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In the search for missing baryonic resonances, many analyses include data from a variety of pion-
and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the
SAID or other groups are fitted, instead of data. We provide the partial-wave covariance matrices
needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to non-linear
and normalization corrections. For any analysis relying on partial waves extracted from elastic pion
scattering, this is a prerequisite to assess the significance of resonance signals and to assign any
uncertainty on results. The influence of systematic errors is also considered.

PACS numbers: 11.80.Et, 11.80.Gw,13.75.Gx,13.85.Dz

I. INTRODUCTION AND MOTIVATION

The existence and properties [1] of most N and ∆ res-
onances have been determined through elaborate analy-
ses [2–9] of πN elastic scattering data. More recently,
however, baryon spectroscopy has been driven by the
progress made in the measurement and analysis of meson
photoproduction reactions. These analyses often take a
multi-channel approach, incorporating reactions with a
variety of initial (πN , γN) and final (πN , ηN , KΛ, KΣ,
ωN , ππN) states.

In order to build on the progress made in the ear-
lier πN elastic analyses, multi-channel analyses [10–22]
have usually fitted πN amplitudes, derived from previous
studies [2–9], together with reaction data. The fitted am-
plitude pseudo-data have either been taken from single-
energy analyses (SE) or energy-dependent (ED) fits cov-
ering the resonance region. The SE analysis amplitudes,
derived from fits to narrow energy bins of data, have asso-
ciated errors which have been used in the multi-channel
fits, or enlarged when these fits have become problem-
atic. The smoother ED amplitudes have also been taken
at discrete energies, typically with subjective errors not
derived from the fit to data.

There are several problems associated with fits to am-
plitude pseudo-data, which we have attempted to address
in this work. The most obvious of these is the fact that
the goodness of fit to these sets of amplitudes cannot be
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translated into a quality of fit to the underlying dataset.
The subsequent comparison to experimental πN data
may result [23] in poorer than expected agreement. In
addition, uncertainties on the SE amplitudes [2–5] do not
account for correlated errors, which can be substantial in
some cases.

In baryon spectroscopy, based on multi-reaction anal-
ysis, this has unwanted side effects. First, a statistical
analysis of fit results is difficult if one of the input chan-
nels is not given by data. Second, as a consequence, the
significance of resonance signals, detected in such multi-
reaction fits, is difficult to quantify. Consider, for ex-
ample, the situation in which an additional resonance
term leads to considerable improvement in the descrip-
tion of kaon photoproduction data. The description in
the πN → πN reaction might then barely change. In-
deed, one of the main motivations for the baryon photo-
production program is to search for missing states with
small πN resonance couplings. Yet, there will be a non-
zero impact in the description of the πN → πN reaction.
As long as that small change in χ2 cannot be tested in
terms of statistical criteria, based on πN data, the sig-
nificance of the proposed new state will be difficult to
assess.

In a similar way, Chiral Perturbation Theory (CHPT)
and its unitary extension (UCHPT) may profit from an
improved representation of SE amplitudes. The relevance
of elastic πN scattering partial waves for chiral dynamics,
to study the πN σ-term, isospin breaking, or to obtain a
quantitative measure of low-energy constant (LEC) un-
certainties, is reflected in the literature [24–38]. Recently,
several groups have begun to fit low-energy πN data di-
rectly [39, 40].
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In UCHPT, the focus lies less on spectroscopy than
the understanding of resonance dynamics and its nature
in terms of hadronic components. Usually, the S-wave
amplitudes S11 and S31 are subjects of interest. For ex-
ample, in Ref. [41] the S11 and S31 partial waves were
fitted up to the energy of the N(1535)S11 resonance and
the N(1650)S11 emerged. Furthermore, with the same
hadronic amplitude, pion- and η photoproduction could
be predicted [42, 43]. The role of chiral dynamics in
S-wave baryonic resonances, including fits to πN par-
tial waves, has been studied by many groups [44–53].
Other examples, in which fits to πN partial waves are
crucial to investigate chiral dynamics and to test mod-
els, include the D33 partial wave [54–57] and a family
of JP = 1/2−, 3/2− states [52, 53, 58]. Clearly, an im-
proved representation of πN data beyond SE amplitudes
will lead to a more reliable determination of LECs, and
thus, more reliable predictions of other hadronic reac-
tions within UCHPT.

