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The spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined

through the spin projection as < J2
z >1/2 or equivalently for spherical nuclei, (<J(J+1)>

3
)1/2. It is

needed to divide the total level density into levels as a function of J. To obtain the total level density
at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also
needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass
with a super-conducting hamiltonian. Calculations have been compared with two commonly used
semi-empirical formulas. A need for further measurements is also observed. Some complications
for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric
ratio measurement is examined.

PACS numbers:

I. INTRODUCTION

Nuclear level density plays an important role in calcu-
lations of reaction cross sections and it is essential input
in different reaction codes. The most uncertain parame-
ter in level density calculations is the spin cutoff param-
eter σ determining the level density spin distribution.
Bethe [1] introduced the spin cutoff parameter into the
expansion for nuclear level density. He assumed that the
distribution of nuclear states as a function of Jz at a given
energy for a spherical nucleus had a Gaussian form.

ρs(U, Jz) =
ρst(U)√
2πσ

exp(
−J2

z

2σ2
) (1)

ρst(U) is the total density of states of the nucleus at an
energy U . σ is < J2

z >1/2 and is also a function of energy.
For a spherical nucleus, each level consists of (2J + 1)
degenerate states with −J <= Jz <= J .

ρL(U, J) = ρs(U, J)− ρs(U, J + 1)

≃ −dρs
dJ

|J=J+1/2

=
ρst(U)√

2π

J + 1/2

σ3
exp(

−(J + 1/2)2

2σ2
) (2)

where ρL(U, J) is the level density at excitation energy U
and spin J. There are a number of ways that the value of σ
and its energy dependence play a role in nuclear physics.
Many level density compilations are based on level count-
ing of s-wave resonances for neutron beams of low energy.
S-wave neutrons populate compound nuclei of spin 1/2 if
the target has spin 0 and (J ± 1/2) if the target has spin
J . To convert this partial level density to the total level
density, knowledge of σ is required. Changes in σ can also
affect both cross sections and angular distributions cal-
culated with Hauser-Feshbach codes [2]. The effects on
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angle-integrated cross sections are small, but the angular
distribution effects are large. Finally, isomeric ratio mea-
surements are quite sensitive to σ. As will be discussed
later, they also have a sensitivity to other parameters as
well.
There are two approaches to calculation of σ. The

semiclassical procedure is to introduce the moment of in-
ertia of the nucleus I. For the sphere of mass M and
radius R, this would be I = (2/5)MR2. In the semiclas-
sical model, the energy of rotation would be the square
of the angular momentum divided by twice the moment
of inertia.

(J + 1/2)2

2σ2
=

J(J + 1)h̄2

2Iθ
(3)

where θ is the nuclear temperature. θ =
√

U/a in the
Fermi-gas model. In an approximation of (J + 1/2)2 ≃
J(J + 1) (these two expressions differ by 1/4) the spin
cutoff parameter can be expressed as

σ2 =
Iθ

h̄2
=

2

5

MR2
0A

2/3

h̄2

√

U

a

=
2

5

mpR
2
0A

5/3

h̄2

√

U

a
(4)

M is the mass of the nucleus, mp is the mass of the proton
and the radius of the nucleus is R and is assumed to be

R = R0A
1/3 (5)

a is the Fermi-gas level density parameter. This form
assumes that the nucleus behaves like a classical ”rigid
body”.
An alternative expansion which is quantum mechanical

can also be obtained. Ericson [3] has shown that

n = gθ =
6

π2
a

√

U

a
(6)

where g is the single particle state density at the Fermi-
level and a = π2g/6, n is the number of excited nucleons
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and holes. The spin cutoff factor will be

σ2 = n < m2 >=
6

π2

√
Ua < m2 > (7)

