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We compute the isospin-asymmetry dependence of microscopic optical model potentials from
realistic chiral two- and three-body interactions over a range of resolution scales A ~ 400 —500 MeV.
We show that at moderate projectile energies, Einy = 110 — 200 MeV, the real isovector part of the
optical potential changes sign, a phenomenon referred to as isospin inversion. We also extract the
strength and energy dependence of the imaginary isovector optical potential and find no evidence
for an analogous phenomenon over the range of energies, £ < 200 MeV, considered in the present
work. Finally, we compute for the first time the leading corrections to the Lane parametrization for
the isospin-asymmetry dependence of the optical potential and observe an enhanced importance at

low scattering energies.

Introduction — The structure and dynamics of neutron-
rich nuclei are key inputs for modeling neutron stars,
core-collapse supernovae and r-process nucleosynthesis
[1-8]. Elucidating the properties of highly isospin-
asymmetric nuclear matter is therefore a priority in low-
energy nuclear science research and a major motivation
for the development of next-generation radioactive ion
beam (RIB) facilities. Microscopic many-body meth-
ods [9-11] with chiral two- and three-body forces have
been successful in describing the bound-state properties
of neutron-rich matter. Complementary and consistent
nuclear reaction models are under development [12-14],
and of these, global optical potentials aim to address the
broadest theory needs for interpreting RIB scattering ex-
periments and simulating r-process nucleosynthesis. In
fact, current modeling of the strong r-process favors a
cold scenario in binary neutron star mergers [6-8, 15—
17], where mass transfer to highly neutron-rich isotopes
occurs and freeze-out is achieved more rapidly, which en-
hances the importance of radiative neutron capture pro-
cesses in determining the final abundance pattern of -
process elements [18].

Although global phenomenological optical potentials
[19-21] are well constrained close to the valley of nu-
clear stability, their predictive power for reactions in-
volving exotic neutron-rich isotopes is not well under-
stood. Elastic scattering data has been used in the past
to parametrize local optical potentials in specific regions
of the nuclear chart off stability, however, the most exotic
and low-intensity radioactive ion beams require thick-
target experiments that provide quality inelastic data
only [22]. This motivates the need for accurate micro-
scopic optical model potentials and investigations of their
energy and isospin-asymmetry, d,, = (N — Z)/A, de-
pendence. Identifying energy regimes in which the lead-
ing linear 4y, term is dominant can then be valuable for
extrapolating existing phenomenological potentials away
from stability.

The aim of the present work is to employ high-precision
chiral two- and three-nucleon forces to study the real and

imaginary volume components of the nucleon-nucleus op-
tical model potential far from the valley of stability. The
dependence on the isospin asymmetry of the target nu-
cleus is traditionally taken to be linear and isovector in
character, a parametrization known as the Lane form
[23]. The isoscalar components of the optical potential
are then independent of §,,. We revisit these assump-
tions and find that subleading terms in d,, (which are
isoscalar and isovector for even and odd powers of 0y,
respectively) can be important for highly neutron-rich
nuclei and particularly at the low energies most relevant
for nuclear astrophysical phenomena. We study the en-
ergy dependence of these terms up to £ ~ 200 MeV in
anticipation of future experimental investigations of ex-
otic isotope reactions at RIB facilities.

A phenomenon of particular interest is isospin inver-
sion, whereby the real isovector optical potential is ex-
pected to change sign from positive at low energies to
negative at higher energies. In the vicinity of isospin
inversion, subleading terms proportional to 5%1) may be-
come relevant and probe novel isospin physics. The in-
terplay between intermediate-range attractive contribu-
tions to the nucleon-nucleon interaction and short-range
repulsive contributions can give rise to a change in sign
of the isoscalar optical potential at projectile energies
greater than F ~ 250MeV, which has been observed
in calculations with microscopic nucleon-nucleon poten-
tials [24]. The isovector contribution to the optical po-
tential, arising from 7-meson exchange and p-meson ex-
change in traditional one-boson exchange models, has a
stronger relative energy dependence. In the past, semi-
microscopic and microscopic optical potentials have been
constructed from mean field theory [25-27] and realis-
tic nucleon-nucleon interactions [28-33] respectively, and
there is significant disagreement regarding the energy de-
pendence of the isovector components. To date there are
therefore no strong constraints on the kinematic transi-
tion region associated with isospin inversion.

