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Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling
effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe
the transport properties and are largely insensitive to the spectrum of initial density fluctuations of
the medium created in these collisions. To test this suggestion, we explore nonlinear mode coupling
effects in event-by-event viscous fluid dynamics, using two different models for the fluctuating initial
density profiles, and compare the nonlinear coupling coefficients between the initial eccentricity
vectors before hydrodynamic expansion and the final flow vectors after the expansion. For several
mode coupling coefficients we find significant sensitivity to the initial fluctuation spectrum. They
all exhibit strong sensitivity to the specific shear viscosity at freeze-out, but only weak dependence
on the shear viscosity during hydrodynamic evolution.

PACS numbers: 25.75.-q, 25.75.Cj, 25.75.Ld, 24.10.Nz

I. INTRODUCTION

Anisotropic flow, which is the hydrodynamic response
to the anisotropic initial density profile, is one of the most
important observables in relativistic heavy-ion collisions.
It has been used to extract from experimental data on the
transverse momentum distributions of hadrons emitted in
the collision and their azimuthal angular correlations in-
formation about the transport coefficients of quark-gluon
plasma (QGP), a novel state of strongly interacting mat-
ter that exists at extremely high temperature [1]. The
azimuthal asymmetry of the final state single-particle dis-
tribution is quantified by the complex anisotropic flow
coefficients (“flow vectors”)

Vn ≡ vneinΨn ≡ {einφ}, (1)

where φ denotes the azimuthal angle around the beam
direction of a particle emitted in the collision, {. . . } de-
notes the average over all particles emitted in a given col-
lision event, and vn and Ψn denote the magnitude and
azimuthal direction of the nth-order harmonic flow vec-
tor. The flow angle Ψn can be written as Ψn = Ψ̃n+ΦRP

where ΦRP is the azimuthal angle of the reaction plane,
spanned by the impact parameter and beam direction,
and Ψ̃n denotes the direction of the nth-order flow rela-
tive to that plane and is thus directly affected by the im-
pact parameter dependent collision geometry, especially
in peripheral collisions. Since in the lab frame the re-
action plane angle ΦRP is uniformly distributed in the
event sample, the ensemble average

〈Vn〉 = 0 (2)

for all n. Only combinations of Vn that are independent
of ΦRP can have non-vanishing ensemble expectation val-
ues, and only such combinations are considered in this
work.
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In a similar spirit to Eq. (1), the azimuthal spatial
anisotropies of the initial energy density profile e(r, ϕ)
in the transverse plane (which fluctuate from event to
event due to quantum fluctuations of the positions of the
nucleons inside the colliding nuclei and of the gluon fields
that mediate the interactions between the colliding nuclei
inside those nucleons at the time of impact) are usually
characterized by complex eccentricity coefficients defined
as the following energy density moments in the transverse
plane (see e.g. [2–5]):

En ≡ εneinΦn ≡ −
∫
d2r⊥ r

m einϕ e(r, ϕ)∫
d2r⊥ rm e(r, ϕ)

. (3)

We use m=n for n≥ 2 and m= 3 for n= 1 [3]. The angle

Φn in Eq. (3) can be written as Φn = Φ̃n+ΦRP where Φ̃n
is known as the nth-order participant plane angle relative
to the reaction plane.

In theoretical simulations, initial conditions are usu-
ally created in the reaction plane frame. The corre-
sponding theoretical eccentricity and flow coefficients

Ẽn and Ṽn thus have phase factors given by einΦ̃n

and einΨ̃n , respectively. To simulate the experimen-
tal situation, we can multiply all the theoretically com-
puted Ẽn and Ṽn coefficients for a given event by a
random phase einΦRP representing the random orienta-
tion of the reaction plane for this event, thereby ensur-
ing that 〈En〉= 〈ẼneinΦRP〉= 〈Vn〉= 〈ṼneinΦRP〉= 0, con-
sistent with Eq. (2). However, if (as done here) only com-
binations of eccentricity or flow combinations are studied
in which the dependence on ΦRP cancels, this additional
step is unnecessary, and we can directly substitute the
theoretically computed coefficients in the reaction plane
frame for the experimentally measured ones in the lab
frame.

Theoretical calculations have shown that for elliptic
and triangular flows (n= 2, 3), the magnitudes of the
anisotropic flow coefficients vn are approximately linear
in the magnitude of the initial eccentricity coefficients
εn, except for large impact parameters [5–9]. Since shear
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viscosity reduces the hydrodynamic response vn to the
initial eccentricity εn, vn/εn for n= 2, 3 was proposed
in [5, 10] as a clean observable to quantitatively con-
strain the shear viscosity of quark-gluon plasma. Un-
fortunately, the initial eccentricities εn are not directly
measurable and are plagued by significant model uncer-
tainties, which lead to even larger uncertainties in the
shear viscosities extracted from elliptic and triangular
flow data [10, 11]. Higher-order vn harmonics are more
sensitive to shear viscosity than elliptic and triangular
flow [2, 12], which initially gave some hope that it might
be possible to constrain both the shear viscosity and the
initial eccentricity spectrum simultaneously by analyzing
the full set of vn flow harmonics. However, the response
of the higher-order vn coefficients to the corresponding
initial eccentricities εn is nonlinear due to mode coupling
[5, 13, 14], rendering the realization of this idea much less
straightforward than first thought.

Additional independent information on the initial ec-
centricity spectrum En and the transport properties of
the expanding medium that converts these initial eccen-
tricities into anisotropic flows in the final state is con-
tained in correlations among the flow angles Ψn (a.k.a.
event-plane correlations) [15–19]. Correlations among
the anisotropic flow magnitudes vn were measured exper-
imentally and shown to exhibit unmistakable evidence for
nonlinear mode coupling during the dynamical evolution
of the fireball [20]. However, the main question whether
it is possible to find observables that separate the sen-
sitivity of the final complex flow coefficients Vn to the
transport properties of the evolving medium from that
to the (experimentally not directly measurable) fluctuat-
ing initial density profiles remained unanswered by all of
the above analyses.

