity, as sum-

marized by the bands for the EGM interactions, reduces sig-

nificantly with the inclusion of the chiral 3N interaction. This

might be interpreted as indication that the theoretical uncer-

tainties are reduced when going from an incomplete chiral

NN interaction to a complete and consistent chiral NN+3N

Hamiltonian at N2LO. For all interactions, the chiral 3N com-

ponent shifts the 1+ states to lower excitation energies. As

a result, all interactions underestimate the 1+ excitation en-

ergy by more than 2 MeV—even considering the uncertainty

band, there is a clear discrepancy with experiment. Since all
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FIG. 3. (color online) Excitation spectrum of 10B. IT-NCSM calculations are performed for Nmax = 8 (solid bars) and 6 (dashed bars),

remaining parameters as in Fig. 1. Experimental excitation energies are taken from [64].

Hamiltonians employed here use local or non-local 3N inter-

actions at N2LO, it will be very interesting the see whether

next-generation chiral 3N interactions at N3LO can resolve

this discrepancy. In contrast to the 1+ and 4+ states, the en-

ergy of the first excited 2+ state shows very little sensitivity

to the starting interaction and to the chiral 3N contribution.

The bands extracted from the EGM interactions are small and

the bands with and without the chiral 3N interaction overlap.

Interestingly, all interactions tend to underestimate the 2+ ex-

citation energy slightly.

It is also interesting to study the absolute 12C ground-state

energies resulting from the different NN+3N interactions. The

energies calculated with the EGM interactions span a range

of −96.8 to −80.5 MeV. This range contains the experimental

energy of −92.16 MeV. Also the ground-state energy obtained

with N2LOopt interaction is within the EGM range, while the

EM interactions predicts an energy of −97.8 MeV and thus

the largest binding energy. However, it is important to note,

that the energies are extrapolated from NCSM model spaces

up to Nmax = 8 causing an estimated extrapolation uncertainty

of about 1 − 2 MeV. What is more important is the impact

of omitted SRG-induced 4N contributions that are sizeable

for the SRG flow-parameter α = 0.08 fm4 used here. From

an analysis of the flow-parameter dependence we find that the

4N contributions are repulsive and, thus, will reduce the above

binding energies. For instance, changingα for the EM interac-

tion to α = 0.04 fm4, i.e., towards the bare interaction reduces

the binding energy by about 2.3 MeV. Based on the flow-

parameter dependence we cannot reliably estimate the bind-

ing energy expected for the bare interaction. Nevertheless, we

can conclude that the absolute binding energies for the bare

interactions will exhibit a spread of several MeV and tend to

underestimate the experimental binding energies. This sen-

sitivity of the absolute binding energies to the details of the

interactions is consistent with the finding in [9] for the 16O

ground-state energy.

As the final case, we discuss the excitation spectrum of
10B as shown in Fig. 3. The typical excitation energies for

this odd-odd nucleus are much smaller than in 12C, therefore,

shifts of the excitation energies of individual states by 1 MeV

can change the spectrum drastically. Furthermore, full con-

vergence of the excitation energies is more difficult to reach

than for the 12C spectrum. Particularly the results with chiral

3N interactions show a residual Nmax dependence, i.e., the ex-

citation energies for Nmax = 8 and 6, indicated in Fig. 3 by

the solid and dashed levels, respectively, are slightly differ-

ent. This residual Nmax dependence is much smaller than the

variations due to different Hamiltonians and, therefore, do not

affect the present discussion.

Already the first ab initio calculations of 10B with 3N in-

teractions have shown that the ordering of the first 3+ and 1+

states depends on the 3N interaction [69]. Many of the realis-

tic NN interactions incorrectly predict the 1+ as ground state

and only the 3N interaction restores the correct level ordering.

This is also observed in Fig. 3 for the chiral interactions—

with one exception all chiral NN interactions predict the 1+

below or degenerate with the 3+ state. In all these cases,

the chiral 3N interaction shifts the 1+ upwards relative to the

3+, thus, restoring the correct level ordering. An exception is

the EGM interaction with cutoffs (450/500) MeV/c, which al-

ready gives the correct level ordering with the NN interaction,

the chiral 3N interaction only leads to a slight reduction of all

excitation energies. The EGM uncertainty band for the 1+ ex-

citation energy is reduced by including the chiral 3N interac-

tion and robustly indicates the 3+ as the ground state. Within

the cutoff-uncertainty bands all excitation energies obtained

with the chiral NN+3N are compatible with experiment.

