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We present a generator-coordinate calculation, based on a relativistic energy-density functional,
of the low-lying spectra in the isotopes 150Nd and 150Sm and of the nuclear matrix element that
governs the neutrinoless double-beta decay of the first isotope to the second. We carefully examine
the impact of octupole correlations on both nuclear structure and the double-beta decay matrix
element. Octupole correlations turn out to reduce quadrupole collectivity in both nuclei. Shape
fluctuations, however, dilute the effects of octupole deformation on the double-beta decay matrix
element, so that the overall octupole-induced quenching is only about 7%.

PACS numbers: 21.60.Jz, 24.10.Jv, 23.40.Bw, 23.40.Hc

I. INTRODUCTION

The nucleus 150Nd has been the active isotope in
double-beta (ββ) decay experiments [1], and may be
again in the future [2]. It has N = 90 neutrons and
is part of a set of isotones in which nuclear structure
changes rapidly as neutrons are added or removed. Ref.
[3] showed that the low-lying states of 150Nd and other
N = 90 isotones are close to the predictions of the X(5)
model, which describes the critical point of a first or-
der phase transition from spherical harmonic vibrator to
axially-deformed rotor. A significant amount of work on
nuclear phase transitions in the N ≃ 90 isotones fol-
lowed this discovery [4–11]. We concern ourselves here,
however, with a different aspect of structure in 150Nd: oc-
tupole correlations, suggested by the observation of low-
lying negative-parity states and fast E3 transitions [12–
14]. Refs. [15–21] applied a wide variety of models with
octupole shape degrees of freedom to nuclei with N ≃ 90.
The models indicated that the proton 1h11/2–2d5/2 and
neutron 1i13/2–2f7/2 orbitals near the Fermi levels are re-
sponsible for the strong octupole correlations. And very
recently the authors of Refs. [22, 23] used the sdf inter-
acting Boson model (IBM), with Hamiltonian parameters
determined from self-consistent mean-field calculations,
to successfully describe the low-lying states of N ≃ 90
nuclei. These studies imply that the low-lying states of
150Nd are dominated by the quadrupole-octupole collec-
tive excitations and that the EDF approaches provide
good basis states for them.

The sdf IBM calculation [22, 23] can be regarded —
very roughly speaking — as something like an EDF-
based shell-model calculation with the model space trun-
cated to states constructed from nucleon pairs with an-
gular momentum J = 0, 2, and 3. It obviously con-
tains correlations beyond those of mean-field theory. In
this paper, we carry out a symmetry-projected beyond-
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mean-field calculation, using the Generator Coordinate
Method (GCM) to study the low-lying states of 150Nd
and 150Sm and to quantify the effects of octupole cor-
relations on the matrix element that governs neutrino-
less double-beta (0νββ) decay from the ground state of
the first to that of the second. Our starting point is
a self-consistent relativistic mean-field (RMF) calcula-
tion [24–27] with constraints on both quadrupole and
octupole mass moments, part of a framework that has
already been used to study static octupole deformation
in nuclear ground states [19, 28–31]. The GCM approach
we take here (also known as multi-reference covariant
density-functional theory) allows us to go beyond mean-
field theory, however, by including dynamical correlations
associated with symmetry restoration and shape fluctu-
ations [32–38]. Octupole shape fluctuations [39, 40] have
not yet been studied extensively. Previous work on the
ββ decay of 150Nd has shown that the matrix elements
are sensitive to quadrupole deformation [41–48]. It is the
effect of octupole correlations that we address here.
This paper is organized as follows: Section II briefly

presents the RMF theory that we use to generate refer-
ence states, the GCM and several projection techniques
that we apply to nuclear collective quadrupole and oc-
tupole excitations, and the formulae for computing the
matrix elements of the operator responsible for 0νββ de-
cay. Section III presents our results for the structure of
low-lying states in 150Nd and 150Sm, and for the 0νββ
matrix elements, which we compare with those of pre-
vious studies that neglect octupole degrees of freedom.
Section IV summarizes our findings.