In microscopic many-body theory the nucleon-nucleus
optical model potential is identified with the on-shell nu-



cleon self-energy X(7,7'; EY) [34]. In the present study
we compute the nucleon self-energy at second order in
many-body perturbation theory employing as a start-
ing point high-precision nuclear interactions derived from
chiral effective field theory [35, 36]. Chiral nuclear poten-
tials with momentum-space cutoffs A < 450 MeV [37-39]
exhibit very good perturbative behavior (comparable to
renormalization-group evolved potentials [40-42]) and we
also consider a potential employing a 500 MeV cutoff [36]
that is used to give a conservative estimate of theoretical
uncertainties associated with nonperturbative dynamics
and variations in the resolution scale. Previous work has
shown that chiral low-momentum potentials provide a
good description of the symmetric nuclear matter sat-
uration energy and density [39], the incompressibility
and isospin-asymmetry energy [43], and the critical end-
point of the liquid-gas phase transition [44, 45]. The
present approach to nuclear scattering is therefore con-
sistent with nontrivial constraints from nuclear structure.

Isospin-asymmetry dependence of optical potentials —
In the optical model for nucleon-nucleus scattering, the
complicated many-body problem associated with mul-
tiple scattering through two- and three-body forces is
replaced by an (elastic-scattering) equivalent complex-
valued single-particle potential:

V(77 E)=U(F 7 E)+iW(r, 7' E), (1)

which in general is both non-local and energy-dependent.
The imaginary part in Eq. (1) accounts for the presence
of open inelastic scattering channels. Phenomenological
optical potentials are often taken to be local and energy-
dependent. The real and imaginary parts contain vol-
ume components proportional to Woods-Saxon densities
() = 1/(1+ eC= /o),

U(r E) = U(E)fo(r), W(r;E)=-W(E)fi(r), (2)

where the parameters Ug(E), Wo(E), R,; and a,.; vary
smoothly with the mass number A of the target nucleus
and the projectile energy F.

Recently chiral two- and three-nucleon forces have
been used to compute the real and imaginary volume
components of the optical potential for isospin-symmetric
nuclear systems [12, 13]. Although the strength and
energy dependence of the real component was found
to be in good agreement with modern phenomenologi-
cal parametrizations [21], the absorptive strength of the
imaginary part from microscopic nuclear potentials was
about a factor of two larger than that from phenomenol-
ogy. We note that at low energies the phenomenological
imaginary part is surface peaked and vanishes in the infi-
nite matter limit. Microscopic many-body theory in the
local density approximation attributes the surface imag-
inary part to the nonlinear density dependence of the
imaginary volume component. In Fig. 1 we show the real
and imaginary parts of the optical potential at nuclear
matter saturation density po = 0.16 fm =3 from chiral nu-
clear potentials compared to the global fit in Ref. [21].
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FIG. 1: (color online) Energy dependence of the real and
imaginary parts of the microscopic optical model potential
from chiral two- and three-body forces for symmetric nuclear
matter at saturation density po. Shown for comparison are
the global phenomenological potentials of Ref. [19-21].

