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Abstract

Background: The configuration interaction approach to nuclear structure uses the effective

Hamiltonian in a finite orbital space. The various parts of this Hamiltonian and their interplay are

responsible for specific features of physics including the shape of the mean field and level density.

This interrelation is not sufficiently understood.

Purpose: We intend to study phase transitions between spherical and deformed shapes

driven by different parts of the nuclear Hamiltonian and to establish the presence of the collective

enhancement of the nuclear level density by varying the shell-model matrix elements.

Method: Varying the interaction matrix elements we define, for nuclei in the sd and pf shells,

the sectors with spherical and deformed shapes. Using the moments method that does not require

the full diagonalization we relate the shape transitions with the corresponding level density.

Results: Enhancement of the level density in the low-energy part of the spectrum is observed

in clear correlation with a deformation phase transition induced mainly by the matrix elements of

single-particle transfer.

Conclusions: The single-particle transfer matrix elements in the shell model nuclear Hamilto-

nian are indeed the carriers of deformation, providing rotational observables and enhanced level

densities.

PACS numbers: 21.60.Cs, 21.10.Ma, 05.30.Rt
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I. INTRODUCTION

The knowledge of the level density in a quantum many-body system is necessary for

the correct understanding of the response of the system to external perturbations. The

nuclear level density is a vitally important element of reaction theory, including astrophysical

processes and broad applications of nuclear physics. But it might also serve as a mirror

reflecting special features of intrinsic structure and this will be the main subject of our

consideration.

In a Fermi-system environment, the level density exponentially grows with energy due

to the combinatorics of particle-hole excitations from the defrosted Fermi surface. This

occurs even in the simplest picture of a Fermi gas without residual interaction [1, 2]. The

Fermi gas model does not however account for the effects on the level density due to the

shell structure, pairing correlations [3, 4] or coherent excitations of collective nature [5, 6].

Various semi-phenomenological approaches have been developed which account for such

effects [7, 8] considered as additions to the skeleton of the Fermi-gas, or of a more elaborate

self-consistent mean field with pairing.

Low-lying collective modes, mainly of isoscalar nature, lead to the reconfiguration of the

nuclear spectra. In an even-even non-magic nucleus, pairing correlations create an energy gap

in the excitation spectrum. Inside the gap vibrational collective modes start the sequence of

phonon states which gradually mix with unpaired particles appearing above the pair breaking

threshold. Away from the magic nuclei, the accumulating valence particle frequently lead to

broken internal symmetry and static deformation of the core. Then nuclear rotation appears

as a new branch of the excitation spectrum. The rotational bands, with a small distortion

of the nuclear field along the band, appear at low energy. All these effects should noticeably

change the low-lying nuclear level density [9–11].

In the framework of the shell model, pairing and collective effects are fully taken into ac-

count through the two-body interaction matrix elements. Since the shell model is formulated

in a truncated orbital space and therefore has the fixed total number of quantum states,

the collective enhancement can appear as enrichment of the level density at the low-energy

part of the spectrum, accompanied by a corresponding suppression of the level density at

higher excitation energy. The shell-model experience shows that the effects of deformation

and related rotational motion appear naturally for a sufficiently rich space and appropriate
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set of two-body interaction matrix elements as a result of the diagonalization in a spherical

basis. This is an important advantage of the shell-model approach since one does not need

to take special care of the strict fulfillment of conservation laws (particle number, angular

momentum, parity and isospin). On the other hand, the computational problems impose

the limitation on the total dimension of the orbital space.

The moments method based on statistical properties of large Hamiltonian matrices [12,

13] was recently formulated [14, 15] as a practical tool for calculating the level density for

a given Hamiltonian avoiding the diagonalization of large matrices. It was shown how the

first two moments of the Hamiltonian define the full level density that coincides with the

result of the exact diagonalization if the latter is feasible. Some latest results and first

comparisons with the phenomenology, thermodynamics, and mean field combinatorics can

be found in [16]. One important conclusion is that in realistic cases the level density in

a finite Hilbert space is a smooth bell-shape curve. The contributions of individual shells,

which are clearly pronounced in the mean-field combinatorics, are smeared by the multitude

of incoherent collision-like interactions which are always present in realistic Hamiltonians in

addition to the collective parts like pairing and multipole forces. In this article, our problem

is rather different. We are going to explore the landscape of nuclear Hamiltonians varying

the parameters in order to establish the existence and dynamic sources of the collective

enhancement of the level density. We use the moments method to extract the cases with

collective behavior and study the corresponding level densities. This method was used earlier

[17] for understanding the predominance of prolate deformation among non-spherical nuclei.