Here < m2 > is the average angular momentum projec-
tion squared on the Z axis for single particle states at
the Fermi level. It is interesting to note that equation
(4) varies with a−1/2 while equation (7) varies with a1/2.
This appears paradoxical, since the first form will show
an increase in σ2 at a closed nuclear shell where a is re-
duced relative to neiboring nuclei. On the other hand the
second form Eq.7 would tend to decrease at a closed shell,
although if < m2 > should show a significant increase at
a closed shell this drop may be reduced or eliminated. A
recent paper has been based on the assumption that the
nucleus has ”half rigid body” moment of inertia [4]. The
result of this assumption is that the predicted behavior
of σ2 shows increases near A=90, 140, 208.
Since a normally increases roughly as A except near

closed shells, it might be thought that the forms Eq.4 and
Eq.7 might show a very different A dependence. This
is not the case. If we assume that a equals αA then
equation (4) becomes

σ2 =
2

5

mpR
2
0A

5/3

h̄2

√

U

αA

=
2

5

mpR
2
0A

7/6

h̄2

√

U

α
(8)

Similarly, Eq.7 would become

σ2 =
6

π2

√
UAα < m2 > (9)

If < m2 > increases with A2/3, the dependence on A
and U is the same for Eqs. (8) and (9). This is es-
sentially a question of whether a nucleus behaves like a
rigid body. Clearly, quantum mechanical effects causing
a dependence of < m2 > which is not proportional to
A2/3 will destroy the rigid body behavior, but deviation
of a from αA will also make Eq.(8) and Eq.(9) behave
differently.
Table I shows < m2 > values for the lowest - lying

orbits in the nucleus. Note very substantial fluctuations
between the individual < m2 > values for neighboring or-
bitals. In table II, the < m2 > values are averaged over
major shells. These averages do increase as the num-
ber of shells increases, but note that these averages when
divided by A2/3 do show a tendency to approach a con-
stant.
In Ref.[4], an alternative derivation including an es-

timate for < m2 > based on a Fermi-gas average and
an empirical form for a is presented in Eq.(58). We will
compare this result with our microscopical calculations
in the following section.
The purpose of this paper is to present calculations of

σ2 based on a superconducting hamiltonian as a function
of excitation energy and mass number. These will be

compared with rigid body predictions, formulas derived
from fits to low-energy σ values and with measured values
at somewhat higher energies.

II. CALCULATIONS

A. Semi-empirical models

It was pointed out in section 1 that two alternative
forms exist for σ2 which have a different dependence on
the level density parameter a. The two have been com-
pared in Ref.[4, 5]. If the nuclear radius is assumed to
have a value R = R0A

1/3 where R0 = 1.25fm, then
equation (8). becomes

σ2 = 0.0151A7/6
√
Uα−1/2 (10)

Similarly, Eq.9 can be shown to be

σ2 = 0.6085
√
UAα < m2 > (11)

If the nucleus is assumed to have a rigid-body moment
of inertia, then equating Eq.10 and Eq.11 gives

< m2 >=
0.0151

0.6085α
A2/3 = 0.1985A2/3 (12)

If we assume α = 1/8, this turns out to be between the
estimates for < m2 > quoted in Ref.[6] and Ref.[7]. In
Ref.[7] it is proposed that the constant in Eq.12 should
be 0.146, while in Ref.[6] it is concluded that the early
estimate included all levels and that focusing on those
near the Fermi-level yielded a value of 0.24. This indi-
cates that the value in Eq.12 is in a proper range, showing
rough consistency with a rigid-body moment of inertia.
The values tabulated in Table II are also consistent with
the value in Eq.12 and with early estimates.
This leaves open the question of whether deviations

from this rigid body limit are important below energies
of 10 MeV. Two recent references in which a simple form
for σ2 is derived from data [4, 8] show a general fit to σ
values over a range of A but the experimental values show
some dispersion about the smooth line. This is no doubt
due in part to the fact that the values have been obtained
from tabulated levels at low energy. This technique may
only be used at low energy where the level scheme is
complete and may thus show fluctuations because of the
small number of levels included. Another study [9] pro-
duced a fit to the spin-cutoff parameter (also based on
information at low excitation energy) which has energy
and A dependence which does not agree with energy and
A dependance of rigid-body model.
In the fits in Ref.[8, 9], there are energy shifts in the

excitation energy making the σ2 values largest for odd-
odd nuclei in a given mass region, slightly lower for odd
A nuclei at the same energy in the same A range and
smaller still for even-even nuclei.
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TABLE I: < m2 > values for individual orbits