In summary, SE πN amplitudes represent the test
ground for a wide range of theory and models from
baryon spectroscopy and chiral resonance dynamics to
tests of quark models [59–61]. Attaching more statistical
meaning to those solutions would considerably advance
the understanding of hadron dynamics.

The aim of this paper is to provide an easy-to-
implement representation of the πN → πN data in terms
of covariance matrices and best χ2 values for each set of
SE amplitudes. With this, the πN → πN reaction can
be included in multi-reaction spectroscopy fits in a statis-
tically more meaningful way through correlated χ2 fits.
The effect of systematic errors associated with the under-
lying data provides a subtle difficulty which we discuss
in detail below.

Together with this manuscript, numerical values for
matrices and χ2 values are provided on the SAID [62]
and JPAC [63] web pages for further use.

II. GENERATING SE AMPLITUDES

In the following, we restrict our attention to the single-
energy (SE) amplitudes, which are generated starting
from a global, energy-dependent (ED) fit, and give a bet-
ter fit to data. These amplitudes show more scatter than
would appear in the ED fit. This is preferable in a multi-
channel analysis which may interpret apparently random
fluctuations in the single-channel fit as resonance signa-
tures. Here, we use the most recent ED fit of Ref. [2].

Data for each of the SE analyses have been taken from
the SAID database [62] with an energy interval depend-
ing on the density of experimental measurements. This
interval varies from 2 MeV, for the low-energy region, to
50 MeV, at the highest energies where data are sparse.
A finite binning in energy increases the number of data
constraints but requires an assumption for the energy
dependence, which is taken to be linear. The quoted am-
plitudes correspond to the central energy. The χ2 fit to

data is carried out, using the form

χ2 =
∑
i

(
NΘi −Θexp

i

εi

)2

+

(
N − 1

εN

)2

(1)

where Θexp
i is an experimental point in an angular distri-

bution and Θi is the fit value. Here the overall systematic
error, εN , is used to weight an additional χ2 penalty term
due to renormalizaton of the fit by the factor N . The sta-
tistical error is given by εi. It has been shown that the
above renormalization factors can be determined at each
search step and do not have to be explicitly included in
the search [64]. Empirical renormalization factors have
also been used in fits to low-energy data based on chiral
perturbation theory [40].

The search is stabilized in two ways. Clearly, one can-
not search an infinite number of partial waves. As a
result, the number of included waves is determined by
their contribution to the cross section, with all higher
waves being taken from the ED fit. In addition, ED am-
plitude pseudo-data are included in the fit, with large un-
certainties, to keep the SE solution in the neighborhood
of the ED result. Clearly, with overly tight constraints,
one could generate a SE fit arbitrarily close to the ED
value. However, in practice, the constraints allow suffi-
cient freedom and contribute very little (less than 1%) to
the total χ2. The searched waves are elastic until their
contribution to the reaction cross section is significant,
as determined in the ED analysis.