With the variation of parameters of the shell-model Hamitonian, we are able to localize and

study the phase transitions between spherical and deformed shapes.

In Section 2 we give a brief description of the moments method, in Section 3 we describe

the division of the full shell-model Hamiltonian into different subsets of matrix elements

which can be varied independently. Section 4 presents the effects of those subsets on the

low-lying spectrum of different nuclear systems and on the level densities. In Section 5 we

discuss a quantum phase transition between spherical and deformed shapes by varying the

strength of the matrix elements. The concluding discussion is given in Section 6.
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II. MOMENTS METHOD

Here we very briefly remind the formalism of the moments method. We use the shell-

model Hamiltonian H that contains the mean field and residual two-body effective interac-

tions. The level density is found as a superposition of modified (finite range) Gaussians,

ρ(E;α) =
∑

p

DαpGαp(E). (1)

Here α stands for the exact quantum numbers of spin and parity, while p runs over partitions

(distributions of particles among available single-particle orbitals); Dαp is the dimension of a

given partition, and Gαp is the finite-range Gaussian determined by the ground state energy,

the centroid (the first moment of the Hamiltonian) and the width (the second moment).

The second moment includes all interactions mixing the partitions. Both moments can

be computed directly by the Hamiltonian matrix avoiding its diagonalization. As we have

already mentioned, the result (1) is, in all studied cases, in good agreement with the product

of the full diagonalization if the latter is practically possible.

Technical details related to finding the ground state energy, M-scheme against J-scheme,

fit of the spin cut-off parameter, removal of unphysical center-of-mass excitations in the

cases of cross-shell transitions etc. are discussed in previous publications [14–16].

III. SEARCHING FOR COLLECTIVE EFFECTS

In the simplest (but still rich in physics and numerous applications) case of the sd shell

model we have only three single-particle levels, 1s1/2, 0d5/2, 0d3/2. The angular momentum

and isospin conservation allow 63 matrix elements of the residual two-body interactions.

Keeping intact all symmetry requirements, we can vary numerical values of the two-body

matrix elements of the effective interaction. As a result, we come to different versions of the

shell model which can cover the whole spectral variety allowed by the given Hilbert space. In

this way we can select the parts of the interaction responsible for specific observable physical

phenomena.

In a recent study [17], where in the same spirit the pf orbital space was used, it was found

that certain interaction matrix elements are responsible for the transition from a spherical

shape to a deformed one. First of all, they were the matrix elements (pf matrix elements in
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that specific model) changing the occupation numbers of the subshells by one unit, i.e. the

matrix elements 〈jk, jl|V |jm, jn〉 with jk = jm, or jk = jn, or jl = jm, or jl = jn. This drives

the mixing of spherical orbitals in the process of deformation. A complementary version of

a similar approach was applied in [16] in order to demonstrate that the incoherent parts

of the residual interaction are essential for producing chaotic wave functions and resulting

smooth level density.

Borrowing this approach we divide the set of interaction matrix elements into two parts.

The part V1 includes the “particle-hole” matrix elements which change the occupation num-

ber of the subshells by one unit with the change of orbital momentum ∆ℓ = 0 or 2, whereas

the part V2 includes the remaining matrix elements, which either don’t change the occupa-

tion number of the subshells (jk = jm and jl = jn), or change it by two units (jk 6= jm and

jk 6= jn),

H = h + k1V1 + k2V2; (2)

here the part h contains the single-particle energies. From this point on we will be call-

ing the matrix elements of the V1 part, “one unit change” matrix elements. The numerical

parameters k1 and k2 allow us to explore regions of the Hilbert space where the nuclear struc-

ture undergoes significant changes. The original shell-model case emerges for k1 = k2 = 1.

Probing various combinations of parameters k1 and k2 one can see how these two parts

affect the level density and other observable quantities of interest. We will study the evo-

lution of the level density as a function of these particular interaction modes paying special

attention to the low-lying parts of the spectrum as indicators of characteristic underlying

structures. In even-even nuclei we characterize the low-lying spectrum by the levels (2+, 4+,

6+), quadrupole transitions between them, and shape multipoles, as well as by the resulting

level density.

IV. EXPLORING THE NUCLEAR LANDSCAPE

This section presents a quantitative study of how the V1 and V2 parts of the shell-model

Hamiltonian (2) change the collective observables. We find whether these interactions are

capable of producing typical deformed or spherical characteristics of the nuclear field in the

low-energy part of the nuclear spectrum.