Orbit s1/2 p3/2 p1/2 d5/2 s1/2 d3/2 f7/2 p3/2 f5/2 p1/2 g9/2

< m2 > 0.25 1.25 0.25 2.917 0.25 1.25 5.25 1.25 2.917 0.25 8.25

TABLE II: < m2 > values averaged over major shells

Shell Orbits < m2 > < m2 > /A2/3

I s1/2 1/4

II p3/2p1/2 0.9167 0.1444

III d5/2s1/2d3/2 1.9167 0.1639

IV f7/2p3/2p1/2f5/2 3.25 0.1750

V g9/2d5/2s1/2d3/2g9/2 4.9167 0.1824

VI h11/2f7/2p3/2p1/2f5/2h9/2 6.7167 0.1875

Figure 1 presents σ2 values as a function of U and A
for the rigid body model. These have been evaluated for
a radius of R = R0A

1/3 where R0 = 1.25fm. Further, the
a is assumed to be a = A/8. If shell effects are included
in a, there will be enhancements of 30-40% in σ2 at shell
closures. Also, Figure 1 present predictions of the forms
from Ref.[8] and Ref.[9]. For both Ref.[8] and Ref.[9] ,
there is an energy shift based on the ground state masses.
In each case, the shift is close to zero for odd-A targets,
a reduction in excitation energy is found for even-even A
nuclei and an enhancement in effective energy for odd-
odd nuclei. Thus, the σ2 values are typically reduced by
35% at 2 MeV for A=20 and 15% for A=100 at 2 MeV
for the results of Ref.7. At 10 MeV the drop is 15% and
8% respectively. The parameterizations of Ref. [9] have
changes which are about 3/4 as large. In each case results
for odd-odd nuclei are enhanced by the same factor.
The authors of Ref.[4] propose a half-rigid body value

for σ2. This would correspond to half magnitude shown
in Fig. 1 although the modulations in A near closed shells
produce additional peaks in these regions.
The predictions of Refs. [4, 8, 9] do not provide tight

constraints on predicted values for σ2 at low energy.
None of the three fits was constrained to approach the
rigid body value at higher excitation energy. This is be-
cause the level density at low excitation energies is small
enough that oscillations make it difficult to determine
systematic changes in σ as a function of A.

B. Microscopical model

Calculated spin cutoff parameters were obtained using
a formalism proposed by Sano and Yamasaki [10] and
Morretto [11]. The nucleus is assumed to have a BCS
(superconductor) Hamiltonian.

H =
∑

k

ek(a
+
k ak + a+−ka−k) (13)

−G
∑

kk′

a+k a
+
−k′aka−k′

Where ek is the energy of the k-th doubly degenerate
single particle level and a+k and ak are the creation and
annihilation operators for the k-th particle state. Ek =
[(ek −λ)2 +∆2]1/2 where Ek is the quasi-particle energy
and ∆ is the pairing gap. The following equations must
be satisfied at each β value, where the β is a reciprocal
of the temperature.