III. USING THE ERROR MATRIX

A pion-nucleon partial wave fi is parametrized by two
real parameters. Here, we choose the phase shift δi and
ρi where

cos ρi = ηi , (2)

with elasticity parameter ηi and the scattering amplitude

Re fi =
1

2
cos ρi sin(2δi),

Im fi =
1

2
(1− cos ρi cos(2δi)) . (3)

In the following, the set of parameters for a given set of
partial waves is called generically Ai, ordered in a vector
A. The χ2 of a SE solution can be expanded around the
minimum at A = Â,

χ2(A) = χ2(Â) + (A− Â)T Σ̂−1(A− Â)

+ O(A− Â)3, (4)

where Â is the estimate of the partial waves from data
and Σ̂ is the estimate of the covariance matrix. A corre-
lated χ2 fit to a SE solution means the use of the same
Eq. (4) for the χ2 up toO(A2), in particular of the full co-
variance matrix and not only its diagonal elements given
by the partial-wave variances (∆Ai)

2. Thus, using Σ̂
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and χ2(Â) of this paper in a correlated χ2 fit provides in
principle the same χ2 as fitting to the actual data up to
O(A2), resolving the issues raised in the Introduction.

In an actual correlated χ2 fit, either (δi, ρi) may be
fitted, using the quoted covariance matrices, or, the pos-
sibly more familiar scattering amplitudes (Re fi, Im fi)
may be utilized, requiring a transformation of the covari-
ance matrices,

Σ̂f = QT Σ̂Q, (5)

where Q is a block-diagonal matrix Q = diag(Qj) with

Qj =

(
cos ρi cos(2δi) cos ρi sin(2δi)
− 1

2 sin ρi sin(2δi)
1
2 sin ρi cos(2δi)

)
, (6)

for inelastic partial waves, with ρi 6= 0, and

Qj =
(

cos(2δi) sin(2δ)
)
, (7)

for the elastic partial waves (note that Q is not necessar-
ily a square matrix). For groups accustomed to fitting
the amplitudes fi, it may be more convenient in practice
to evaluate (δi, ρi) using Eq. (2) and inverting Eqs. (3)
to fit to the quoted covariance matrices directly.

A. Format of covariance matrices

The format of covariance matrices Σ̂ and χ2 estimates
χ2(Â) are specified on the SAID web page [62]. At the
time of publication, we quote the parameters correspond-
ing to the WI08 solution [2]. The web page will be up-
dated as new data are produced and analyzed. Along
with the necessary parameters to carry out correlated χ2

fits, simple subroutines are provided to read the param-
eters into suitable variables. The parameters to describe
the χ2 are: central W of the energy bin of a given SE
solution, ordering of partial wave δi and ρi parameters
according to isospin I, orbital angular momentum L, to-
tal angular momentum J , and the actual values of Â,
χ2(Â) and Σ̂, in the given ordering. Additionally, the
number of data points in the bin is quoted.

B. Representation of the χ2

As discussed, Â, χ2(Â) and Σ̂ for SE solutions provide
the necessary input for other groups to carry out fits with
a χ2 that represents, in principle, the χ2 of a direct fit to
πN data. A few remarks concerning the advantages and
limitations of this method are in order.
• Non-linear contributions. As discussed following

Eq. (4), a correlated χ2 fit captures only the quadratic
terms in the expansion around the minimum. Non-
linear corrections of O(A3) are neglected. Testing se-
lected covariance matrices, we found that non-linear
corrections only become relevant far beyond the param-
eter region over which a fit is considered to be good.
In Sec. IV an explicit example is discussed.

• Finite bin width. As mentioned, the bin widths be-
come up to 50 MeV wide at the largest energies. How-
ever, partial-wave solutions have a smooth energy de-
pendence, and single-energy solutions are allowed to
vary linearly within a bin. The impact on the χ2 from
finite bin width is not significant and only central val-
ues of the bins are quoted.
• Electromagnetic corrections. As the SE solutions are

corrected using the method described in detail in
Ref. [5], other groups using the present results do
not have to implement electromagnetic corrections re-
quired to fit the data. Conversely, the implementation
of electromagnetic corrections cannot be altered with-
out a re-fit to the data.
• Renormalization. The SE solutions are obtained by al-

lowing for a multiplicative renormalization according
to Eq. (1). Any group using the present results implic-
itly accepts the normalization obtained in the SAID
analysis of elastic πN scattering. Beyond this, no ad-
ditional renormalization can be performed in correlated
χ2 fits. The effect of renormalization becomes increas-
ingly relevant when moving away from the estimated
χ2 minimum at A = Â. We discuss a typical example
in Sec. IV.
The effect from renormalizations “frozen” at the SAID
SE solution value at A = Â represents the largest dif-
ference between the correlated and the actual χ2, in
which renormalization is dynamically adapted for any
A. Yet, as renormalization tends to be small to mod-
erate, and for A in the vicinity of Â, the effect can be
neglected.