Two shell model spaces, the sd and pf , have been studied. As already mentioned, the
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interaction of the sd shell-model space has 63 non-zero matrix elements, among which 22

elements induce one-body transitions between the partitions (these are included in the V1

part of eq. (2), while the remaining 41 matrix elements (those included in the part V2 of

eq. (2) either couple states within the same partition or transfer two particles between

partitions, including usual pairing.

In the same spirit, the interaction in the pf shell has 195 non-zero matrix elements, 79

of which are included in the V1 part of eq. (2), while 116 remaining matrix elements, which

either don’t change the occupation number of the subshells or induce two-body transitions

between the partitions, make up the V2 part of eq. (2). We have considered the cases with

four valence protons + four valence neutrons and six valence protons + six valence neutrons

for the sd shell (these correspond to the 24Mg and 28Si nuclei, respectively) and the case of

six valence protons + six valence neutrons for the pf shell model (the 52Fe nucleus).

The observables used for studying the effects of various parts of the interaction are the

low-lying 2+1 and 4+1 energy levels, the ratio of these energies, R4/2=E(4+1 )/E(2+1 ), the ex-

pectation value of the quadrupole moment in the first excited state, Q(2+1 ) and the reduced

quadrupole transition probability, B(E2;2+1 → 0+1 ). In order to distinguish between spher-

ical and deformed cases, we use as an indicator the ratio R4/2, which should be close to

2 for spherical shapes and close to 3.3 for deformed shapes. Selected results of the exact

shell-model analysis are shown in Tables I and II.

Tables I-II display a pattern of correspondence between the tabulated nuclear observables

and the evolution of one of the Hamiltonian parameters, either k1 or k2, while the other one

is kept constant. In the first case, when k1 = 1 is constant whereas k2 evolves, the behavior

of the ratio R4/2 is very similar for the cases of 24Mg and 52Fe: this ratio first increases

reaching a maximum above 3 around k2 = 0.5 and then decreases for larger values of k2.

The behavior is slightly different for 28Si having first a minimum at k2 = 0.2 but evolving

after that in the same way as in the two previous cases. The absolute energies of the 2+1 and

4+1 states increase slowly up to the maximum point of R4/2 , while after that the increase

of the 2+1 and 4+1 energies is more pronounced. For the majority of the k2 values, the ratio

R4/2 is closer to the rotational limit. The reduced transition probabilities B(E2;2+1 → 0+1 )

are quite strong for different values of k2 of the first case, their values being close to or

over 100 e2 · fm2. As expected, the “one unit change” matrix elements are to a large extent

responsible for the rotational characteristics, but they still need certain cooperation of other

7



matrix elements to create typical characteristics of deformation, while a too large value of

other matrix elements destroys the rotational features. The discontinuity observed for 28Si

at small values of k2 is accompanied by a sudden change of the quadrupole moment.

The effects of the V2 part of the interaction with respect to various observables can be

studied using Table II, where the parameter k2 is fixed at the realistic level of 1.0 while

k1 evolves. The dynamics generated by only the two-body matrix elements which don’t

change the occupation number of the subshells or induce two-body transitions between the

partitions is not capable of creating noticeable characteristics of deformation. The increase of

k1 drives a regular decrease of the 2+1 level and a steady growth of the R4/2 ratio, a sign that

the deformation trend is under way, though without ever reaching a pure rotational pattern.

A steady increase is also observed for the B(E2;2+1 → 0+1 ) reduced transition probabilities,

whose values are however lower than 100 e2 · fm2 in the majority of cases, except for 52Fe,

whose transition rates B(E2;2+1 → 0+1 ) are still less strong compared to the corresponding

cases with k1 = 1.0 and k2 evolving.

It is expected that the occurrence of rotational motion will increase the low-lying level

density relative to spherical nuclei because of the contribution of emerging rotational bands.

Among the different cases of Tables I and II we selected those that display values of R4/2

and A close to rotational and spherical limits. As can be seen in Table III, the cases

with rotational values present an enhancement of the level density of the J = 0 states in

the lowest part of the energy spectrum compared to their spherical counterparts. These

results are almost independent of angular momentum and apply even for low energies (i.e.

the calculation of level density up to 3 MeV would give qualitatively the same results).

The cumulative number of levels (NoL) was calculated using the moments method. It is

convenient for comparison to renormalize the level density of the moments method making

all level densities centered at 1. The normalization is achieved by dividing the width of the

bin of the original Gaussian distribution, which is one, by the mean of the Gaussian found

using N1∗x1+N2∗x2+...
N1+N2+...

, where Ni is the number of levels in the energy bin, and xi is the mean

of the energy bin. In this way all Gaussians get centered at 1.