2

G
=

∑

k

tanh(1
2
βEk)

Ek
(14)

N =
∑

k

(1− ek − λ

Ek
)tanh(

1

2
pEk) (15)

Each of these equations is separately solved for protons
and neutrons. Finally

σ2 =
1

2

∑

k

m2k

cosh2(βEk/2)
(16)

This equation is separately summed for protons and
neutrons and two sums are combined. Finally, the energy
E is

E =
∑

k

ck[1−
ek − λ

Ek
tanh(βEk/2)] (17)

This equation also consists of a proton and neutron
sum. G is a constant which is determined at zero tem-
perature to give a solution to Eq.14 of ∆ = 12/

√
A. As

the temperature is increased, solution of Eq.14 with the
fixed value of G gives a value for ∆ which decreases until
at and above the critical temperature the only solution
to Eq.14 is for ∆ = 0.
Single particle energies were taken from Refs.[12–14].

Calculations were done for A=20,...,100 in steps of ten
and A=100,...., 240 in steps of 20. For each A the Z and
N were chosen to be even and such that they are in the
valley of stability. In general, the σ2 values were about
30% higher for adjacent odd-A at low energy (about 2
MeV) and 15% higher at 10 MeV for A about 30. At
A=200, the differences are 15% and 8%, respectively. In
each case, the σ2 for odd-odd nuclei was higher by about
twice these amounts than for even-even nuclei of similar
mass.
σ values are shown in Fig. 1 under calculated points.

For each A the σ2 values were calculated for each single
particle set and then averaged. The dispersion for low-A
was about 25% but more typically 15% for large A. As the
energy is increased, the dispersion dropped to about half
of these values. Exceptional cases were A=160,180,220
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and 240. In these cases the single particle energies of
Ref.[12] were used with the appropriate deformation pa-
rameters.
Note that the values tend to oscillate as a function of

U and A relative to the rigid body values. As the energy
approached 20 MeV, the values tended to converge to the
rigid body values. At this energy the differences between
even-even, odd-A and odd-odd nuclei in a given mass
region were about 5-10%.
The behavior shown in Figure 1 is consistent with the

following conclusions:

• There is a tendency for σ2 values at energies of
10 MeV and below to reflect the shell structure of
nuclei. In some regions of the A range, the σ2 values
are low relative to the rigid body value while in
other regions the spin cutoff parameter is above the
rigid body.

• Particularly at low energy (U<6 MeV), even-even
nuclei have the lowest spin cut-off factors, with odd-
A somewhat above them and odd-odd nuclei are
highest of all. As A and U increase, these differ-
ences diminish.

• There is a general tendency for the spin cut off
parameter to approach the rigid body value at 20
MeV

• There is no clear tendency for σ to be larger for
closed shell nuclei then for neighboring nuclei. At
low energies, σ values tend to have minima at
A=30, 60,90,140 and 200. Of these minima, A=30
is not a near closed shell but is where the s1/2 or-
bital is at the Fermi-level. The other values for A
listed for minima are at or near closed shells but one
closed shell at A of about 120 has a broad maxi-
mum. The microscopic model predicts a drop in σ2

at magic numbers because of the a1/2 factor, but if
< m2 > increases at this point, the σ2 could show
only slight modulation or could increase.

In Fig.2, we present a comparison of our calculated
microscopic σ values with those obtained from Eq.(58)
of Ref. [4]. Generally good agreement is seen, but the
present results show sharper structure where minima are
predicted (A ∼ 30, 60 and 200). This difference reflects
the fact that the present calculations include shell model
values for < m >2 while those of Ref.[4] are based on
Fermi-gas averages for < m >2 as a function of A.
Other techniques have also been used to calculate the

spin cutoff parameter. Authors have used [5, 15–20] tech-
niques which use the full two-body interaction to cal-
culate both level densities and spin cutoff parameters.
These have been concentrated in a mass region below
A=65 but at least one paper presents calculations near
A=160 [20].
Ref.[5] and [15] focus on spin cutoff parameters for nu-

clei near A=30. Both the measurements [15] and two
body model calculations in Ref. [5]-[15] show a tendency