II. THE MODEL

A. Generating mean-field reference states in

collective coordinate space

The first step in the GCM procedure is to generate a
set of collective reference (or basis) states |q〉. We do
so by carrying out constrained mean-field calculations
based with a relativistic point-coupling energy-density
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functional (EDF) [49–51]:

ERMF =

∫

dr ERMF[ρ, j] , (1)

where ERMF is defined as

ERMF[ρ, j] =
∑

k,τ

v2k,τ ψ̄k,τ (r) (−iγ∇+m)ψk,τ (r)

+
α0

2
ρ2 +

β0
3
ρ3 +

γ0
4
ρ4 +

δ0
2
ρ△ρ

+
α1

2
jµj

µ +
γ1
4
(jµj

µ)2 +
α11

2
j̃µj̃µ

+
δ1
2
jµ△j

µ +
δ11
2
j̃µ△j̃µ

+
α10

2
ρ̃2 +

δ10
2
ρ̃△ρ̃+

1

4
e(jµ − j̃µ)A

µ . (2)

Here τ = 1 (neutron) or −1 (proton), ψk,τ is the Dirac
wave function for the kth nucleon with isospin τ , and
Aµ is the electromagnetic field. The functional con-
tains eleven constants α, β, γ and δ. The local isoscalar
and isovector densities ρ and ρ̃, and the corresponding
isoscalar and isovector currents jµ and j̃µ are

ρ(r) =
∑

k,τ

v2k,τ ψ̄k,τ (r)ψk,τ (r) , (3a)

ρ̃(r) =
∑

k,τ

τ v2k,τ ψ̄k,τ (r)ψk,τ ′(r) , (3b)

jµ(r) =
∑

k,τ

v2k,τ ψ̄k,τ (r)γ
µψk,τ (r) , (3c)

j̃µ(r) =
∑

k,τ

τ v2k,τ ψ̄k,τ (r)γ
µψk,τ (r) . (3d)

These quantities are calculated in the no-sea approxima-
tion, i.e. with the summation in Eqs. (3a) – (3d) running
over all states with v2k,τ > 0, where the v2k,τ is the oc-

cupation probability for the kth nucleon of type τ in the
BCS wave function

|q〉 =
∏

k>0,τ

(uk,τ + vk,τ c
†
k,τ c

†

k̄,τ
)|0〉 . (4)

The numbers uk,τ and vk,τ obey u2k,τ + v2k,τ = 1. The

operator c†k,τ creates a nucleon of type τ in the single-
nucleon state k. The corresponding spinor ψk,τ is deter-
mined by the variational principle

δ〈q|Ĥ −
∑

τ

λτ N̂τ −
∑

λ=1,2,3

Cλ(Q̂λ0 − qλ)
2|q〉 = 0 , (5)

with the Lagrange multipliers λτ fixed by the constraints
〈q|N̂1|q〉 = N and 〈q|N̂−1|q〉 = Z. The deformation pa-
rameters βλ (λ = 2, 3) are related to the mass multipole
moments by

βλ ≡
4π

3ARλ
qλ, R = 1.2A1/3 , (6)

with A representing the mass number of the nucleus un-
der consideration.
We iteratively solve the Dirac equation derived from

(5) by expanding the Dirac spinors ψk,τ in a basis of
single-particle oscillator states within 12 shells [52]. As
Eq. (4) indicates, we treat pairing correlations in the
BCS approximation, with a density-independent zero-
range pairing interaction [53]. We always employ the rel-
ativistic energy density functional PC-PK1 [51]. Previ-
ous symmetry-projected GCM studies [7, 46] have shown
that the low-lying states produced by the PC-PK1 and
the PC-F1 [50] are close to each other in energy, suggest-
ing that reasonable changes in the particle-hole struc-
ture of the energy-density functional will not produce
major changes in low-lying structure. The pairing func-
tional, however, has been shown to have a significant
effect in 150Nd, on both in its collective structure [54]
and its matrix element for neutrinoless double beta de-
cay [46]. Here, as in Ref. [46] we choose to fit the pairing
strengths to the average pairing gaps produced by a sep-
arable finite-range pairing force at the mean-field energy
minimum [55]. The procedure leads to pairing gaps that
are similar to those obtained both from the Gogny func-
tional and experiment.