Our uncertainty analysis for the p-shell spectra provides a

crucial verification of the predictive power of the chiral in-

teractions. Besides distinct sensitivities of excitation energies
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to the 3N force, also systematic deviations from experiment

beyond the theoretical uncertainty can be identified. These in-

vestigations identify the first 1+ state in 12C as an ideal bench-

mark for the next generation of chiral NN+3N interactions.

IV. ELECTROMAGNETIC TRANSITIONS AND

MOMENTS

Electromagnetic observables provide another window into

structure of nuclei with different sensitivities and addressing

complementary information. Therefore, we extend the dis-

cussion of sensitivities of nuclear observables to electromag-

netic moments and transition strengths, focussing on electric

quadrupole (E2) and magnetic dipole (M1) observables.

Coming from the discussion of excitation energies, sev-

eral comments are in order: First, the convergence rate of

electromagnetic observables, particularly of E2 observables,

is significantly slower than the convergence of excitation en-

ergies. Owing to the sensitivity of the E2 operator on the

long-range behaviour of the wave function, large NCSM basis

spaces are required to obtain the correct asymptotic behaviour

of the wave functions and to converge E2 observables. Even-

tually, one might still rely on extrapolations, e.g., within the

novel schemes constructed in an effective field theory frame-

work [70], to extract a robust result.

Second, the E2 or M1 operators should be transformed con-

sistently with the Hamiltonian when using SRG transforma-

tions to improve the convergence behaviour. The effect of this

consistent SRG transformation of electromagnetic operators

was only studied in a few selected cases. These studies indi-

cated that the consistent SRG transformation changes electro-

magnetic observables only by a few percent [71, 72], which is

why NCSM applications have not included these effect so far.

Finally, chiral EFT also predicts the electromagnetic two-

body current contributions consistently with the interactions.

Also these contributions should be included for a complete

treatment of electromagnetic observables. Pioneering calcu-

lation in a hybrid framework using chiral EFT currents with

an Argonne interaction have indicated a significant influence

of current contribution to electromagnetic moments and tran-

sition strengths [73].

Addressing all these effects in a comprehensive fashion will

be the aim of our future studies of electromagnetic properties

starting from consistent chiral EFT inputs. In a preparatory

step towards the complete calculations, we study the impact

of the Hamiltonian on E2 and M1 observables. As a novel as-

pect in the ab initio context, we explore correlations between

pairs of E2 or M1 observables involving the same states. As

we will see in the following, the study of such correlations

in an ab initio framework can be extremely beneficial. Re-

cently, correlations of E1 observables in closed-shell nuclei

have been exploited for impressive predictions of observables

sensitive to the charge and neutron distribution [74, 75].

We start with the discussion of E2 observables involving

the first excited 2+ state and the 0+ ground state in 12C, i.e.,

the B(E2) transition strength form the 2+ state to the ground

state and the quadrupole moment of the 2+ state. In Fig. 4 we
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FIG. 4. (color online) Correlation of quadrupole observables for the

first 2+ state in 12C. Plotted is the reduced quadrupole transition

strength B(E2, 2+ → 0+) to the ground state versus the quadrupole

moment Q(2+) obtained with different chiral NN (open symbols)

and NN+3N interactions (solid symbols): EM (box), N2LOopt (cir-

cle), and EGM with cutoffs (Λχ/Λ̃χ) = {(450/500), (600/500),

(550/600), (450/700), (600/700)}MeV/c (diamond, triangle up, tri-

angle down, hexagon, cross). The IT-NCSM calculations are per-

formed at ~Ω = 16 MeV and α = 0.08 fm4 using a model space of

Nmax = 2 (blue), 4 (green), 6 (violet), and 8 (red symbols). The er-

ror bars indicate the uncertainties of the threshold extrapolations in

the IT-NCSM. The dashed curves corresponds to the correlation ob-

tained from formula (5) with a quotient of the intrinsic quadrupole

moment set to one (grey) or fitted to theoretical data points (black).