for σ not to increase at given U as fast with A near A=30
as the rigid body prediction (A7/6). This agrees with
the predictions in this mass region from calculations pre-
sented in Fig. 1. Also, the calculations for 20Ne [16],
24Mg [17] and 28Si [21] show a slower rise with A at low
U than the rigid body model predicts. Spinella and John-
son [18] present two body calculations of level densities
and spin cutoff parameters between mass 22 and 47 which
show magnitudes for spin cutoff parameters similar to
those in Fig. 1. In Ref.[19], spin cutoff parameters for Fe
isotopes are presented, while in Ref.[20], deformed nuclei
are calculated. These studies will show how important
two-body forces are in determining the spin distribution
of the nuclear level density.
The present calculations use single particle states in

a deformed bases for nuclei which are deformed. This
modifies the σ2 values from what would be obtained if
spherical levels had been used. There is an additional
change in σ2 caused by the addition of rotational bands.
This correction was about 15% but was not included in
the quoted values. As has been shown in Ref.[22], for de-
formed nuclei a modified equation expressing the relative
spin distribution rather than Eq.2 must be used to cal-
culate the J distribution. The revised formula produces
changes larger than the above σ2 correction for deformed
nuclei.
Other work [4] has included level density enhancement

factors for both vibrational and rotational levels. While
both of these factors produce a significant enhancement
in the level density, the forms traditionally used [4] only
evaluate the enhancement factors as a function of excita-
tion energy. Since they do not vary with J, they leave σ2

unchanged. A more recent treatment of the rotational
enhancement [22] not only modifies σ2 somewhat with
the inclusion of the rotational levels but also changes the
basic formula relating σ2 to the J distribution of the lev-
els.

III. EXPERIMENTAL DATA

A. Angular distributions

In addition to the values obtained from resolved levels,
spin cutoff parameters can be obtained from the angular
distributions of compound nuclear reactions.
Four papers which report values for σ2 from reaction

angular distributions are based on α-induced reactions
[2, 15, 23, 24].
Refs. [2, 15, 23] present σ values deduced from (α, n)

angular distribution measurements while Ref.[24] focused
on (α, α′), (α, p) and (p, α). In principle, there is no rea-
son why more targets could not be studied with these re-
actions. Compound nuclear reactions of the types (p, p′),
(n,n’) and (p,n) show small anisotropy and are not useful
for obtaining σ values. As A increases beyond 100, the
anisotropy for α-particle reactions is reduced. It may be
necessary to study reactions induced by 6Li, 7Li or 12C
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projectiles to obtain more information about σ values
beyond A=100.
Examination of the σ values in Fig. 1. shows gen-

eral consistency between the various measurements. Near
A=50, the σ values are somewhat above the rigid body
estimate, while for A between 50 and 65 the σ values fall
below the rigid body estimate at excitation energy of 8
MeV. It is also found that the one value near A=118 (near
Z=50 closed shell) the σ value tends to be lower than the
rigid body value. This contradicts the rigid body model
predictions that closed shell nuclei will have σs which are
above the rigid body values. The same conclusion may
be drawn from the data at Z=28, where the σ values tend
not to be above the rigid body estimates.
The values of σ2 presented in [2, 15, 23, 24] are subject

to an error of 15-20%. Of this, a substantial part comes
from the fitting of the angular distributions. Not only
statistics but also possible non-compound reactions con-
tribute to the error. More subtle effects come from the
fact that each study only looked at one reaction chan-
nel for each compound nucleus. There is some coupling
between the σ values inferred for the (a,a’) reaction and
σ values assumed for final nuclei populated by neutrons
and protons. There is an advantage to using the (a,n) re-
action for these studies. Because the neutron decay chan-
nel is usually dominant, the σ values derived from (a,n)
studies are less affected by assumptions made about the
σ values in the other channels than is the case for (a,a’),
(a,p) and (p,a) reactions. There seems to be a general
consistency between the values obtained in four studies.
Clearly, additional data would be valuable.
The results from Monte-Carlo Shell Model calculations

presented in [19] for 55Fe are compared with the data
of Ref.[2] (shown in Fig. 1). The agreement is gener-
ally good, but the data show a slightly lower slope in
4 ≤ U ≤ 8 MeV region. The present microscopic calcu-
lations are also close to the measurements but also show
a slightly steeper slope than the measurements. There
appears to be some sensitivity in the microscopic results
to the f7/2 - p3/2 single particle energies splitting. This
could also affect the calculations of Ref.[19], although the
uncertainties on the measurements Ref.[2] do not rule out
the slightly steeper slope of the two calculations.