In two interesting recent papers [21, 22] Ollitrault and
collaborators introduced a set of nonlinear hydrodynamic
mode coupling coefficients (defined in Sec II) which, they
suggested, should be independent of the fluctuating ini-
tial density profiles and hence a clean probe of the trans-
port properties of the liquid medium. If true, this would
open the door to measuring quark-gluon transport coef-
ficients without being affected by model uncertainties for
the initial eccentricity coefficients and their fluctuation
spectra. Prescriptions for separating the nonlinear re-
sponse from the linear terms were given in Refs. [21] and
[23]. In this work we test both, these prescriptions and
the initial-state independence of the nonlinear coupling
coefficients, as well as the latter’s sensitivity to the QGP
shear viscosity, using event-by-event hydrodynamic simu-
lations with fluctuating initial conditions from the Monte
Carlo Glauber (MC-Glb) and Monte Carlo Kharzeev-
Levin-Nardi (MC-KLN) models.

This paper is organized as follows: In Section II we
start by studying “linear” and “nonlinear” contributions
to the higher-order harmonic flows Vn, following Yan and
Ollitrault’s prescription [22] of keeping only the largest
nonlinear mode coupling terms involving at least one fac-
tor of V2 and V3 (mode coupling terms involving higher-

order Vn coefficients are expected to be smaller because
of stronger shear viscous damping). A detailed discus-
sion of the correlations between the so defined “linear”
and “nonlinear” response contributions shows, however,
that the “linear” contribution VnL defined by this de-
composition cannot be identified with the linear response
to the corresponding initial eccentricity En, VnL 6=αnEn,
contrary to what was previously thought [21, 22]. After
suitably reinterpreting the decomposition of the flows Vn,
we use hydrodynamic simulations to calculate the mode
coupling coefficients as well as the statistical correlations
between the different terms in the decomposition. In
Section III we generalize the analysis by introducing ad-
ditional allowed mode coupling terms and study the be-
havior of their coefficients. Trying to trace the origin of
the mode coupling in the anisotropic flows, we investigate
in Section IV correlators between the initial eccentricity
coefficients that are defined in analogy with the nonlin-
ear mode coupling coefficients for the final flows. Our
conclusions are summarized in Section V. The absence
of correlations between the leading and non-linear mode
coupling terms discussed in Section III is checked in Ap-
pendix A. Appendix B contains a discussion of resonance
decay effects on the mode coupling coefficients.

All our hydrodynamic simulations are done for Pb+Pb
collisions at

√
s= 2.76ATeV, using the iEBE-VISHNU

code package [25]. They start at τ0 = 0.6 fm/c without
pre-equilibrium flow, end on an isothermal freeze-out sur-
face with temperature Tdec = 120 MeV, and use as de-
fault choices for the specific shear viscosity the values
η/s= 0.08 for MC-Glb initial conditions and η/s= 0.2
for MC-KLN initial profiles. The initial conditions were
obtained from an older version of iEBE-VISHNU that
does not account for multiplicity fluctuations in pp col-
lisions. The anisotropic flow coefficients are calculated
on the freeze-out surface using the Cooper-Frye algo-
rithm, including all important resonance decay contribu-
tions [26] unless stated otherwise. For each initial con-
dition model and each centrality bin, we performed 2000
hydrodynamic runs with fluctuating initial profiles.

II. MODE COUPLING TO V2 AND V3

In [14, 22], V4 and higher harmonics are modeled as the
sum of linear and nonlinear response terms, keeping only
nonlinear terms involving the two largest anisotropic flow
coefficients V2 and V3:1

V4 = V4L + χ422V
2
2 ,

V5 = V5L + χ523V2V3,

V6 = V6L + χ633V
2
3 + χ6222V

3
2 ,

V7 = V7L + χ7223V
2
2 V3.

(4)

1 Higher-order anisotropies are suppressed by viscous suppression,
and the directed flow V1 is special because it is strongly con-
strained by transverse momentum conservation [24].
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In this decomposition, it was implicitly assumed that the
linear parts VnL describe the linear response to the ini-
tial eccentricities of the same harmonic order while the
nonlinear parts are a response to lower eccentricity har-
monics. The authors of [22] therefore expected the cor-
relation between the linear and nonlinear terms on the
right-hand side of Eqs. (4) to be weak. This expectation
makes the implicit assumption, however, that the initial
eccentricities En are uncorrelated. Due to the almond-like
geometric deformation of the transverse nuclear overlap
zone in non-central collisions we expect instead that the
participant plane angles of the average even-order eccen-
tricities E2, E4, E6 are correlated with each other. More-
over, ATLAS [20] observed significant anti-correlation be-
tween the magnitudes v2 and v3 in non-central Pb+Pb
collisions at the LHC and showed that, due to geomet-
ric bias, similar anti-correlations exist already between
the corresponding eccentricities ε2 and ε3 in the initial
state unless the collisions are very central. These consid-
erations prompted us to check the proposed [22] lack of
correlation between the various terms on the right hand
side of Eq. (4) using hydrodynamic simulations.

To perform this check we use a method proposed in
Ref. [21]. Taking V4 and V5 as examples, if the linear
and nonlinear parts are assumed to be uncorrelated, the
following relations between moments of the Vn distribu-
tions hold [21]: 〈

V4(V ∗2 )2v2
2

〉
〈V4(V ∗2 )2〉 〈v2

2〉
=

〈
v6

2

〉
〈v4

2〉 〈v2
2〉
,

〈V5V
∗
2 V
∗
3 v

2
2v

2
3〉

〈V5V ∗2 V
∗
3 〉 〈v2

2v
2
3〉

=
〈v4

2v
4
3〉

〈v2
2v

2
3〉2

.