The grey shaded area indicates the error band of the experimental

B(E2) [76] and Q [77] value. The blue shaded area corresponds to

a prediction for Q consistent with the theoretical correlation and the

B(E2) measurement.

present these two observables for the same set of chiral NN

and NN+3N interactions used for the study of excitation spec-

tra. In addition we show the results for different model-space

truncations from Nmax = 2 to 8, which is important because of

the slow convergence of these observables. Thus each sym-

bol in the figure corresponds to a specific Hamiltonian at a

specific value of Nmax. The grey rectangle indicates the ex-

perimental values for the B(E2) and the quadrupole moment

including their experimental uncertainty. The uncertainty for

the quadrupole moment is particularly large [77], but new ex-

periments are planned to reduce this uncertainty [78].

The picture that emerges from Fig. 4 is remarkable. All

data points fall onto the same line, irrespective of the under-

lying chiral NN or NN+3N interactions and of Nmax. There

is a strong and robust correlation between the two E2 observ-

ables emerging from our ab initio calculations. The values of

the individual observables show a sizeable dependence on the

underlying interaction and Nmax, but they always stay on the

correlation line. As a general trend, with increasing Nmax the
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quadrupole moment and the B(E2) continue to increase, indi-

cating the slow convergence of these long-range observables.

The robust correlation between this pair of quadrupole ob-

servables emerging from ab initio calculations can be in-

terpreted in terms of the simple rotational model by Bohr

and Mottelson [79], where both observables in the laboratory

frame are connected to the intrinsic quadrupole moment Q0

via the formulas

Q(J) =
3K2 − J(J + 1)

(J + 1)(2J + 3)
Q0,s , (3)

and

B(E2, Ji → J f ) =
5

16π
Q2

0,t

(

Ji 2

K 0

∣

∣

∣

∣

∣

J f

K

)

. (4)

Here J is the angular momentum with the index i and f refer-

ing to the initial and final state, K is the projection of the total

angular momentum on the symmetry axis of the intrinsically

deformed nucleus. For the investigated nuclei 12C and 6Li, K

corresponds to the angular momentum of their ground states.

The indices s and t of the intrinsic quadrupole moment in-

dicate the ”static” and ”transition” observable Q and B(E2),

respectively. One can combine both formulas such that the ra-

tio of the intrinsic quadrupole moments Q0,t/Q0,s is the only

parameter that relates the two observables

B(E2, Ji → J f ) =
5

16π

(

(J + 1)(2J + 3)
)2

(

3K2 − J(J + 1)
)2

(

Ji 2

K 0

∣

∣

∣

∣

∣

J f

K

)

×
( Q0,t

Q0,s

)2
Q(J)2 .

(5)

In a rigid rotor model the intrinsic quadrupole moments Q0,s

and Q0,t are expected to be equal. The correlation result-

ing from this assumption is represented by the grey dashed

line in Fig. 4, which slightly misses the correlation predicted

in the ab initio calculations. Using the ratio of the intrinsic

quadrupole moments as a parameter to fit the above relations

to the ab initio results leads to Q0,t/Q0,s = 0.964 and a corre-

lation line that matches the ab initio results perfectly, as seen

from the black dashed line in Fig. 4.

After having established this correlation in ab initio calcu-

lations, we can exploit it to make predictions on one of the two

observables based on experimental data for the other observ-

able. In this particular case, the quadrupole moment of the 2+

state is poorly known, whereas the B(E2) has a much lower

relative uncertainty. Thus we can use the experimental value

and uncertainty B(E2) = 7.94±0.66 e2fm4 [76] and translate it

via the ab initio correlation line into an value and uncertainty

for the quadrupole moment of Q(2+) = (5.91 ± 0.25) efm2.

The uncertainty of this value is one order of magnitude smaller

than the uncertainty of the direct measurement.