B. Isomeric ratios

Experimental values of σ have also been deduced from
isomeric ratios. These are ratios between the cross sec-
tions for the populations of an isomeric states to the
populations of the ground state. The isomeric state
has a long lifetime because it has a J value which dif-
fers substantially from low-lying states which requires a
γ-transition of high multipolarity. Changing σ causes
there to be more large J states if σ is increased, while
the opposite is true if the σ is reduced. One of the
early compilations of σ values deduced by calculating
isomeric ratios which fit measurements was provided by

Ref. [25]. A more recent study which includes refer-
ences to many other recent papers on isomeric ratios has
been provided by Ref. [26]. Although the calculations
are quite sensitive to the spin cutoff parameter, there
are other parameters which influence the calculated ra-
tios significantly. It is clearly important to include M1
and E2 γ-strength in addition to E1 strength in calcu-
lating the γ-decays. Both the integral and the energy
dependence of each γ-strength function influenced cal-
culations. Similarly, there is often a propensity for the
levels at low excitation energy to be predominantly of
one parity [8]. This will tend to reduce the contribution
of E1 decays and make M1 and E2 decays more impor-
tant. Calculations of isomeric ratios have not always in-
cluded this parity ratio effect. There also is a need to
determine wether the reaction mechanism is compound
nuclear or includes an important contribution from pre-
equilibrium processes. [27]. Finally, many isomeric ratio
measurements have been made for deformed nuclei. It
has recently been shown [22] that for deformed nuclei
a modified HF formula is needed and that the previous
formalism substantially overestimates the population of
large J levels relative to small J levels. It should also be
noted that for deformed nuclei Ref.[22] proposes that use
of the traditional spin distribution Eq. 2 causes errors.
The values for σ2 in Ref. [25] show a reasonable consis-

tency with the present calculations for A < 100. Above
this value they are consistently smaller than the present
calculations. Because nuclear temperature drops at a
give energy as A increases, measurements reported in
Ref. [25] (at 12 ≤ En ≤ 16 MeV) were probably more
affected by pre-equilibrium components for large A than
for small A. Analyzing the ratios which have contribu-
tions from pre-equilibrium reactions as if there are en-
tirely compound gives a σ which is too small. Similarly,
some of the ratios at large A were for deformed nuclei.
If these are analyzed with a spherical Hauser-Feshbach
code, the results of Ref.[22] indicates the σ values will be
too small.

C. Applications

As has previously been pointed out, a very important
use of the spin cutoff parameter is in the conversion of
the neutron s-wave resonance count at the binding energy
to the total level density. If we calculate the ρ(U, 1/2+)
from 2 and separately sum 2 over J and parity, we obtain
the ratio of 2σ2, where the 2 comes from the parity sum
and the σ2 term from the J sum.
There are three special concerns in the use of this equa-

tion. At low energies the parity distribution is typically
asymmetric. A fit to the parity ratio [8] at low energy
shows that this asymmetry vanishes as the energy in-
creases but could still be a concern at the binding energy
if A is less than 90. A further more subtle concern should
also be examined. Calculations of the nuclear level den-
sity made by Goriely, Hilaire and Koning [28] indicate
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that even when the total number of levels of each parity
are equal at a given energy, there may still be a spin frac-
tionation, for a few MeV, i.e. the σ2 values may not be
the same for positive and negative parity levels. Finally,
the formula in Eq.2 was derived specifically for a spherical
nucleus. It has been shown [22] that the spin distribution
for a deformed nucleus does not have the same functional
form as for the spherical nucleus. This is different than
has normally been assumed [29], which has the number
of levels of each J for a deformed nucleus multiplied by
the same factor σ2

⊥ relative to the spherical results. The
corrected formulas show a rotational enhancement which
is larger for large J but decreases with K for the given J
(Eq.(20) in [22] ). It also depends on both σ2

⊥ and σ2
‖.