This part of the study clarifies the role of the “one unit change” matrix elements. The

strong presence of the V1 part of the shell-model interaction (responsible for mixing of

orbitals of the same parity) is associated with deformational characteristics of the low-lying

part of the spectrum. The strong presence of the V2 part of the interaction drives the values
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of all observables away from the rotational limit. This situation extends also to the level

densities. Not only all rotational cases have a larger number of low-energy levels compared

to their spherical counterparts, but also they are all observed for k1 = 1.0, while all spherical

cases are observed for k2 = 1.0.

V. SIGNATURES OF A QUANTUM PHASE TRANSITION

In the previous section we studied the behavior of the two different parts of the Hamil-

tonian, by keeping one part constant and dominant and changing the other. In this way

we saw that the dominant part gave either rotational (k1 = 1.0) or spherical (k2 = 1.0)

characteristics to the spectrum. In this section we concentrate on a quantum phase transi-

tion that takes place when we change simultaneously the strength of the two parts of the

Hamiltonian.

Nuclear models have long provided a fertile ground for studying phase transitions in meso-

scopic quantum systems. Quantum phase transitions [18–23] occur when the special observ-

ables of a system, called order parameters, reveal structural, often geometrical, changes as

a function of control quantities. It is convenient to study a quantum phase transition using

a Hamiltonian of the form

H = h + (1− λ)V1 + λV2, (3)

where the single particle energies part h is fixed, and λ is the control parameter. In our

case V1 contains the “one unit change” matrix elements and V2 the rest of matrix elements.

By varying λ from 0 to 1 in steps 0.1, we study the phase transitional patterns in the same

three nuclei. The results can be found in Tables IV-VI and Figures 1-3. We have restricted

our study to the yrast states, which exhibit well the effects of a phase transition.

The λ-dependence of the low-energy levels presents a minimum at λ around 0.2-0.3 for

all nuclei and for almost all values of nuclear spin (for 24Mg, the minimum of the 2+1 state is

displaced to λ = 0.3, while for 52Fe the minimum of the 4+1 state is displaced to λ = 0.1). At

the same time, the energy ratio R4/2 reaches a maximum, which is always close to a deformed

value, just after, or at, the minimum in the energies of the yrast states. For example, for

24Mg the maximum of R4/2 appears at λ = 0.4, while for 52Fe the maximum of R4/2 and

the minimum of the yrast energies coincide. The case of 28Si is distinct from the other two,

since its quadrupole moment changes abruptly from negative to positive values and the R4/2
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ratio has two maxima for different types of deformation. The second maximal R4/2 value

appears for λ = 0.3. Another quantity that reflects the effects of the phase transition is the

quadrupole moment of the 2+ state that has a minimum close to the values of λ where other

observables have their extremal values.

We note that the ratio E(J)/J(J + 1) (effective inverse moment of inertia) is almost

independent of J for all nuclei, from λ = 0.0 up to the value of λ where the energy ratio

R4/2 has its maximum for each particular nucleus. The reduced transition probabilities are

also sensitive to the phase transition, showing a maximum close to the point of minimum

energy of the yrast states. The probabilities B(E2;6+1 → 4+1 ) for 28Si and 52Fe have a

maximum for slightly greater values of λ.

The ground state wave function also displays the signs of a quantum phase transition.

Fig. 4 shows the amplitudes of this function expanded in terms of single-particle orbitals for

protons and neutrons coupled to angular momenta (Jn, Jp) =(0,0), (2,2), (3,3), (4,4), (6,6)

as a function of λ. The results for the amplitudes of the couplings (0,0), (2,2) and (4,4) are

quite similar for 24Mg and 52Fe. The (0,0) coupled pairs have their minimum amplitudes

for small values of λ while the (2,2) coupled pairs are stronger for the same values of λ.

Basically, up until the point of the quantum phase transition, the (2,2) coupled pairs are

the strongest components of the ground state wave function, a behavior consistent with

deformation characteristics. After the critical point, their amplitudes fall down and the

amplitudes of the (0,0) coupled pairs rise, becoming eventually the strongest components

of the wave function, a typical feature of the vibrational limit. The amplitudes of the (4,4)

coupled pairs have their largest values for the smallest λ and then they slowly decrease,

taking an almost steady value after the point of the phase transition. The behavior of the

amplitudes of 28Si for λ = 0.0 and 0.1 differs from other nuclei, as the amplitudes have a

steady but still coherent behavior with the (2,2) component being stronger than the (0,0)

one, but with a clear predominance of the (3,3) component over all others. This steady

behavior suddenly breaks for λ = 0.2, with the components moving abruptly to the values

they would have if the quadrupole moments had had a steady sign following the behavior of

the amplitudes in other nuclei. For 52Fe, up to the transitional point, the (6,6) component

seems to be also of some importance.