It is also much better than the theory uncertainty for a direct

calculation of the quadrupole moment. For Nmax = 8 the dif-

ferent chiral NN+3N interaction predict quadrupole moments

in the range from 4.5 to 6.2 efm2 (red filled symbols in Fig. 4)

and these values still increase with increasing Nmax. So the

sensitivity to the interaction and the slow convergence lead to

4.5 5 5.5 6 6.5

Q(2+) [efm2]

4

5

6

7

8

9

10

11

.

B
(E

2
,
4
+
→

2
+
)
[e

2
fm

4
]

FIG. 5. (color online) Correlation of the B(E2, 4+ → 2+) value and

the quadrupole moment Q(2+) in 12C. The parameters and defini-

tion of the symbols are as in Fig. 4. The black dashed lines mark

the regime of the correlated theoretical data points. The blue shaded

area corresponds to a prediction for the B(E2) transition strength con-

sistent with the theoretical correlation and the predicted quadrupole

moment from Fig. 4.

a substantial theory uncertainty, which is eliminated through

the use of the correlation together with one experimental ob-

servable. The quadrupole moment is also consistent, but more

precise than direct predictions by nuclear lattice simulations

of Q(2+) = (6 ± 2) efm2 obtained at LO [80].

Due to the stability of the correlation in 12C one can also

address higher excited states of the yrast band, as shown in

Fig. 5. In analogy to the previous correlation analysis we

plot the B(E2, 4+ → 2+) as function of the quadrupole mo-

ment Q(2+). The correlation motivated by the rotor model

is present, but less clean. In particular, for the larger model

spaces the theoretical data points start to spread around the

fitted quadratic correlation curve. This indicates a more com-

plicated structure of the 4+ state in large model spaces, de-

viating from the simple rotor model. Already the excitation

energy of the 4+ state was much more sensitive to the inter-

action than the first 2+ state (cf. Fig. 2), indicating a different

and more intricate structure for the 4+ state.

Still, we can identify a correlation band indicated by

the black curves covering almost all ab initio results and

parametrize it through the rotor model using a range for the ra-

tio Q0,t/Q0,s from 0.795 to 0.905, which differs significantly

from the rigid rotor. Still, we can use this correlation band

to predict the B(E2, 4+ → 2+) in the range from 7.05 to

10.82 e2fm4, based on our previous extraction for Q(2+). This

B(E2) is not known experimentally. Cluster models predict a

value around 15 e2fm4 [81] and a rigid rotor model with the

intrinsic quadrupole deformation obtained from the 3α model
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FIG. 6. (color online) Correlation of quadrupole observables for

the first 3+ state in 6Li. Plotted is the reduced quadrupole tran-

sition strength B(E2, 3+ → 1+) to the ground state as function of

the quadrupole moment Q(3+). The IT-NCSM calculations are per-

formed for Nmax = 4 (blue), 6 (green), 8 (violet), and 10 (red sym-

bols). The remaining parameters and definition of the symbol shapes

are as in Fig. 4. The grey shaded area indicates the error band of

the experimental B(E2) [83]. Note, there is no measurement for the

spectroscopic quadrupole moment.

applied in Ref. [82] gives 25 e2fm4 [81].

We now move to the lighter nucleus 6Li and repeat the cor-

relation analysis. The lowest E2 transition is between the first

excited 3+ state and the 1+ ground state. As we remarked

earlier, the 3+ state is a narrow resonance and, therefore, the

definition of the quadrupole moment is nontrivial. Since we

are working in a bound-state approach, we can compute this

observable nevertheless. In Fig. 6 we show the correlation plot

for the B(E2, 3+ → 1+) strength and the quadrupole moment

of the first 3+ state in 6Li. Again we find a tight correlation

between these two observables for all chiral NN and NN+3N

interactions and model space truncations. A fit of the rotor

model with Q0,t/Q0,s = 0.961 again describes this correlation

very well.

Unlike the previous cases, all IT-NCSM calculations un-

derestimate the B(E2) value—we only get about half of the

experimental transition strengths. At the same time, there is

a systematic dependence on the model-space truncation Nmax.

For all interactions the absolute values of the quadrupole mo-

ment and the B(E2) increase monotonically with Nmax with no

indication of convergence. This general behaviour is consis-

tent with the findings in Ref. [84] using the CD-Bonn potential

and hints at missing continuum effects for the description of

the 3+ resonance. Still, we can use the rotor model to extract a

value of the quadrupole moment of Q = −6.59(26) efm2 based

on the measured B(E2).