(5)

In Ref. [21] this assumption was tested and found to hold
in the AMPT model, and Fig. 1 shows that it also holds
when the initial conditions are evolved hydrodynamically
(in this case using ideal (inviscid) fluid dynamics). While
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FIG. 1. (Color online) Test of Eqs. (5). Full circles cor-
respond to the left-hand sides, using ideal hydrodynamics
with MC-Glauber initial conditions for Pb-Pb collisions at
2.76ATeV. Stars correspond to the right-hand sides.

in central collisions smaller v2 values and relatively larger
fluctuations cause larger statistical uncertainties for the
ratios, the agreement between the left and right hand
sides of Eqs. (5) is found to be good at all collision cen-
tralities. Similar results were found for MC-KLN initial
conditions and non-zero values of the shear viscosity (not
shown).

Instead of assuming that the linear and nonlinear terms
in Eqs. (4) are uncorrelated and testing this assumption
via the relations (5), we could try to directly compute
the Pearson correlation coefficients between them [21].
The Pearson correlation coefficient between two complex
variables f and g with vanishing means, 〈f〉= 〈g〉= 0, is
defined as

Cor(f, g) =
〈fg∗〉√
〈|f |2〉〈|g|2〉

. (6)

Fig. 1 suggests that, if we could perform the separa-
tion (4) in our calculations and calculated the Pearson
correlation coefficients between the linear and nonlinear
terms, we should find Cor(V4L, V

2
2 )≈Cor(V5L, V2V3)≈ 0.

Unfortunately, it is not known how to perform the sep-
aration (4) event by event. However, we know from
years of hydrodynamic simulations [5–9] that V2 and
V3 are dominated by linear response to the initial el-
lipticity E2 and triangularity E3, respectively. If, as as-
sumed in [21, 22], V4L and V5L describe similarly the
linear response to E4 and E5, respectively, we should
therefore expect their Pearson correlation coefficients
to satisfy the identities Cor(V4L, V

2
2 ) = Cor(E4, E2

2 ) and
Cor(V5L, V2V3) = Cor(E5, E2E3).

In Fig. 2 we plot the Pearson correlation coefficients
between these and a few other eccentricity coefficients
of interest. The black line with small circles represents
Cor(E4, E2

2 ); it shows a non-zero negative correlation that
increases in magnitude with impact parameter. This
non-negligible, even strong correlation (especially in non-
central collisions) contradicts the above logical chain of
arguments. This implies that the underlying assumption
that in the decomposition (4) the term VnL describes the
linear response to En must be incorrect.

So if V4L is not the linear hydrodynamic response to
E4, what is it? To further explore this question we recall
that, since V4L and V 2

2 (and similarly V5L and V2V3) are
statistically uncorrelated (as documented in Fig. 1), the
rms values of their magnitudes can be computed from
the relation [22]

v4L{2} ≡
√
〈v2

4L〉 =

√
〈v2

4〉 −
(Re〈V4V ∗22 〉)2

〈v4
2〉

,

v5L{2} ≡
√
〈v2

5L〉 =

√
〈v2

5〉 −
(Re〈V5V ∗2 V

∗
3 〉)2

〈v2
2v

2
3〉

.

(7)

(These relations make the additional assumption
〈VnL〉= 0 which is natural if we take for granted that VnL
carries a random phase factor einΦRP from the direction
of the impact parameter in the collision event.) We note
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FIG. 2. (Color online) Pearson correlation coefficients
n,m1 . . .mk ≡ Cor(En, Em1 · · · Emk ) between the initial-state
eccentricity coefficients En of harmonic order n and bi- and
trilinear products of lower harmonic coefficients mi < n, as
functions of centrality. The correlation coefficients are calcu-
lated for fluctuating initial density profiles obtained from (a)
the MC-Glauber and (b) the MC-KLN models, respectively.

in passing that taking the real part in the numerator of
the second term under the square root is redundant since
the corresponding imaginary part vanishes in the limit of
large event samples by reflection symmetry of the under-
lying probability distribution with respect to the reaction
plane.

Using Eq. (7) we plot in Fig. 3 v4L{2} together with
the full second-order cumulant flows v4{2} and v2{2} as
functions of their corresponding eccentricities, in order
to check their linearity. The black circles demonstrate
the well-known almost perfect linearity between the el-
liptic flow and the initial ellipticity. In contrast, the de-
pendence of the full 4th-order flow v4{2} depends quite
non-linearly on its corresponding eccentricity ε4{2}. This
is also well-known and usually ascribed to increasingly
important non-linear mode mixing with elliptic flow at
larger impact parameters. What is surprising but sup-
ports the conclusion drawn above is that the so-called
“linear” part v4L{2} exhibits even stronger nonlinearities
than the full 4th-order flow when plotted as a function
of ε4{2}.

From here on we will therefore consider the subscript
L on VnL to mean “leading” (in the decomposition (4))
or “left-over” rather than “linear”. While this analysis
does not provide a full answer to what drives the leading
component VnL, we reiterate the one aspect of this de-
composition that matters for the rest of the paper: The
leading (or left-over) terms VnL are statistically uncorre-
lated with the nonlinear mode coupling terms, and they
average to zero. Following the arguments of [22] this al-
lows to define and isolate the so-called non-linear mode
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FIG. 3. (Color online) v2{2}, v4{2} and v4L{2} as functions
of their corresponding eccentricities εn{2}. Each point cor-
responds to a fixed centrality bin (from left to right: 0-5%,
5-10%, 10-20%, 20-30%, 30-40% and 40-50%), each contain-
ing 2000 MC-Glauber events evolved as ideal fluids. v2{2}
has been divided by 4 to fit into the same plot. See text for
discussion.