In summary, there are advantages in using the present fit
method over a direct fit to data (no need to implement
electromagnetic corrections), but also limitations. Espe-
cially if a correlated χ2 fit is poor, i.e., with parameters
A far away from Â, the correlated and actual χ2 can be
quite different. In that case, one can only resort to a
direct fit to data, allowing for dynamic renormalization.
Then, the fit function must be renormalized, rather than
the data, to avoid the bias discussed in Ref. [65]. See also
Ref. [66] for a further discussion of the topic.

With the limitations discussed, correlated χ2 fits still
represent a much improved treatment of the elastic πN
reaction, compared to uncorrelated fits to SE solutions,
as available up to now. This will be demonstrated in an
example in the next section.

IV. AN EXPLICIT EXAMPLE

Table I compares fits to data with lab pion kinetic
energies Tπ between 87 and 92 MeV. Quoted are the

phase shifts Âi = δ̂i(deg). The fit WI08 [2] is an ED
parametrization of data covering the full resonance re-
gion (second column). It employs a normalization of the
fit function. Smaller partial waves, present in the ED
solution but not searched in the SE fit, are omitted from
the table.
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90 MeV SE WI08 (ED) WI08 (SE) WI08 (SE-No Renorm)

(87-92) MeV

S11 8.43 8.11(0.11) 8.02(0.11)

S31 -8.21 -8.11(0.10) -7.68(0.10)

P11 -1.01 -0.71(0.09) -0.58(0.09)

P33 17.31 17.16(0.05) 16.68(0.05)

χ2/data 150/121 124/121 301/121

TABLE I. Fits to data near Tπ = 90 MeV. Quoted are the
phase shifts δ̂i(deg). WI08 [2] is the energy-dependent (ED)
fit, SE is the single-energy fit, allowing renormalization, based
on the ED fit. The last column gives a SE fit without allowing
renormalization of the fit (see text).

From this starting point, the most important partial
waves have been searched to fit data in the chosen energy
bin. In this case, S11, S31, P11, and P33 phase shifts have
been searched with other parameters held fixed at WI08
values. This is the SE fit in the third column quoted
with errors determined from the corresponding diagonal
elements of the covariance matrix. As a simpler point
of comparison, a second SE fit has been done without
allowing for renormalization of the fit (last column). Here
the fit is significantly worse.

Starting from this last SE fit, and its best χ2, we see
from Eq. (4) that the χ2 should increase quadratically as
one moves away from the minimum. In Fig. 1 (a), we
compare the χ2 variation for the two S-wave amplitudes
as given by the corresponding error matrix and an actual
fit to data (the other two partial waves are held at their

best values δ̂P11 and δ̂P33). Shown is a region well beyond
the ∆χ2 = 2.30 ellipse that marks the 68% confidence
region of a two-parameter fit (and well beyond the ∆χ2 =
4.72 ellipse of a 4-parameter fit). The parabolic behavior
of the correlated χ2 predicts well the actual χ2 within the
shown region. Thus, the O(A3) corrections of Eq. (4) are
indeed very small well beyond the region in which a fit
can be considered good.