We can consider the same B(E2, 3+ → 1+) for 6Li in con-

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Q(1+) [efm2]

3

4
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6
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.
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+
)
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FIG. 7. (color online) Correlation of quadrupole observables for

the first 1+ state in 6Li. Plotted is the reduced quadrupole transi-

tion strength B(E2, 3+ → 1+) to the ground state as function of the

quadrupole moment Q(1+). The remaining parameters and definition

of the symbol shapes are as in Fig. 6. The grey shaded area indicates

the error band of the experimental B(E2) [83] and Q(1+) [85].

nection with the quadrupole moment of the 1+ ground state in-

stead of the excited 3+ state. As shown in Fig. 7 this pair of E2

observables does not exhibit a robust correlation. Because the

measured quadrupole moment of −0.08178(164) efm2 [85] is

so close to zero, the experimental data point in the correla-

tion plot is incompatible with the rigid rotor model. The very

small quadrupole moment of the ground-state is governed by

more subtle structural effects rather than the robust effects

from the rotor model. Note the impact of the importance trun-

cation also becomes noticeable, because of the small magni-

tude of the quadrupole moment. Moreover, several theoretical

quadrupole moments have a positive sign, i.e., predict a pro-

late deformation, but move with increasing Nmax towards the

slightly oblate deformation as experimentally measured. This

example demonstrates, that the E2 correlations in 12C and 6Li

that we identified from our ab initio calculations and inter-

preted by the simple rotor model are non-trivial findings.

Finally, we discuss an example for a different electromag-

netic operator, the magnetic dipole or M1 operator. Unlike

the E2 observables we discussed so far, the M1 operator does

not depend on the spatial distance, but only probes the spin

and orbital angular-momentum structure of the state. This

leads to a different convergence behavior of M1 observables in

NCSM-type calculations. Furthermore, from a macroscopic

model build on an intrinsic state the magnetic dipole moment

and the B(M1) transition strength show a less trivial but again

quadratic relation depending on an effective and intrinsic g-

factor [79]. Therefore, it is interesting to explore the spin and

orbital structure that determines pairs of M1 observables in ab

initio calculations and to identify correlations.
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FIG. 8. (color online) Correlation of magnetic-dipole observables for

the 1+ ground state and the first 0+ excited state in 6Li. Plotted is the

magnetic dipole transition strength B(M1, 0+ → 1+) to the ground

state versus the magnetic-dipole moment µ(1+). The IT-NCSM cal-

culations are performed for Nmax = 4 (blue), 6 (green), 8 (violet), and

10 (red symbols). The remaining parameters and definition of the

symbol shapes are as in Fig. 4. The grey rectangle indicates the error

band of the experimental µ(1+) [86, 87] and B(M1, 0+ → 1+) [83]

value.

In Fig. 8 we plot the B(M1, 0+ → 1+) transition strength

from the excited 0+ state to the 1+ ground versus the magnetic

dipole moment µ(1+) of the ground state in 6Li. As before, we

consider the full set of interactions for a range of model space

truncations Nmax = 4, 6, 8, and 10. One should note that the

range of B(M1) and µ presented in the plot, covering around

7% relative change in both observables, is very small com-

pared to the typical variations of the E2 observables discussed

before. This already indicates that M1 observables are more

robust with respect to interaction and model-space choices.

The picture regarding correlations is also different from the

E2 observables, the calculations do not collapse on a univer-

sal correlation line. There are distinct groups of points with

very systematic trends. First, the calculations using chiral

NN+3N interactions (full symbols) are separated from cal-

culations with only chiral NN forces (open symbols). The

inclusion of the chiral 3N interaction reduces the dipole mo-

ment systematically by about 1%, simultaneously the B(M1)

is reduced by a similar amount. Second, with increasing Nmax

the B(M1) strength is systematically reduced, while the dipole

moment remains practically constant. Third, the different in-

put Hamiltonians for fixed Nmax give very similar results as in-

dicated by the groups of same-colored open or full symbols in

Fig. 8. In summary, both observables are robust with respect

to the choice of chiral NN+3N interaction but they are influ-

enced by the chiral 3N force. The dipole moment is converged

while the B(M1) shows a systematic decrease with increasing

Nmax which might be related to the resonance nature of the 0+

state.