coupling coefficients

χ422 =
Re〈V4(V ∗2 )2〉
〈v4

2〉
, χ523 =

Re〈V5V
∗
2 V
∗
3 〉

〈v2
2v

2
3〉

,

χ633 =
Re〈V6(V ∗3 )2〉
〈v4

3〉
, χ6222 =

Re〈V6(V ∗2 )3〉
〈v6

2〉
,

χ7223 =
Re〈V7(V ∗2 )2V ∗3 〉

〈v4
2v

2
3〉

. (8)

Fig. 4 displays these mode coupling coefficients (together
with a few additional ones defined further below) as func-
tions of centrality, using ideal fluid dynamics with MC-
Glauber and MC-KLN initial conditions. This figure
does not support the suggestion by Yan and Ollitrault
[22] that, in general, they should be independent of the
initial condition model: While χ422 (a), χ633 (d), and
especially χ523 (b) indeed exhibit only weak sensitivity
to the initial-state model, χ6222 (g) and χ7223 (h) dif-
fer significantly between MC-Glb and MC-KLN initial
conditions. Coupling to a product of three Vn vectors,
these last two coefficients have larger statistical errors
than the others which couple to only two other Vn vec-
tors, but their difference between the MC-Glb and MC-
KLN initial conditions is clearly visible and statistically
significant.

III. INCLUDING ADDITIONAL MODE
COUPLING TERMS

In the previous studies [14, 22] the authors only con-
sidered those nonlinear couplings that involved contri-
butions from the two largest flow harmonics V2 and V3

(which themselves are known to be dominated by linear
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FIG. 4. (Color online) The nonlinear response coefficients given in Eqs. (8) and (13)-(18) as functions of centrality, for Pb-Pb
collisions at

√
s = 2.76ATeV. Filled circles (triangles) represent ideal fluid dynamical results using MC-Glauber (MC-KLN)

initial conditions.

response). This treatment seems incomplete. In this Sec-
tion, we therefore add additional bilinear coupling terms
of Vn to lower-order flows Vm (m < n) to the decompo-
sition (4):

Vn = VnL +
∑

k1+k2=n

χnk1k2Vk1Vk2

+
∑

k1+k2+k3=n

χnk1k2k3Vk1Vk2Vk3 . (9)

Trilinear couplings are still restricted to ki = 2 and 3. To
test the importance of the various mode coupling terms
in this decomposition we compute the Pearson correla-
tion coefficients between Vn and its possibly contributing
mode coupling terms, analogous to the eccentricity cor-
relation coefficients shown in Fig. 2.

The correlation between Vn and its possible mode cou-
pling contributions is shown in Fig. 5 as a function of
centrality, using ideal fluid dynamics with MC-Glauber
and MC-KLN initial conditions for Pb-Pb collisions at
2.76ATeV. The left panels (a,A) show the correlation of
Vn with bilinear mode-coupling terms of the type V1Vn−1

where V1 is the directed flow. Unlike higher harmon-
ics, V1 is affected by transverse momentum conserva-
tion. Considering units and normalization, we modify
the weight used in [24] to subtract the global momentum

conservation contribution and calculate V1 as follows [28]:

V1 ≡

∫
pT dpT dφ

(
pT
〈pT 〉 −

〈p2T 〉
〈pT 〉2

)
eiφ dN

dypT dpT dφ∫
pT dpT dφ

(
pT
〈pT 〉 −

〈p2T 〉
〈pT 〉2

)
dN

dypT dpT dφ

. (10)

Here angular brackets denote an average over particles in
the desired pT range (over which V1 is integrated) within
a single event. Figs. 5a,A show that the correlations be-
tween Vn and V1Vn−1 are all weak, for both MC-Glauber
(a) and MC-KLN (A) initial conditions. Bilinear cou-
pling terms involving the directed flow V1 are therefore
from now on ignored in Eq. (9).

Figs. 5b,B show that the new terms correlate equally
strongly with Vn as the original bilinear coupling terms
in Eqs. 4. We will therefore include these terms in the
following discussion of the mode coupling coefficients. In
central collisions, none of the mode coupling terms are
particularly strongly correlated with the full Vn, and in
Sec. II, Fig. 1 we found that they are also uncorrelated
with the leading contributions on the right hand sides of
the decompositions (9). This strongly suggests that in
central collisions (where according to Fig. 2 eccentricity
coefficients of different harmonic order are also seen to be
essentially uncorrelated) Vn is indeed dominated by linear
response. The correlation between the total Vn and its
non-linear mode coupling contributions increases, how-
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FIG. 5. (Color online) Pearson correlation coefficients
n,m1 . . .mk ≡ Cor(Vn, Vm1 · · ·Vmk ) between the full Vn

and their mode coupling contributions, as defined in
Eq. (6), as functions of centrality for Pb-Pb collisions at√
s= 2.76ATeV. The correlation coefficients are obtained

from the output of ideal fluid dynamical simulations with
(a,b) MC-Glauber and (A,B) MC-KLN initial conditions, re-
spectively.

ever, with impact parameter. Since the leading term and
the non-linear mode coupling terms are uncorrelated, this
must mean that at large impact parameters Vn is dom-
inated by non-linear mode coupling. This is consistent
with the conclusions of Ref. [14].

We observe that all correlations of Vn with mode cou-
pling terms that couple to the elliptic flow V2 increase
with impact parameter. This reflects the concurrent
growth of V2, driven by the stronger elliptic deformation
of the nuclear overlap zone in peripheral collisions. In
contrast, the correlation of V6 to the quadratic coupling
of V3 with itself is almost independent of collision central-
ity, again consistent with the much weaker centrality de-
pendence of V3 which is dominated by fluctuations rather
than geometry [5, 29]. Trilinear coupling terms exhibit
generically smaller correlation coefficients with Vn than
bilinear terms, even if they involve the elliptic flow and
thus grow together with V2 in more peripheral collisions.