These results suggest that a nuclear system governed by the Hamiltonian (3) undergoes a

phase transition at λ = 0.2, with the rotational characteristics being more evident for λ ≤ 0.2
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and declining for λ > 0.2. One might expect that close to the transition point, where the

excitation energies have their minimum values, an enhancement of the level density would

be observed, at least at relatively low energy. Previous studies in the framework of the

IBM model for large boson numbers have confirmed this enhancement [24] in the spectrum

of 0+ states. Enhancement in the number of low-lying 0+ states has also been observed

experimentally [25] in the rare earth region for the transitional nucleus 154Gd.

In order to search for signs of the collective enhancement, we calculate the number of

0+ states up to 10 MeV for selected three nuclei at different values of the parameter λ, as

shown in Table VII and Figure 5. These results are qualitatively independent of the angular

momentum used − different spins show the same behavior of the level density. The number

of levels was calculated using the moments method as well as its renormalized version when

all level densities are centered at unity.

No signs of collective enhancement are observed just at the transitional point. In all cases

there is a sharp drop at the number of levels as a function of λ. This result doesn’t change

even if we use a smaller energy interval to calculate the number of levels, for instance up

to 3 MeV. For 28Si, a peak appears for λ = 0.2, i.e. at the point of the transition, however

this peak has to be attributed to the sudden change of the quadrupole moment at λ = 0.2,

since there is no similar effect in other two nuclei, whose quadrupole moment has a steady

sign. The vicinity of the phase transition point that in a finite system is always smeared

as a crossover can be studied in more detail by means of the invariant correlational entropy

[26].

Last, among the different level densities calculated, we selected those few ones that indi-

cate a spherical or a deformed shape, according to their R4/2 value. According to Table VIII

where we collected the results, deformed cases always have enhanced level density compared

to the spherical cases. This seems to be a general result consistently observed among all the

cases studied.

VI. DISCUSSION

In this study, the fixed Hilbert space of the shell model has been probed by varying the

numerical parameters of the Hamiltonian while keeping intact all exact conservation laws.

This allows us to study the evolution of physical observables and the corresponding level
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density. Technically the shell-model Hamiltonian was divided in two parts. The part V1

included the two-body matrix elements which induce the transfer of one nucleon between

the partitions, whereas the part V2 contained remaining matrix elements. By varying the

strength of the two parts of the Hamiltonian, we have followed the changes of the energy

spectrum, quadrupole moments and transition probabilities for selected nuclei in the sd and

pf shells. The results confirm that the “one unit change” matrix elements are responsible

for the appearance of rotational characteristics, lowering energy of the 2+1 and 4+1 levels,

inducing the R4/2 values typical for a rotor and large reduced transition probabilities between

rotational states. On the other hand, the V2 part of the interaction breaks the rotational

characteristics and induces a vibrational behavior.

Collective modes in nuclei strongly influence the level density at the low-energy part of

the spectrum, the phenomenologically known effect called the collective enhancement. By

selecting the rotational and vibrational cases resulting from the variation of the shell model

Hamiltonian, one can clearly see that the deformed nuclear spectra are richer in low-lying

levels compared to the spherical ones, a clear indication of collective enhancement. The

enhancement has to be compensated at higher energy unless we extend our orbital space;

for the fixed space, the compensation occurs beyond the borderline of applicability of the

used shell-model version.

The role of the “one unit change” matrix elements as the carriers of deformation is so pro-

nounced that one can even see a quantum phase transition between deformed and spherical

(often with soft vibrations as predecessors of the shape instability) phases of the system, by

simultaneously varying the V1 and V2 parts of the Hamiltonian. The phase transition reveals

itself in the ground state wave function of the system, the energy spectrum and transition

probabilities. No similar phase transition has been observed by dividing the Hamiltonian in

other combinations. The phase transition reveals itself by the cooperative dynamical action

of many components of the interaction present in the shell-model Hamiltonian.

Our preliminary results have shown that in the case in odd-odd nuclei the “one unit

change” matrix elements affect noticeably the whole energy spectrum. For odd-odd nuclei

we would expect to see signs of collective enhancement even at the transitional point.
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FIG. 1: (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J)/J(J +1) for J = 0, 2, 4, (c) ratios R4/2, (d)

electromagnetic transition rates between them as a function of λ for 28Si.
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FIG. 2: (a) Yrast 2+, 4+, 6+ energies, (b) ratios E(J)/J(J +1) for J = 0, 2, 4, (c) ratios R4/2, (d)

electromagnetic transition rates between them as a function of λ for 24Mg.
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electromagnetic transition rates between them as a function of λ for 52Fe.
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of the deformed level density.

