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We reply to the Comment by Lovas, which concerns the shell model calculations of alpha-decay
width of 212Po. In the Comment, the author claims that the alpha-formation amplitudes obtained
in our work “look unusual.” Here we reaffirm the results and conclusions of our original article.

PACS numbers: 23.60.+e,21.60.Cs,21.10.Tg,27.60.+j,27.80.+w

In his Comment, Lovas claims that the amount of clus-
tering S = 0.011 obtained in our work [1] is inconsistent
with the “classical result” [2, 3] of S ≈ 0.3, and that the
shapes of the formation amplitude g(R) and the modified
formation amplitude G(R) computed in pur paper [1] are
defective.

The hybrid model of Ref. [2] and many cluster mod-
els, including those mentioned in the Comment, intro-
duce alpha particle as a separate degree of freedom rep-
resented by an additional component in the wave func-
tion. While such models can often provide good fits to
experimental data, they do not offer a microscopic de-
scription of the alpha decay phenomenon that is rooted
in the nucleonic picture. While the calculation of the ab-
solute width using the spectroscopic factor S is a valid
procedure (Γ = Γsp S), the actual amount of cluster-
ing strongly depends on the model assumptions used.
In particular, assuming the single-particle decay width
Γsp = 0.1247× 10−12MeV [1], for S = 0.011 [1] one ob-
tains Γ = 0.137 × 10−14 MeV while for S = 0.3 [2] one
gets Γ = 3.74× 10−14 MeV.

There are significant differences between the assump-
tions of Ref. [2] and our work [1], which makes it dif-
ficult to compare these models directly: (i) our four-
body wave function does not contain an additional alpha-
cluster component whose amplitude is governed by a phe-
nomenological Hamiltonian; (ii) our calculations are car-
ried out in a shell model space that is vastly larger as
compared to that of Ref. [2] (one major shell, including
the unusual-parity intruder); (iii) the particle continuum
is neglected in [2] while our extended space M4 consists
of all resonant states with a width less than 1 MeV; the
asymptotic behavior of the unbound resonant states is
very different from that of the bound wave functions em-
ployed in [2].

In Fig. 1 we show the norm eigenvalues as in our paper
[1] and according to the convention of Ref. [2]. It can be
seen that this plot resembles Fig. 3 of Ref. [2] and Fig. 3
of Ref. [4]. In particular, we see a stabilization of results
with respect to ∆R for ν ≥ 12, and this is consistent
with the previous works. We confirm the point made by

Lovas that the norm eigenvalues are generally ordered in
the increasing node number order.
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FIG. 1. Eigenvalues of the norm kernel for 212Po for Rmax =
13 fm for different values of ∆R ordered in (a) decreasing
eigenvalue index as in Ref. [1] and (b) increasing eigenvalue
index as in Ref. [2].

We agree with Lovas that understanding of the eigen-
value problem of the norm operator is essential. As far as
the small eigenvalues of the norm kernel (nν < 10−3) are
concerned, one can notice that they are strictly zero when
equal oscillator lengths are used for the alpha-particle
wave functions and the shell-model basis, see Refs. [5, 6].
As stated in our paper, below Fig. 1, the omission of
the small norm eigenvalues does impact the inner region.
This is again consistent with Lovas’s comment. However,
as stated in Ref. [4], ‘States with those small eigenvalues
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are partially forbidden’. In particular, they found that
the allowed states must have at least 11 nodes. This ob-
servation is consistent with the finding of [1]: “To elim-
inate these spurious eigenvectors, we define the cutoff
at the value where the eigenvalue distribution changes
slope”. But – in addition to physical arguments – one
also needs to consider numerical aspects of the problem.
Indeed, as pointed out in our paper (cf. discussion around
Figs. 5-7 and Eq. (49) therein), the spectroscopic factor
S does depend on both ∆R and Rmax. In particular, Fig.
5 of [1] shows the sensitivity of S as a function of Rmax for
various values of ∆R for nmin = 0.001. The new Fig. 2
illustrates the situation for nmin = 0.00016. Here, it is
impossible to obtain a result that is independent on the
parameters ∆R and Rmax of the shifted Gaussian basis.
So we are not talking about “slight numerical inaccura-
cies” here.
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FIG. 2. Similar to Fig. 5 of Ref. [1] but for nmin = 0.00016

The source of the problem is captured by Eq. (49) of
[1] for the spectroscopic factor in terms of the spectral
representation of the norm kernel [7]:

S =
∑

ν

g2ν
nν

. (1)

While Eq. (1) is mathematically correct, it is numerically
extremely unstable since the eigenvalues nν rapidly de-
crease to zero. To this end, in Ref. [1] we have proposed a
systematic procedure to determine the norm eigenvalue
cutoff nmin to be sure that a local plateau in ∆R and
Rmax is achieved. We wish to emphasize that the basis
of the norm kernel eigenstates is orthonormal with an ac-
curacy of 10−10 for all eigenvalues so there is no question
about the precision of the expansion of g(R). The lowest

nν-values obtained are around and below 10−11; hence,
they are practically impossible to control numerically. It
is worth noting that an important consistency check is
provided by the expansion of g(R) in the eigenfunctions
of the norm kernel (see Fig. 4 in our paper) and by the
asymptotic behavior of the overlap integral as it is deter-
mined by the Qα-value of

212Po. Moreover, the R-matrix
result is not that far from the alpha spectroscopic factor
approach.
As demonstrated in our work (see, e.g., Fig. 8 of [1]),

the shape of the formation amplitudes strongly depends
on the configuration space employed. We have difficulty
to accept Lovas’s statement that the function g(R) is
bound to have at least twelve nodes. Indeed, while it
can be proven that

∑m

i=s
ai fi(r) has at least s nodes if

fi(r) are orthogonal polynomials [8], we are not aware
of a similar theorem for a general orthogonal set, includ-
ing functions that are not localized. If the formation
amplitude is computed in the harmonic oscillator basis,
or in a basis of localized states confined to a finite box,
Lovas’s arguments would obviously hold. However, our
Woods-Saxon basis includes resonant states, to which the
theorem [8] does not apply. Consequently, we do not see
how the absence of some nodes in the inner region of g(R)
could indicate that our calculations are defective.

In his comment, Lovas has neither demonstrated flaws
in the shell-model formalism employed, nor has he pre-
sented a solid evidence against our results. He has merely
pointed out that some of our findings are not consistent
with his previous work and schematic arguments. As dis-
cussed in the conclusions of our paper, much work still
needs to be done on both the modeling and algorithmic
side. But we believe that our results, and related discus-
sion, represent a step toward microscopic understanding
of alpha decay, without invoking an explicit cluster com-
ponent.

ACKNOWLEDGMENTS

Useful comments from Stefan Wild and Jan Rosiński
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