With the restrictions suggested by these observations,
the decomposition Eq. (9) agrees with Eq. (4) for V4 and

V5, while for V6 and V7 it generalizes to

V6 = V6L + χ624V2V4 + χ633V
2
3 + χ′6222V

3
2

= V6L + χ624V2

(
V4L+χ422V

2
2

)
+ χ633V

2
3 + χ′6222V

3
2

≡ V6L + χ624V2V4L + χ633V
2
3 + χ6222V

3
2 ,

V7 = V7L + χ725V2V5 + χ734V3V4 + χ′7223V
2
2 V3

= V7L + χ725V2

(
V5L+χ523V2V3

)
+ χ734V3

(
V4L+χ422V

2
2

)
+ χ′7223V

2
2 V3

≡ V7L + χ725V2V5L + χ734V3V4L + χ7223V
2
2 V3 .

(11)

The assumption that we can ignore correlations between
the leading terms VnL and all mode coupling terms, to-
gether with 〈VnL〉= 0, leads to the following relations:

〈V6V
∗
2 V
∗
4 〉 = χ624〈v2

2〉〈v2
4L〉+ χ6222χ422〈v6

2〉,
〈V6V

∗2
3 〉 = χ633〈v4

3〉,
〈V6V

∗3
2 〉 = χ6222〈v6

2〉,
〈V7V

∗
2 V
∗
5 〉 = χ725〈v2

2〉〈v2
5L〉+ χ7223χ523〈v4

2v
2
3〉,

〈V7V
∗
3 V
∗
4 〉 = χ734〈v2

3〉〈v2
4L〉+ χ7223χ422〈v4

2v
2
3〉,

〈V7V
∗2
2 V ∗3 〉 = χ7223〈v4

2v
2
3〉.

(12)

The validity of these relations is checked and found to
hold in Appendix A. Using the definitions (7) of 〈v2

4L〉
and 〈v2

5L〉 the mode coupling coefficients χ can be isolated
from Eqs. (12) as follows:

χ624 = Re
〈V6V

∗
2 V
∗
4 〉〈v4

2〉 − 〈V6V
∗3
2 〉〈V4V

∗2
2 〉(

〈v2
4〉〈v4

2〉−〈V4V ∗22 〉2
)
〈v2

2〉
, (13)

χ633 =
Re〈V6V

∗2
3 〉

〈v4
3〉

, (14)

χ6222 =
Re〈V6V

∗3
2 〉

〈v6
2〉

, (15)

χ725 = Re
〈V7V

∗
2 V
∗
5 〉〈v2

2v
2
3〉 − 〈V7V

∗2
2 V ∗3 〉〈V5V

∗
2 V
∗
3 〉(

〈v2
5〉〈v2

2v
2
3〉−〈V5V ∗2 V

∗
3 〉2
)
〈v2

2〉
, (16)

χ734 = Re
〈V7V

∗
3 V
∗
4 〉〈v4

2〉 − 〈V7V
∗2
2 V ∗3 〉〈V4V

∗2
2 〉(

〈v2
4〉〈v4

2〉−〈V4V ∗22 〉2
)
〈v2

3〉
, (17)

χ7223 =
Re〈V7V

∗2
2 V ∗3 〉

〈v4
2v

2
3〉

. (18)

The expressions for χ633, χ6222 and χ7223 agree with
those derived before in Eqs. (8). The additional mode
coupling coefficients χ624, χ725 and χ734, which supple-
ment those listed in Eqs. (8), are shown in panels c, e, f
of Fig. 4. Like the other bilinear mode coupling terms in
that figure, they are very similar for the MC-Glauber and
MC-KLN initial-state models, although not completely
independent of the initial conditions. Stronger sensitiv-
ity to the initial fluctuation spectrum is clearly observed
in the trilinear coupling terms (panels g and h), as al-
ready noted.
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FIG. 6. (Color online) Nonlinear response coefficients defined by Eqs. (8), (13), (16) and (17). Solid red lines correspond to
ideal hydrodynamics while dash-dotted blue and dotted black lines correspond to viscous hydrodynamics with η/s = 0.08 and
0.2, respectively. Panels labeled by lower case (upper case) letters show results from MC-Glb (MC-KLN) initial conditions,
respectively. In the MC-Glb panels, the open symbols indicate the values of the mode coupling coefficients in the 40-50%
centrality bin if the viscous correction δf at freeze-out is ignored (see text); blue triangles and black squares correspond to
η/s = 0.08 and 0.2, respectively.

In Fig. 6 we explore the sensitivity of the mode-coup-
ling coefficients Eqs. (8), (13), (16) and (17) to the spe-
cific shear viscosity η/s of the evolving hydrodynamic
medium. We performed this study for both MC-Glb
(panels labeled by lower case letters) and MC-KLN ini-
tial conditions (panels labeled by upper case letters), and

display in the figure the corresponding results in pairs of
panels arranged directly above each other. Results are
shown for three different choices of η/s: η/s= 0 (ideal
fluid, red solid lines), η/s= 0.08 (“minimal” specific
shear viscosity, blue dash-dotted lines), and η/s= 0.2
(black dotted lines). Generically, the nonlinear mode-
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mixing coefficients decrease with increasing shear viscos-
ity, as had already been observed by Yan and Ollitrault
in Fig. 2 of Ref. [22]. However, we find a weaker sensi-
tivity to η/s, and also disagree on (some of) their mag-
nitudes.2 For 0-5% centrality our results for the trilinear
coupling coefficients fluctuate a lot and are statistically
quite uncertain; much higher event statistics would be
needed to significantly improve this situation. The dif-
ferences between our results and those from Ref. [22] may
indicate shortcomings of the approach used by Yan and
Ollitrault who, instead of evolving genuinely bumpy ini-
tial conditions obtained from a Monte Carlo sampling
of the initial nucleon positions in the colliding nuclei,
use smooth initial Gaussian density profiles that are az-
imuthally deformed “in order to produce anisotropic flow
in the desired harmonic” [22].