21



Tables

22



TABLE I: Results for k1=1.0 and changing k2 for yrast energies (MeV) of 2+ and 4+ levels, ratios

R4/2, quadrupole moments Q(2+
1
) (e·fm2) and reduced transition probabilities B(E2;2+

1
→ 0+

1
)

(e2 · fm4) for 28Si, 24Mg, and 52Fe.

28Si, k1=1.0

k2 E(2+
1
) E(4+

1
) R4/2 Q(2+

1
) B(E2;2+

1
→ 0+

1
)

0.0 0.964 3.197 3.32 -11.50 30.75

0.1 0.866 2.797 3.23 -12.21 35.54

0.2 0.775 1.881 2.42 20.12 9.75

0.3 0.628 1.966 3.13 21.06 109.4

0.4 0.685 2.266 3.31 21.46 112.7

0.5 0.781 2.603 3.33 21.62 113.9

0.6 0.925 2.975 3.21 21.61 113.0

0.7 1.122 3.377 3.01 21.52 110.5

0.8 1.369 3.801 2.78 21.33 107.2

0.9 1.659 4.233 2.55 21.27 103.6

1.0 1.987 4.658 2.34 18.79 81.93

24Mg, k1=1.0

k2 E(2+
1
) E(4+

1
) R4/2 Q(2+

1
) B(E2;2+

1
→ 0+

1
)

0.0 0.596 1.667 2.80 -16.32 78.09

0.1 0.636 1.795 2.82 -18.04 83.40

0.2 0.661 1.931 2.92 -18.80 86.61

0.3 0.689 2.095 3.04 -19.28 89.04

0.4 0.731 2.297 3.14 -19.59 90.99

0.5 0.794 2.541 3.20 -19.77 92.54

0.6 0.882 2.828 3.21 -19.84 93.83

0.7 0.998 3.158 3.16 -19.81 94.87

0.8 1.142 3.529 3.09 -19.70 95.75

0.9 1.313 3.937 3.00 -19.51 96.27

1.0 1.509 4.378 2.90 -17.44 79.12
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52Fe, k1=1.0

k2 E(2+
1
) E(4+

1
) R4/2 Q(2+

1
) B(E2;2+

1
→ 0+

1
)

0.0 0.296 0.771 2.60 -20.68 92.28

0.1 0.312 0.854 2.74 -25.76 152.60

0.2 0.319 0.951 2.98 -27.16 168.80

0.3 0.353 1.081 3.06 -27.92 176.70

0.4 0.401 1.232 3.07 -28.48 182.40

0.5 0.461 1.397 3.03 -28.92 187.50

0.6 0.528 1.576 2.98 -29.32 192.60

0.7 0.604 1.768 2.93 -29.70 198.20

0.8 0.688 1.975 2.87 -30.07 204.70

0.9 0.781 2.197 2.81 -30.42 212.20

1.0 0.883 2.434 2.76 -30.76 221.10
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TABLE II: Results for k1=1.0 and changing k2 for yrast energies (MeV) of 2+ and 4+ levels, ratios

R4/2, quadrupole moments Q(2+
1
) (e · fm2) and reduced transition probabilities B(E2;2+

1
→ 0+

1
)

(e2 · fm4) for 28Si, 24Mg, and 52Fe.

28Si, k2=1.0

k1 E(2+
1
) E(4+

1
) R4/2 Q(2+

1
) B(E2;2+

1
→ 0+

1
)

0.0 4.886 6.039 1.24 4.52 44.58

0.1 4.798 6.019 1.25 6.07 48.05

0.2 4.654 5.979 1.28 7.79 51.52

0.3 4.452 5.918 1.33 9.66 55.05

0.4 4.192 5.833 1.39 11.60 58.69

0.5 3.875 5.721 1.47 13.52 62.73

0.6 3.510 5.576 1.59 15.35 67.49

0.7 3.112 5.392 1.73 17.02 73.42

0.8 2.705 5.165 1.91 18.49 80.88

0.9 2.320 4.909 2.12 19.74 90.06

1.0 1.987 4.658 2.34 18.79 81.93

24Mg, k2=1.0

k1 E(2+
1
) E(4+

1
) R4/2 Q(2+

1
) B(E2;2+

1
→ 0+

1
)