B. Symmetry restoration and configuration mixing

We construct physical state vectors |Jπ
α 〉 by superpos-

ing projected mean-field reference states:

|Jπ
α 〉 =

∑

q

fJπα
q |JMπNZ; q〉 , (7)

where |JMπNZ; q〉 ≡ P̂ J
M0P̂

N P̂ZP̂ π|q〉, with the “0” in
the first projector corresponding to the intrinsic quan-
tum number K (which will be zero for all our states)
and the collective coordinate q standing for the intrinsic
deformation parameters (β2, β3) of the reference states.

The P̂ ’s are projection operators onto states with well-
defined angular momentum J and its z-component M ,
parity (π = ±), and neutron and proton number (N,Z)
[56]. [N , Z, and K are implied on the left-hand side of
Eq. (7)]. The weight functions fJπα

q , where α is a sim-
ple enumeration index, are solutions to the Hill-Wheeler-
Griffin equation [57, 58]

∑

q′

[

H
Jπ
q,q′ − EJπ

α N
Jπ
q,q′

]

fJπα
q′ = 0 , (8)

where the Hamiltonian kernel H Jπ
q,q′ and the norm kernel

N Jπ
q,q′ are given by

{

H

N

}Jπ

q,q′
= 〈q|

{

Ĥ
1

}

P̂ J
00P̂

N P̂ZP̂ π|q′〉 , (9)

To solve Eq. (8), we first diagonalize the norm kernel N

and then use the non-zero eigenvalues and corresponding
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eigenvectors to construct the “natural basis” [36, 56, 59].
We re-diagonalize the Hamiltonian in that basis to obtain
the states |Jπ

α 〉 and the energies EJπ
α .

Because we begin with an energy functional rather
than a Hamiltonian, we need a prescription for the off-
diagonal matrix elements of H . Following standard
practice, we simply replace the diagonal density in the
functional by the transition density. Though the pre-
scription brings with it spurious divergences and “steps”
[60, 61], it does not produce an unresolvable ambigu-
ity when used together with the relativistic EDF in Eq.
(1), which contains only integer powers of the density.
We include exchange terms but avoid numerical insta-
bilities in particle-number projection at the gauge angle
φ = π/2 by setting L to 9 in Fomenko’s expansion [62].
Refs. [32, 36, 59, 63, 64] contain detailed discussions of
beyond-mean-field calculations with energy-density func-
tionals.

C. Nuclear matrix element for 0νββ decay

The 0νββ decay nuclear matrix element is

M0ν =
4πR

g2A(0)

∫ ∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

〈0+F |J
†
µ (x1)|m〉〈m|J µ†(x2)|0

+
I 〉

q + Em − (EI + EF )/2
, (10)

where J †
µ is the charge-changing nuclear current operator

[65] and q is the momentum transferred from leptons to
nucleons. The nuclear radius R = 1.2A1/3 makes the ma-
trix element dimensionless. In the closure approximation
and with the GCM state vectors from Eq. (7) as ground
states |0+I/F 〉 of the initial and final nuclei, we obtain

M0ν =
∑

qI ,qF

f
0+
I

qI f
0+
F

qF 〈qF |Ô
0ν P̂ J=0

00 P̂N P̂ZP̂ π=+|qI〉 ,

(11)
with the transition operator given by

Ô0ν =
4πR

g2A(0)

∫

d3q

(2π)3

∫ ∫

d3x1d
3x2

eiq·(x1−x2)

q(q + Ed)

× [J †
µ (x1)J

µ†(x2)] , (12)

and Ed set to 1.12A1/2 ≃ 13.72 Mev [66].
The operator [J †

µ (x1)J
µ†(x2)], when Fourier trans-

formed, contains the terms [46],

V V : g2V (q
2)

(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

(13)

AA : g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

AP : 2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

PP : g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

MM : g2M (q2)

(

ψ̄
σµi
2mN

qiτ−ψ

)(1) (

ψ̄
σµj

2mN
qjτ−ψ

)(2)

,

where τ− is the isospin lowering operator that changes
neutrons into protons, σµν = i

2 [γµ, γν ], and V,A, P,M
denote the vector, axial vector, pseudoscalar, and mag-
netic pieces of the one-nucleon current. Following Ref.
[67], we take the form factors gV (q

2), gA(q
2), gM (q2),

and gP (q
2) to be

gV (q
2) =

gV (0)

(1 + q2/Λ2
V )

2
, (14a)

gA(q
2) =

gA(0)