We emphasize the complete insensitivity to shear vis-
cosity of the bilinear coupling χ422 of elliptic flow V2 cou-
pling to itself to produce quadrangular flow V4: As shown
in panels a, A of Fig. 6, the differences between its val-
ues for different shear viscosities are much smaller even
than the differences between MC-Glb and MC-KLN ini-
tial conditions. This points to a hydrodynamic flow pro-
file whose quadrangular deformation is very small (even
in the ideal fluid case, without viscous damping) such
that the V4 of the finally observed hadron momentum
distribution is entirely dominated by the contribution
generated at freeze-out via an elliptic deformation of the
fluid velocity profile, as discussed in [30].

The same does not hold for elliptic flow V2 coupling
with itself to produce V6 (χ6222, shown in panels f, F),
nor for the frequency-doubling mode-coupling of V3 to
itself to produce V6 (χ633, shown in panels d, D). In fact,
all other mode-coupling coefficients show significant sen-
sitivity to η/s (especially in non-central collisions). The
question arises whether this sensitivity η/s reflects shear
viscous effects on the buildup of hydrodynamic flow dur-
ing the entire evolution, or whether it is simply due to
the viscous deviation δf of the local phase-space distri-
bution at freeze-out caused by the non-vanishing shear
stress on the decoupling surface (which is also propor-
tional to η/s).

To help answer this question, we show in Figs. 6a-h the
nonlinear mode-coupling coefficients calculated without
the δf contribution, for the 40-50% centrality bin with
MC-Glauber initial conditions. Comparing the open blue
triangles (black squares) for δf = 0 with the values of the
blue dash-dotted (black dotted) lines (which include the
δf contribution) in the same centrality bin, we observe
(in agreement with Refs. [14, 22]) large to very large δf
correction effects for all mode-coupling terms except the
bilinear self coupling of V2, χ422. In fact, by setting δf to
zero and thereby focusing on shear viscous effects on the

2 For example, we find χ633
<∼ χ6222 whereas Yan and Ollitrault

[22] find the opposite.

hydrodynamic flow alone, we see that non-zero shear vis-
cosity slightly increases the strength of mode-coupling ef-
fects (as observed before in [17]), presumably by damping
the hydrodynamic effects of event-by-event initial-state
fluctuations that tend to decorrelate the event planes
[17]. This increase is more than compensated for by a
large negative δf contribution to the nonlinear coupling
coefficients, which completely dominates the net sensitiv-
ity of these coefficients to η/s. The nonlinear coupling
coefficients are therefore mostly sensitive to shear viscous
stresses at freeze-out and less so to the value of the spe-
cific shear viscosity during the earlier evolution stages.
This clearly limits their value as signatures of the trans-
port properties of the evolving medium, irrespective of
whether or not they depend on the spectrum of initial-
state fluctuations.

IV. “MODE COUPLING” BETWEEN THE
INITIAL ECCENTRICITIES

Anisotropic flow is the hydrodynamic response to the
anisotropic and bumpy initial density profile. In this sec-
tion we elucidate further to what extent the mode cou-
pling effects represented by the nonlinear coupling coeffi-
cients defined in Eqs. (8,13-18) and studied in the preced-
ing section are due to nonlinearities in this hydrodynamic
response or already pre-exist among the eccentricity coef-
ficients En of the initial fluctuating density distributions,
due to geometric constraints on the initial fluctuation
spectrum.

To this end we compare the Pearson correlation co-
efficients between higher-order anisotropic flows Vn and
their nonlinear contributions shown in Figs. 5b,B with
those for the corresponding initial-state eccentricity co-
efficients En shown in Fig. 2a,b. One notices that the
correlations between En and their contributions from bi-
linear coupling terms are all negative while the corre-
sponding flow correlations are all positive. We will re-
turn to this observation further below. Although there
are some quantitative differences between the two initial-
state models, their qualitative features (in particular
their centrality dependences) are very similar. Most im-
portantly, the correlation coefficients between the initial-
state eccentricities shown in Figs. 2a,b exhibit (except
for their sign) a close similarity, in both magnitude and
centrality dependence, with the corresponding correla-
tion coefficients for the final anisotropic flows shown in
Figs. 5b,B. This supports the conclusion above that the
nonlinear flow-coupling coefficients are not dominated by
nonlinear hydrodynamic response but, at least to a large
part, “pre-formed” by geometric correlations among the
initial eccentricity coefficients and linearly propagated
into the final state.

We follow this theme further and define the nonlin-
ear eccentricity-coupling coefficients χ̃ in analogy to the
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FIG. 7. (Color online) Comparison of the centrality dependences of the nonlinear initial eccentricity (χ̃, panels a-h) and final
flow coupling coefficients from ideal fluid dynamics (χ, panels A-H), with MC-Glb (circles) and MC-KLN (triangles) initial
conditions, for Pb-Pb collisions at

√
s= 2.76ATeV.

nonlinear flow-coupling coefficients Eqs. (8,13-18):

χ̃422 =
Re〈E4E∗22 〉
〈ε42〉

, χ̃523 =
Re〈E5E∗2E∗3 〉
〈ε22ε23〉

,

χ̃624 = Re
〈E6E∗2E∗4 〉〈ε42〉 − 〈E6E∗32 〉〈E4E∗22 〉(
〈ε24〉〈ε42〉−〈E4E∗22 〉2

)
〈ε22〉

,

χ̃633 =
Re〈E6E∗23 〉
〈ε43〉

,

χ̃725 = Re
〈E7E∗2E∗5 〉〈ε22ε23〉 − 〈E7E∗22 E∗3 〉〈E5E∗2E∗3 〉(

〈ε25〉〈ε22ε23〉−〈E5E∗2E∗3 〉2
)
〈ε22〉

,

χ̃734 = Re
〈E7E∗3E∗4 〉〈ε42〉 − 〈E7E∗22 E∗3 〉〈E4E∗22 〉(

〈ε24〉〈ε42〉−〈E4E∗22 〉2
)
〈ε23〉

,

χ̃6222 =
Re〈E6E∗32 〉
〈ε62〉

, χ̃7223 =
Re〈E7E∗22 E∗3 〉
〈ε42ε23〉

. (19)