0.0 2.404 4.337 1.80 -7.29 27.61

0.1 2.380 4.372 1.84 -9.56 37.65

0.2 2.308 4.421 1.92 -11.81 48.48

0.3 2.198 4.472 2.03 -13.76 58.82

0.4 2.067 4.504 2.18 -15.32 67.86

0.5 1.932 4.499 2.33 -16.51 75.50

0.6 1.808 4.465 2.47 -17.40 81.77

0.7 1.702 4.423 2.60 -18.08 86.86

0.8 1.618 4.391 2.71 -18.58 90.91

0.9 1.554 4.375 2.82 -18.97 94.09

1.0 1.509 4.378 2.90 -17.44 79.12
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52Fe, k2=1.0

k1 E(2+
1
) E(4+

1
) R4/2 Q(2+

1
) B(E2;2+

1
→ 0+

1
)

0.0 1.020 2.295 2.25 -14.79 71.06

0.1 1.020 2.299 2.25 -16.42 82.66

0.2 1.015 2.306 2.27 -18.08 94.96

0.3 1.006 2.316 2.30 -19.75 107.90

0.4 0.993 2.327 2.34 -21.40 121.40

0.5 0.978 2.342 2.39 -23.02 135.40

0.6 0.960 2.359 2.46 -24.59 149.80

0.7 0.941 2.378 2.53 -26.13 165.10

0.8 0.923 2.399 2.60 -27.65 181.30

0.9 0.903 2.420 2.68 -29.18 199.60

1.0 0.883 2.434 2.76 -30.76 221.10
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TABLE III: Cumulative Number of Levels (NoL) of J = 0 up to energy 10 MeV for different

(k1, k2) combinations for 28Si, 24Mg and 52Fe found with the moments method. The column NoL

corresponds to the calculation of the moments method, while the column Renorm corresponds to

the renormalized level density (NoL up to 0.4).

shape case nucleus R4/2 NoL Renorm

deformed k1 = 1.0, k2 = 0.4 28Si 3.31 22 60

deformed k1 = 1.0, k2 = 0.5 28Si 3.33 17 54

deformed k1 = 1.0, k2 = 0.6 28Si 3.21 13 49

spherical k2 = 1.0, k1 = 0.9 28Si 2.12 5 34

deformed k1 = 1.0, k2 = 0.5 24Mg 3.20 10 24

deformed k1 = 1.0, k2 = 0.6 24Mg 3.21 8 21

spherical k2 = 1.0, k1 = 0.3 24Mg 2.03 6 18

deformed k1 = 1.0, k2 = 0.4 52Fe 3.07 236 6516

spherical k2 = 1.0, k1 = 0.0 52Fe 2.25 30 2617
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TABLE IV: Yrast energies of 2+, 4+ and 6+ (MeV), ratios R4/2, quadrupole moments Q(2+
1
)

(e · fm2) and reduced transition probabilities B(E2;2+
1

→ 0+
1
), B(E2;4+

1
→ 2+

1
), B(E2;6+

1
→ 4+

1
)

(e2 · fm2) for 28Si

λ 2+
1

4+
1

6+
1

R4/2 Q(2+
1
) B(E2;2+

1
→ 0+

1
) B(E2;4+

1
→ 2+

1
) B(E2;6+

1
→ 4+

1
)

0.0 0.964 3.197 4.110 3.32 -11.5 30.75 34.61 9.70

0.1 0.702 2.314 2.938 3.30 -12.14 34.80 6.22 3.46

0.2 0.469 1.410 2.447 3.01 18.74 89.30 109.60 0.10

0.3 0.521 1.771 3.257 3.40 18.63 83.56 105.80 0.06

0.4 1.041 2.699 4.624 2.59 17.36 64.08 100.40 0.16

0.5 1.793 3.857 6.252 2.15 15.42 54.32 94.61 7.77

0.6 2.529 4.777 7.739 1.89 13.1 50.94 72.65 52.32

0.7 3.203 5.280 8.973 1.65 10.7 49.24 45.16 38.08

0.8 3.815 5.587 9.959 1.46 8.41 47.74 32.07 30.52

0.9 4.373 5.826 10.492 1.33 6.35 46.21 25.30 11.96

1.0 4.886 6.039 10.842 1.24 4.52 44.58 21.07 6.97
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TABLE V: Yrast energies of 2+, 4+ and 6+ (MeV), ratios R4/2, quadrupole moments Q(2+
1
) (e·fm2)

and reduced transition probabilities B(E2;2+
1
→ 0+

1
), B(E2;4+

1
→ 2+

1
), B(E2;6+

1
→ 4+

1
) (e2 · fm2)

for 24Mg

λ 2+
1

4+
1

6+
1

R4/2 Q(2+
1
) B(E2;2+

1
→ 0+

1
) B(E2;4+

1
→ 2+

1
) B(E2;6+

1
→ 4+

1
)