(1 + q2/Λ2
A)

2
, (14b)

gP (q
2) = gA(q

2)
2mN

q2 +m2
π

(1−
m2

π

Λ2
A

), (14c)

gM (q2) = (µp − µn)gV (q
2), (14d)

with gV (0) = 1.0, gA(0) = 1.254, µp − µn = 3.70, Λ2
V =

0.710 (GeV)2, ΛA = 1.09 GeV, mN = 0.93827 GeV and
mπ = 0.13957 GeV. For the sake of simplicity, we neglect
short-range correlations.
We include, alongside the generator coordinates from

Ref. [46], the octupole deformation parameter β3. The
parity breaking (and subsequent projection) and the
larger number of reference states caused by the inclu-
sion of octupole deformation increase computing time but
otherwise cause no problems in our calculation. We ini-
tially include 50 reference states with β3 > 0. From this
set, 29 natural states turn out to sufficient to include
essentially all the contributions of the original 50 states
to both structure properties and 0νββ decay matrix ele-
ments.

III. RESULTS AND DISCUSSION

Figure 1 shows the mean-field and quantum-number-
projected energy surfaces, as well as the collective
wave functions |gJα(q)|

2, for the ground states of 150Nd
and 150Sm. The collective wave functions, defined

as gJπα (q) ≡
∑

q′

[

N Jπ
q,q′

]1/2
fJπα
q′ , provide information

about the importance of deformation in the state |Jπ
α 〉.

The mean-field energy surfaces in both nuclei around the
quadrupole-deformed minima with β2 around 0.2 are al-
most flat in the octupole direction. This kind of sur-
face often signifies a critical point symmetry [5, 7, 11].
Our surface, however, is flat only before projection of the
states that determine it onto the subspace with Jπ = 0+

and well-defined N and Z; after projection it shows pro-
nounced minima around β3 ∼ 0.1. This is a genuine ef-
fect, arising from the restoration of the symmetries spon-
taneously broken at the mean-field level. In addition, val-
leys connect the prolate and oblate minima through oc-
tupole shapes in both nuclei. As a result, the collective
wave functions are shifted towards smaller quadrupole
deformation via the octupole coordinate; quadrupole col-
lectivity is thus reduced and octupole shape fluctuations
are large.
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FIG. 1: (Color online) Mean-field energy surfaces for 150Nd
(a) and 150Sm (b), projected energy surfaces for 150Nd (c)
and 150Sm (d), and the square of the collective ground-state
wave function for 150Nd (e) and 150Sm (f), all in the β2-β3

plane.

Figure 2 shows the low-lying energy spectra in 150Nd
and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those calculations that use a single symmetry-projected
BCS state, either the one that corresponds to the J = 0
energy minimum or the one with deformation parameters
determined by the experimental B(E2 : 0+1 → 2+1 ) and
B(E3 : 0+1 → 3−1 ) values [68]. The GCM results that
include the configuration-mixing effect are in much bet-
ter agreement with the data than those based on a single
BCS state. As spin increases, however, the GCM increas-
ingly over-predicts the data, indicating that some impor-
tant correlations are missing. Time-reversal-symmetry-
breaking reference states, produced in a cranking calcu-
lation, would likely lower the energies of high-spin states
[69].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
〈qF |Ô

0ν P̂ J=0P̂NI P̂ZIP π=+|qI〉
√

N
0+
qI ,qIN

0+
qF ,qF

, (15)
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [68].
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FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (�)
are compared with the GCM results (�) and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [68].

with the norms N for each nucleus defined in Eq. (9).

The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 , β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
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M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,

where {q} ≡ {β2, β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF

2 fixed at 0.2 Panel (b)
plots the same quantity with the restriction βI

3 = βF
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FIG. 5: (Color online) The final matrix element M0ν from
the GCM calculation with and without [46] octupole shape
fluctuations (REDF) and those of the QRPA (“QRPA F” [70],
“QRPA M” [45], “QRPA T” [47]), the IMB-2 [71], and the
non-relativistic GCM, based on the Gogny D1S interaction,
with [72] and without [44] pairing fluctuations.

tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from
6.4 to 2.2 as β3 increases to 0.3 At the configurations
that minimize the projected energies, with both values
of β2 about 0.2 and both values of β3 about 0.1, M̃0ν is
4.76. At the configuration that best fits the experimental
B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values, corre-
sponding to deformation parameters βI

2 = 0.285, βI
3 =

0.113, βF
2 = 0.193, βF

3 = 0.145, M̃0ν is only 1.38.