To eliminate the contribution to the final flow coeffi-
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cients from the δf correction at freeze-out (see discussion
of Fig. 6), we compare in Fig. 7 these nonlinear eccen-
tricity coupling coefficients with the nonlinear flow cou-
pling coefficients from ideal fluid dynamics, for both MC-
Glauber and MC-KLN initial conditions. None of the
coefficients exhibit strong centrality dependence. Differ-
ences between the final flow coupling coefficients χ from
the two different initial state models appear to be mostly
caused by analogous differences between the correspond-
ing eccentricity coupling coefficients χ̃ existing already in
the initial state. As observed in Fig. 4, these differences
are small for bilinear coupling coefficients but appear to
be larger for trilinear couplings.

The most important feature of Fig. 7 is the sign change
between the consistently negative values for χ̃ and the
positive values of χ for bilinear couplings. As already
mentioned, this sign change between eccentricity and flow
correlations is also seen in the Pearson correlation coef-
ficients shown in Figs. 2 and 5. This observation is con-
sistent with Refs. [17–19, 31] where it was found that
hydrodynamic evolution changes the sign of the correla-
tions between the initial participant planes and the final
flow planes that are associated with these coupling coef-
ficients.3 In Fig. 4.5 of Zhi Qiu’s Ph.D. thesis [31] it was
shown that this sign change is genuinely related with a
sign change between the final hydrodynamic flow plane
and initial participant plane correlators, and not quali-
tatively changed by mode-mixing effects inherent in the
Cooper-Frye formula for computing the momentum dis-
tributions and their anisotropies at freeze-out [30]. This
led the authors of Ref. [17] to conclude that this sign
change is a robust signature of nonlinear hydrodynamic
response to the initial density and associated pressure
gradients. The discussion of Fig. 6 above suggests that
this nonlinear hydrodynamic response exhibits no strong
sensitivity to the specific shear-viscosity of the hydrod-
namically evolving medium, as almost all of the depen-
dence of the nonlinear coupling coefficients between the
final anisotropic flows on η/s arises from the δf correc-
tion at freeze-out (which depends on η/s at freeze-out,
not at earlier times).

V. SUMMARY AND FURTHER DISCUSSION

We have presented a systematic hydrodynamic study
of nonlinear mode coupling contributions to higher order
anisotropic flows in 2.76ATeV Pb-Pb collisions at the
LHC. We compared the relevant mode coupling coeffi-
cients between the final anisotropic flow vectors Vn with
the corresponding nonlinear coupling coefficients between
the initial eccentricity vectors En which embody geomet-
ric correlations between different harmonic components

3 For example, 〈E4E∗22 〉 is an eccentricity-weighted average of the
participant-plane correlator cos

(
4(Φ4−Φ2)

)
.

of the fluctuations in the initial state. While the authors
of [21, 22] expected the mode coupling coefficients to be
independent of initial conditions, we found that several
of them exhibit non-negligible dependence on the model
used to generate the fluctuating initial state. We also
showed that qualitatively similar model dependence is
already seen in the corresponding initial nonlinear eccen-
tricity coupling coefficients, likely driven by somewhat
different geometric constraints on the eccentricity fluc-
tuation spectrum in the two initial-state models studied
here (the Monte Carlo Glauber and KLN models) whose
ensemble-averaged density profiles are known to differ.

The calculations demonstrate significant dynamical
evolution of the initial nonlinear eccentricity couplings to
the final nonlinear flow couplings. In particular, all bi-
linear coupling coefficients coupling two lower-order har-
monic coefficients to a higher-order one flip sign between
the initial and final state. The initial nonlinear eccentric-
ity coupling coefficients are closely related to participant-
plane correlations in the initial state while the final non-
linear flow coupling coefficients reflect flow-plane corre-
lations in the final state. Therefore, the sign change
between the initial eccentricity and final flow coupling
coefficients observed here confirms a similar sign change
between the participant and flow plane correlations ob-
served earlier in Refs. [17–19] and attributed to nonlinear
hydrodynamic response.

A study of the sensitivity of the nonlinear mode cou-
pling coefficients between the final anisotropic flow vec-
tors Vn showed very weak dependence on the shear vis-
cosity of the evolving medium but very strong sensitivity,
especially in non-central collisions, to the shear viscos-
ity at freeze-out, through the viscous correction δf to
the local distribution function on the freeze-out surface
which depends on the shear stress on this surface. Re-
lated observations made in Refs. [14, 22] support these
findings. This eliminates these nonlinear mode coupling
coefficients from the list of candidates for observables
that might provide insights on the transport properties
of the evolving medium independent of the model used
to simulate the (not very well known and not directly
measurable) initial fluctuation spectrum.
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FIG. 8. (Color online) Test of Eqs. (A1)-(A3) and (A7)-(A9), using results from ideal hydrodydynamic simulations for Pb-Pb
collisions at

√
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Eq. (A1), (b) Eq. (A2), (c) Eq. (A3), (d) Eqs. (A7,A8) (which have the same right-hand sides), and (e) Eq. (A9). The squares
in panel (c) show the alternate version of the r.h.s. corresponding to the second equality sign in Eq. (A3).