0.0 0.596 1.667 3.507 2.80 -16.32 78.09 79.09 65.32

0.1 0.590 1.649 3.512 2.79 -18.02 82.34 93.06 79.36

0.2 0.548 1.620 3.504 2.96 -18.65 83.89 99.93 86.48

0.3 0.515 1.640 3.533 3.18 -18.87 83.64 102.70 88.61

0.4 0.547 1.766 3.642 3.23 -18.68 81.37 101.50 84.58

0.5 0.688 2.036 3.860 2.96 -17.97 76.60 95.45 73.21

0.6 0.951 2.433 4.201 2.56 -16.65 69.12 81.00 57.41

0.7 1.300 2.881 4.672 2.22 -14.71 59.51 58.57 42.26

0.8 1.683 3.339 5.267 1.98 -12.28 48.55 39.82 31.08

0.9 2.058 3.821 5.970 1.86 -9.68 37.37 28.94 23.99

1.0 2.404 4.337 6.761 1.80 -7.29 27.61 22.63 19.30
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TABLE VI: Yrast energies of 2+, 4+ and 6+ (MeV) states, ratios R4/2, quadrupole moments Q(2+
1
)

(e · fm2) and reduced transition probabilities B(E2;2+
1

→ 0+
1
), B(E2;4+

1
→ 2+

1
), B(E2;6+

1
→ 4+

1
)

(e2 · fm2) for 52Fe

λ 2+
1

4+
1

6+
1

R4/2 Q(2+
1
) B(E2;2+

1
→ 0+

1
) B(E2;4+

1
→ 2+

1
) B(E2;6+

1
→ 4+

1
)

0.0 0.296 0.771 0.960 2.61 -20.68 92.28 81.66 31.76

0.1 0.264 0.748 1.154 2.83 -25.27 149.20 173.90 58.55

0.2 0.246 0.763 1.340 3.10 -25.60 154.10 184.90 64.16

0.3 0.281 0.847 1.479 3.01 -25.02 148.00 181.30 88.09

0.4 0.347 0.975 1.649 2.81 -24.00 138.50 171.80 100.30

0.5 0.434 1.137 1.860 2.62 -22.70 127.90 159.50 100.10

0.6 0.535 1.327 2.111 2.48 -21.24 116.60 145.80 93.69

0.7 0.647 1.540 2.397 2.38 -19.68 105.10 131.40 86.89

0.8 0.766 1.773 2.717 2.32 -18.06 93.48 117.10 77.49

0.9 0.890 2.025 3.067 2.28 -16.42 82.01 103.20 68.40

1.0 1.020 2.295 3.444 2.25 -14.79 71.06 89.81 59.53
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TABLE VII: Cumulative Number of Levels (NoL) with J = 0 up to energy 10 MeV for different

values of λ for 28Si, 24Mg and 52Fe. The column NoL corresponds to the calculation of the moments

method, while the column Renorm corresponds to the renormalized level density (NoL up to 0.4

MeV).

28Si 24Mg 52Fe

λ NoL Renorm λ NoL Renorm λ NoL Renorm

0.0 32 67 0.0 38 44 0.0 1034 12853

0.1 42 75 0.1 35 40 0.1 673 10435

0.2 45 75 0.2 31 36 0.2 412 8278

0.3 35 63 0.3 28 33 0.3 249 6581

0.4 23 49 0.4 24 31 0.4 154 5284

0.5 15 38 0.5 20 28 0.5 99 4354

0.6 10 31 0.6 16 26 0.6 68 3746

0.7 7 27 0.7 13 24 0.7 50 3248

0.8 6 24 0.8 11 22 0.8 40 2942

0.9 5 23 0.9 9 20 0.9 34 2731

1.0 4 22 1.0 7 19 1.0 30 2617
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TABLE VIII: Cumulative Number of Levels (NoL) up to 10 MeV energy for spherical or deformed

cases which appear for various values of λ for 28Si, 24Mg, and 52Fe nuclei

shape case nucleus R4/2 NoL

deformed λ=0.0 28Si 3.32 32

spherical λ=0.5 28Si 2.15 15

deformed λ=0.4 24Mg 3.23 24

spherical λ=0.8 24Mg 1.98 11

deformed λ=0.2 52Fe 3.10 412

spherical λ=1.0 52Fe 2.25 30
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