In Fig. 1 (b) we show the ∆χ2(Σ̂) = 8 ellipse from Σ̂
(solid, red) and compare with the actual ∆χ2 = 8 line
(dashed, blue). The figure shows again that the covari-
ance matrix predicts the rise of the χ2 well. For example,
at (δS11, δS31) = (8.42 deg,−7.28 deg) the difference be-

tween ∆χ2(Σ̂) and the actual ∆χ2 is only 2, compared
to an absolute scale given by χ2 = 359 at this point.
Along the axes, the figure also shows the parameter er-
rors, given by the maximal extensions of the ∆χ2 = 1
ellipse.

In addition, a ∆χ2 = 8 error ellipse is shown that is
obtained from the covariance Σ̂0 in which all off-diagonal
elements are set to zero, i.e., ignoring correlations (dash-
dotted, brown). The effect is sizeable: At (δS11, δS31)

considered before one has ∆χ2(Σ̂) = 56 and ∆χ2(Σ̂0) =
31, i.e., only 55% of the correlated value. At higher ener-
gies, where parameters are generally more strongly cor-
related, this discrepancy becomes much larger.
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FIG. 1. The χ2 without renormalization (last column of
Table I). (a) The χ2 of the SES for Tπ ∈ [87, 92] MeV as a
function of δS11 and δS31 with the values of all other partial
waves fixed at the minimum. The red (blue) surface shows
the actual χ2 (the χ2 predicted from the covariance matrix).
(b) Contours of constant ∆χ2 = 8 for the actual χ2 (solid
red), the χ2 predicted from the full covariance matrix (dashed
blue), and from the covariance matrix neglecting correlations
(dash-dotted brown line). Parameter errors ∆S11, ∆S31 are
indicated with bars.

The breakdown of χ2 contributions is then as follows:
the χ2 at the minimum is χ2(Â)=301, the contribution
from correlations amounts to ∆χ2 = 56, and the sum
χ2 = 357 is 0.5% different from the actual χ2 found from
a comparison to data. In contrast, if one had mistakenly
regarded the SE solutions as uncorrelated data points (as
done in some analyses), a meaningless χ2=31 would have
been obtained at (δS11, δS31) = (8.42 deg,−7.28 deg).

To conclude this section, the effects of normalization
are discussed. Recall that the minimum at A = Â in the
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standard SE fit (third column of Table I) is obtained al-
lowing for renormalization of the minimizing function.
The covariance matrix is then numerically estimated
from the Hessian, Σ̂ = 2H−1 withHij = ∂2χ2/(∂Ai∂Aj),
using the penalized χ2 from Eq. (1), i.e., including the
renormalization. To that end, the covariance matrix in-
cludes information about the change in normalization
when moving away from the minimum, but with a value
“frozen” at the minimum. Moving away from the min-
imum, both the fitted amplitudes and the fit function
normalization factors work to reduce the χ2, resulting in
a non-quadratic variation. However, if one is close to the
minimum, the error matrix should still give a reasonable
estimate of the data χ2.

In Fig. 2 (b), the ∆χ2 curves from the normalizable SE
solution (thick) lines are shown. The curves from the pre-
viously discussed case (no normalization) are re-plotted
for comparison (thin lines). The thick solid red (thick
dashed blue) lines show the actual ∆χ2 values (the ∆χ2

values predicted from the covariance matrix). We observe
larger deviations of the actual χ2 from the predicted one,
that are a consequence of the discussed dynamic normal-
ization, changing at any point in parameter space for the
evaluation of the actual χ2. Note, however, that this ex-
ample has been chosen for the ∆χ2 = 8 contour, i.e., far
away from the minimum. There, a maximal deviation of
actual and predicted χ2 of 5 % is observed.

For further illustration, Fig. 3 shows a selection of data
from the considered Tπ = 87 − 92 MeV energy bin and
the SE fit obtained allowing normalization. The effect of
normalization is visible for the differential cross section,
which acquires a normalization factor of 0.98, constrained
by the penalty term in Eq. (1). The factor, not applied in
the figure, shifts the curve closer to the data, significantly
reducing the χ2.