As already discussed in Refs. [46, 48], M̃0ν near spher-
ical shapes is much larger than predicted by the Gogny
D1S interaction [44]. The difference arises at least in part

from a difference in average pairing gaps, which for the
neutrons in 150Nd and 150Sm are about 30% larger here
than in Ref. [44] (even though the gaps are similar at the
mean-field minima).
When all configurations are appropriately combined,

we obtain a final value for the matrix elementM0ν(0+1 →
0+1 ) of 5.2, which is just 7% smaller than the result 5.6
obtained without octupole deformation [46]. (The con-
tributions from the V V,AA,AP, PP , andMM terms are
1.03, 4.87, −1.65, 0.70, and 0.21, respectively). The small
reduction, significantly less than what would result from
the use of the single configuration in each nucleus that
minimizes the energy (4.76) shows that shape fluctua-
tions wash out the effects of octupole deformation. For
the 0νββ decay to the excited 0+ state in 150Sm, we find
M0ν(0+1 → 0+2 ) = 0.72.
Figure 5 compares the ground-state to ground-state

matrix elements M0ν(0+1 → 0+1 ) from several models.
Our relativistic EDF-based GCM result is still about
twice those of the deformed quasiparticle random phase
approximation (QRPA) and the interacting boson model
(IBM), and about three times that of the non-relativistic
Gogny-based GCM. A more careful study of shell struc-
ture and pairing will help resolve the last discrepancy.
And we can expect both GCM matrix elements to shrink
once the isoscalar pairing amplitude is included as a gen-
erator coordinate [73, 74].

IV. SUMMARY

We have used covariant multi-reference density func-
tional theory to treat low-lying positive- and negative-
parity states in 150Nd and 150Sm. The GCM mixes
symmetry-projected states with different amounts of
quadrupole and octupole deformation. The results in-
dicate that octupole shape correlation have important
dynamical effects, including the reduction of quadrupole
collectivity in the low-lying states of both nuclei. As for
0νββ decay, static deformation, whether quadrupole or
octupole, quenches the nuclear matrix element for that
process, but shape fluctuations moderate the effect, so
that the inclusion of octupole degrees of freedom ends
up reducing the matrix element between the two nuclei
considered here by only 7%.
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S. M. Mullins, B. M. Nyakó, K. Juhász, R. A. Bark,
L. Bianco, D. M. Cullen, D. Curien, P. E. Garrett,
P. T. Greenlees, J. Hirvonen, U. Jakobsson, J. Kau,
F. Komati, R. Julin, S. Juutinen, S. Ketelhut, A. Ko-
richi, E. A. Lawrie, J. J. Lawrie, M. Leino, T. E.
Madiba, S. N. T. Majola, P. Maine, A. Minkova, N. J.
Ncapayi, P. Nieminen, P. Peura, P. Rahkila, L. L.
Riedinger, P. Ruotsalainen, J. Saren, C. Scholey, J. Sorri,
S. Stolze, J. Timar, J. Uusitalo, and P. A. Vymers,
Phys. Rev. C 87, 044333 (2013).

[15] W. Nazarewicz and S. L. Tabor,

Phys. Rev. C 45, 2226 (1992).
[16] E. Garrote, J. L. Egido, and L. M. Robledo,

Phys. Rev. Lett. 80, 4398 (1998).
[17] M. Babilon, N. V. Zamfir, D. Kusne-

zov, E. A. McCutchan, and A. Zilges,
Phys. Rev. C 72, 064302 (2005).

[18] N. Minkov, P. Yotov, S. Drenska, W. Scheid,
D. Bonatsos, D. Lenis, and D. Petrellis,
Phys. Rev. C 73, 044315 (2006).

[19] W. Zhang, Z. P. Li, S. Q. Zhang, and J. Meng,
Phys. Rev. C 81, 034302 (2010).

[20] L. M. Robledo and G. F. Bertsch,
Phys. Rev. C 84, 054302 (2011).
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