Appendix A: Absence of correlations between VnL

and mode coupling terms

In this appendix we provide a numerical proof that in
Eqs. (11) the leading terms VnL are uncorrelated with all
of the mode coupling terms. To this end, we construct ra-

tios of moments of the type 〈Vn T A〉
〈Vn T 〉〈A〉 where n labels the

harmonic order of the term VnL in question, T stands
for the mode coupling product whose statistical indepen-
dence of VnL we want to test, and A denotes auxiliary
factors involving only the magnitudes vm of flow coeffi-
cients. We also use the known statistical independence
of the flow angles between the elliptic and triangular flow
vectors V2 and V3. Next, we decompose Vn according to
Eqs. (4) for V4 and V5 and according to Eqs. (11) for V6

and V7. Using the fact (established in Fig. 1) that V4L

and V5L are uncorrelated with V 2
2 and V2V3, respectively,

we can check for the absence of correlations between V6L

and V 2
3 , V6L and V 3

2 , and V7L and V 2
2 V3 by checking the

following equalities:〈
V6V

∗2
3 v2

3

〉
〈V6V ∗23 〉 〈v2

3〉
=

〈
v6

3

〉
〈v4

3〉 〈v2
3〉
, (A1)〈

V6V
∗3
2 v2

2

〉
〈V6V ∗32 〉 〈v2

2〉
=

〈
v8

2

〉
〈v6

2〉 〈v2
2〉
, (A2)

〈V7V
∗2
2 V ∗3 v

2
2〉

〈V7V ∗22 V ∗3 〉 〈v2
2〉

=
〈v6

2v
2
3〉

〈v4
2v

2
3〉〈v2

2〉
=

〈
v6

2

〉
〈v4

2〉 〈v2
2〉
. (A3)

The second equality in Eq. (A3) tests the statistical in-
dependence of fluctuations in the magnitudes v2 and v3

of the elliptic and triangular flow. Figs. 9a-c support the
validity of all of these relations. The validity of these re-
lations allows us to obtain the mode coupling coefficients
χ633, χ6222 and χ7223 from Eqs. (14), (15) and (18).

Using the decompositions (4) to eliminate V4L and V5L

and assuming the absence of correlations between the
leading and mode coupling terms in the decompositions
(11) for V6 and V7, we can similarly derive the following
relations:

〈
(V6V

∗
2 V
∗
4 − χ6222χ422v

6
2)v2

2

〉
〈V6V ∗2 V

∗
4 − χ6222χ422v6

2〉 〈v2
2〉

=

〈
v4

2

〉
〈v2

2〉
2 , (A4)〈

(V7V
∗
2 V
∗
5 − χ7223χ523v

4
2v

2
3)v2

2

〉
〈V7V ∗2 V

∗
5 − χ7223χ523v4

2v
2
3〉 〈v2

2〉
=

〈
v4

2

〉
〈v2

2〉
2 , (A5)〈

(V7V
∗
3 V
∗
4 − χ7223χ422v

4
2v

2
3)v2

3

〉
〈V7V ∗3 V

∗
4 − χ7223χ422v4

2v
2
3〉 〈v2

3〉
=

〈
v4

3

〉
〈v2

3〉
2 . (A6)

Substituting the already validated relations (8) allows to
rewrite these as

〈V6V
∗
2 V
∗
4 v

2
2〉〈v4

2〉〈v6
2〉 − 〈V6V

∗3
2 〉〈V4V

∗2
2 〉〈v8

2〉
〈V6V ∗2 V

∗
4 〉〈v2

2〉〈v4
2〉〈v6

2〉 − 〈V6V ∗32 〉〈V4V ∗22 〉〈v2
2〉〈v6

2〉
=

〈
v4

2

〉
〈v2

2〉
2 , (A7)

〈V7V
∗
2 V
∗
5 v

2
2〉〈v2

2v
2
3〉〈v4

2v
2
3〉 − 〈V7V

∗2
2 V ∗3 〉〈V5V

∗
2 V
∗
3 〉〈v6

2v
2
3〉

〈V7V ∗2 V
∗
5 〉〈v2

2〉〈v2
2v

2
3〉〈v4

2v
2
3〉 − 〈V7V ∗22 V ∗3 〉〈V5V ∗2 V

∗
3 〉〈v2

2〉〈v4
2v

2
3〉

=

〈
v4

2

〉
〈v2

2〉
2 , (A8)

〈V7V
∗
3 V
∗
4 v

2
3〉〈v4

2〉〈v4
2v

2
3〉 − 〈V7V

∗2
2 V ∗3 〉〈V4V

∗2
2 〉〈v4

2v
4
3〉

〈V7V ∗3 V
∗
4 〉〈v2

3〉〈v4
2〉〈v4

2v
2
3〉 − 〈V7V ∗22 V ∗3 〉〈V4V ∗22 〉〈v2

3〉〈v4
2v

2
3〉

=

〈
v4

3

〉
〈v2

3〉
2 . (A9)

Figures 9d,e show these relations (and thus the underly- ing assumptions) to be valid.
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FIG. 9. (Color online) Mode coupling coefficients from ideal hydrodynamic simulations for Pb-Pb collisions at 2.76ATeV with
MC-Glauber (panels a-h) and MC-KLN (panels A-H) initial conditions, computed from flow vectors Vn for directly emitted
(“thermal”) π+ (green diamonds) and for all charged hadrons (red circles).

Appendix B: Resonance decay effects

All results shown in the main body of this paper were
computed from the final charged hadron spectra, includ-
ing all resonance decay contributions. Since this is nu-

merically costly, we explore in this Appendix to what ex-
tent a simpler calculation that takes directly emitted pos-
itively charged pions as a proxy for all charged hadrons
would have distorted the results. Fig. 9 shows that the
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differences are generally small: only for the trilinear (and,
to a lesser extent, for the bilinear) coupling contributions
between elliptic and triangular flow to V7 (panels f,h,F,H)
do we observe significant corrections from kaons, protons,
and resonance decay pions, mostly in non-central colli-
sions. Generically, the inclusion of resonance decay pions
and heavier stable hadrons tend to slightly increase the

nonlinear flow coupling coefficients. Their importance is
of the same order of magnitude for both of the initial
condition models studied here. Due to the smallness of
their effects, a calculation based on directly emitted pi-
ons alone would still have led us to the same conclusions
that we have drawn from the full calculations presented
in this paper.
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