A. Fits with fewer parameters

Some theory or model approaches describe fewer par-
tial waves than provided in the covariance matrices. For
example, chiral unitary approaches are often restricted
to the lowest partial waves. How should one use the co-
variance matrices in these cases?

As an example, assume that model M describes δS11,
while the covariance matrix comprises δS11 and δS31 (see,
e.g., the figures of this section). Suppose δS11 in model

M takes the value δS11 = δ̂S11 + ∆S11. In the δS11, δS31
space, this corresponds to the right vertical tangent to the
∆χ2 = 1 ellipse. Then, there exists one value δS31 such
that indeed ∆χ2 = 1. On the other hand, marginalizing
the bivariate distribution over δS31, one obtains a Normal
distribution with variance (∆S11)2, corresponding to a

covariance matrix Σ̂ = (∆S11)2. According to that re-

duced covariance matrix, the ∆χ2 at δS11 = δ̂S11 +∆S11
has also increased by one, ∆χ2 = 1. In summary, fitting
the reduced covariance matrix is equivalent to fitting the
entire covariance matrix, with δS11 coming from model
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FIG. 2. The χ2 with renormalization. Notation as in Fig. 1.
(a) The red (blue) surface shows the actual χ2 with renor-
malization (the χ2 predicted from the covariance matrix).
(b) Contours of constant ∆χ2 = 8 for the actual χ2 with
renormalization (thick solid red), the χ2 predicted from the
covariance matrix (thick dashed blue), and the case without
renormalization from Fig. 1 (thin lines).

M, and optimizing all other parameters simultaneously.
(Within M one cannot make any statement about the
size of these other parameters/partial waves.)

The generalization to several parameters is straight-
forward. It can be shown that the reduced covariance
matrix after marginalization is given by simply elimi-
nating, from the full covariance matrix, the rows and
columns corresponding to the marginalized parameters.
Then, model M with fewer partial waves is fitted to that
reduced matrix, and the unchanged χ2(Â) is added ac-
cording to Eq. (4).
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c.m.

c.m.

FIG. 3. (a) Differential cross section at Tπ = 91.7 MeV and
π+p data of Ref. [67]. (b) Polarization (P) at Tπ = 87.2 MeV
and π+p data of Ref. [68]. The 90 MeV SE fit is shown; the
normalization N from Eq. (1) acquires a value of N = 0.98
for the differential cross section (not applied in figure).

V. SUMMARY AND CONCLUSIONS

Covariance matrices and other fit properties of the
SAID SE solutions are provided to allow other groups
to carry out correlated χ2 fits to the elastic πN scatter-
ing reaction. In principle, the obtained χ2 is then a good
approximation to the χ2 one would obtain if fitting di-
rectly to experimental data. This has various practical
advantages: Coulomb corrections are not an issue and
normalization factors are included. However, the latter
bear some subtleties as discussed. Furthermore, when fit-
ting to SAID SE solutions, in the proposed manner, one
implicitly accepts the chosen bin width and omission of
non-linear contributions to the χ2 beyond the covariance
matrix. In practice, we found these effects to be negligi-
ble, with the largest discrepancies coming from normal-
ization. However, it has been checked that, close to the
minimum, this effect is under control.

With correlated χ2 fits, it is now possible to fit the
SAID SE solutions in a statistically meaningful way. For
baryon spectroscopy, this is a prerequisite to quantify
the significance of resonance signals, usually performed
in multi-reaction fits in which, so far, the precise statisti-
cal impact of πN partial waves has been unknown. Other
approaches, such as quark-model calculations, CHPT,
or unitary extensions thereof can also benefit from the
proposed fitting scheme, allowing, e.g., for an improved
determination of low-energy constants. The numerical
input needed to carry out correlated χ2 fits is provided
online.
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[10] D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer,
U.-G. Meißner and K. Nakayama, Eur. Phys. J. A 51, 70
(2015).
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[50] M. Döring and K. Nakayama, Eur. Phys. J. A 43, 83

(2010).
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