Comparing the calculations to experiment, indicated by the

narrow grey rectangle in Fig. 8, provides an interesting per-

spective. The ground-state magnetic dipole moment of 6Li is

known with an excellent accuracy from atomic physics mea-

surements [86, 87]. The calculations with chiral NN+3N in-

teractions deviate from experiment by about 2%—though this

is a small deviation by our standards, it is very systematic. The

experimental uncertainty on the B(M1) are larger and most of

the calculations fall within the error bar of the experiment.

However, the systematic Nmax dependence of the calculation

suggests that the converged B(M1) will be outside the experi-

mental error bar for all Hamiltonians.

This is clearly a case where precision studies, both in ex-

periment and in ab initio theory will be very valuable. As

mentioned in the beginning of this section, our studies of elec-

tromagnetic observables are not fully complete yet. We have

not included the consistent SRG evolution of the electromag-

netic operators and we have not included consistent electro-

magnetic two-body currents from chiral EFT. Both correc-

tions enter as additive two-body pieces in the electromagnetic

operators and they will affect both observables in the pairs

of E2 and M1 observables discussed here. In case of the E2

observables, we expect the correlation line to be largely un-

affected by these corrections. However, they will play a role

for the specific values of the observables, particularly at the

precision level of the M1 observables discussed above. This

aspect will be a focus of our future studies.

V. CONCLUSIONS

We have presented ab initio IT-NCSM calculations for the

spectroscopy of p-shell nuclei using a large set of different

chiral NN+3N interactions. In this way we addressed the sen-

sitivity of excitation spectra and electromagnetic observables

to the input interactions, which constitutes a significant and

previously unexplored contribution to the theory uncertainties

of state-of-the-art ab initio calculations. The variation of the

input interactions also provides yet unexplored insights into

the details of nuclear structure.

We discussed the sensitivities of individual excitation en-

ergies and compared the resulting theory uncertainties to ex-

periment. This provides an important diagnostic for the chiral

interactions, particularly in case of a systematic disagreement

with experiment beyond the uncertainties obtained from the

different interactions. An example is the excitation energy of

the first 1+ state in 12C, where the sensitivity to the different

chiral NN+3N interactions is much smaller than the deviation

from experiment. This will be an important test case for next-

generation chiral interactions.

For electromagnetic observables the variation of the under-

lying interaction and of the model-space truncation allowed us

to identify robust correlations between pairs of E2 observables

merging from ab initio calculations, which can be interpreted

in terms of a rigid rotor model. These correlations offer a new

tool to extract accurate predictions for ab initio calculations.
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By combining the theoretically predicted correlations of two

observables with a single experimental datum for one observ-

able we can extract a value for the second observable that is

far more accurate and robust than any direct ab initio result.

An example is the quadrupole moment of the first excited 2+

state in 12C, that we predict to be Q(2+) = (5.91 ± 0.25) efm2

based on the experimental value of the associated B(E2).

This work is a preparatory step towards a full quantification

of theory uncertainties based on consistent inputs from chiral

EFT. For example, using the new family of chiral interactions

from LO to N4LO developed within the LENPIC collabora-

tion [5, 6, 8], we will be able to study the order-by-order sys-

tematics of nuclear observables and thus propagate the EFT

uncertainties consistently to the level of nuclear structure ob-

servables. Including two-body currents and consistent SRG-

evolution for the electromagnetic observables will be another

important milestone towards precision ab initio calculations

that exploit the full potential of chiral EFT.
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P. Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301

(2015).

[12] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R)

(2003).
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R. Roth, Phys. Rev. C 88, 054319 (2013).

[30] S. Binder, J. Langhammer, A. Calci, P. Navrátil, and R. Roth,
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[57] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev.

Lett. 103, 082501 (2009).

[58] R. Roth, A. Calci, J. Langhammer, and S. Binder, Phys. Rev. C

90, 024325 (2014).

[59] K. Hebeler, Phys. Rev. C 85, 021002 (2012).
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