The overall effect is to reduce enhancement somewhat
below σ2

⊥ for the sum. On the other hand, since the
measured densities are for low J the total level density
derived from resonance measurement will be increased.
Finally, the new form does not have < J2

z >= 1
3
J(J + 1)

unlike the previous results. This relation is only valid for
spherical nuclei.
Some recent measurements [30, 31] have deduced the

level density for a specific spin and parity at a given exci-
tation energy for specific nuclei. These measurements are
analogous to neutron s-wave resonance measurements. If
values of σ are available, they can give the total level
density. Until another measurement can give the density
of levels of a different J for that nucleus, they do not yield
values for σ.
The recent study of Koehler et al [32] finds levels with

a range of spins and both parities for 96Mo. In this case,
the focus of the work was γ-strength distributions and
the authors do not give a summary of the number of
levels for each J and π, precluding of calculations of σ.
These measurements [30–32] are obviously of great

value in comparing with microscopic level density cal-
culations even without the σ values.

IV. SUMMARY

An examination of the predictions of the rigid body
model and the microscopic model shows that the condi-
tions for convergence of the two are met at higher en-
ergies. For energies near the neutron binding energy, it
appears that quantum effects reflecting the spins of the
individual single particle orbits have not yet been aver-
aged out. This leads to spin cutoff factor values which
in specific A regions are above or below rigid body val-
ues. Comparison with measured values shows that, de-
spite the limited number of measurements, some indi-
cation of the oscillation of sigma values about the rigid
body value at the binding energy is seen. Some nuclei
have been studied using a two-body Hamiltonian. Again,
these cases are limited but there seems to be good gen-
eral agreement with data and with microscopic model
calculations.
It is noted that more data are needed. Further, reanal-

ysis of neutron resonance data for deformed nuclei should
be undertaken using a corrected factor to convert s-wave
resonance level density to the total level density.
Finally, values for σ obtained from isomeric ratios

should be re-examined. Some earlier publications do not
include M1 and E2 γ -decays, parity ratio differences in
level densities, pre-equilibrium reactions or were analyzed
with a spherical Hauser-Feshbach code even though the
nucleus was deformed.
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FIG. 1: Comparison of experimental spin cutoff parameters from Refs.[2, 23] with calculations based on different models:
Rigid-body, Al-Quarishi [8], Egidy2009 [9], microscopical calculations from this work. Error bars for experimental points are
typically 15% in σ2.
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A. Marcinkowski, Phys. Rev. C 49, R2885 (1994).
[28] S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C

78, 064307 (2008).
[29] A. Bohr and B. R. Mottelson, Nuclear Structure (W. A.

Benjamin, New York, 1969).
[30] I. Poltoratska, R. W. Fearick, A. M. Krumbholz,

E.Litvinova, H. Matsubara, P. von Neumann-Cosel, V. Y.
Ponomarev, A. Richter, and A. Tamii, Phys. Rev. C 89,
054322 (2014).

[31] Y. Kalmykov, C. Ozen, K. Langanke, G. Martinez-
Pinedo, P. von Neumann-Cosel, and A. Richter,
Phys.Rev.Lett. 99, 202502 (2007).

[32] P. E. Koehler, A. C. Larsen, M. Guttormsen, S. Siem,
and K. H. Guber, Phys. Rev. C 88, 041305 (2013).