The phenomenological “Koning” bands are obtained by
varying the mass number over the range A = 50—150 and
should not be interpreted as an uncertainty. On the other
hand, the error band associated with the microscopic cal-
culation comes from varying the resolution scale over the
range A = 414 — 500 MeV. In Fig. 1 we have included
for comparison also global optical potential parametriza-
tions [19, 20] valid at lower energies with associated un-
certainty estimates. In contrast to the results reported
in Ref. [12], the single-particle energies entering in the
second-order perturbative calculation are computed self-
consistently via e(q) = ¢?/2M +Re X(q, e(q)) rather than
from the effective mass plus energy shift parametrization
e(q) ~ ¢?/2M* + A, which smears out the enhancement
of the momentum-dependent effective mass at the Fermi
surface [46]. From Fig. 1 we observe that the microscopic
real volume component remains nearly linearly depen-
dent on the incident energy beyond E = 100MeV, in
contrast to the Koning analysis in Ref. [21]. Neverthe-
less, the two approaches are consistent within uncertain-
ties over a wide range of energies.

For scattering on neutron-rich nuclei, the dependence
of the optical potential on the isospin asymmetry &, is
crucial. The standard Lane form

7-T

U=Uy+ )

Ur, (3)

where 7 and T are the isospin operators for the projectile
and target nucleus respectively, is widely used in both
phenomenological and microscopic calculations. The
Lane parametrization relates the elastic proton-nucleus,
neutron-nucleus, and quasi-elastic charge-exchange pro-
cesses. For elastic scattering the Lane form reduces to
U = Uy — U;bpyTs, where 73 = £1 (for protons and neu-
trons, respectively) is the isospin quantum number of the
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FIG. 2: Diagrams contributing to the proton and neutron
self energies X, »(q,w; ks, 0np) at first and second order in
perturbation theory. The wavy line represents the antisym-
metrized two-nucleon interaction Van and the thick wavy lines
on the second-order diagrams represent the sum of the free-
space two-body force and the density-dependent NN interac-
tion from Refs. [47, 48].

incident nucleon.

Here we consider a more general expansion of the
isospin asymmetry dependence:

U=U,—U; Tg(gnp + U[[(S?LP + O((Sip) . (4)

The Hartree-Fock contribution E(l) 2N (g ik, 0np) from
two-body forces, shown dlagrammatlcally in Fig. 2(c),
is obtained by generalizing the results of Ref. [12] and
has the form

1),2N 2 = L7

2§ ) ( = Z(q hissitty|Van|qhyssitty)ny,

1
_ (5)
where Vop is the anti-symmetrized potential matrix ele-
ment, 1, = 0(ks(1 F d,,)'/3 — |h1]) is the occupation
probability, and the sum is taken over the momentum
h1, spin s1, and isospin 1 of the intermediate hole state.
In the present work we compute the exact dependence
of Zé{%’QN(q;kf,énp) on 0y, and extract the linear and
quadratic terms numerically.

q; kfv 5np)

The Hartree-Fock contributions from three-body forces
are obtained by summing two particles over the filled
states in the fermi sea:

3N
54 (g3 kg, Gp) (6)
1 e R,
=3 Z(thhz;38182;tt1t2|V3N|qh1h2;58182;tt1t2>n1n2~
12

The next-to-next-to-leading order (N2LO) chiral three-
body force consists of three terms, whose diagrammatic
contributions to the nucleon self-energy are shown in Fig.
3. The chiral three-nucleon contact force is proportional
to the low-energy constant cg:

(Ct) Z

i£jF#k

f#A Tj ) (7)
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FIG. 3: Contributions to the Hartree-Fock single-particle po-
tential from the N?LO chiral three-nucleon force. The large
dots represent vertices proportional to the low-energy con-
stants c1, cs3, ¢4, cp,cg, and the short double-line indicates a
medium insertion: —2md(ko)0(k}" — I&)).

where A, = 700 MeV and fr = 92.4 MeV. The one-pion
exchange three-body force proportional to the low-energy
constant ¢p has the form

V(lﬂ') _ Z

it Sl 4

gACD

Gi-q;
J ] — - = —
7202"%71"7;'7 (8)
+ mz

where g4 = 1.29 and m, = 138 MeV. Finally, the two-
pion exchange component with vertices proportional to
€1,3,4 is given by
2 GGG T
V(zn) _ ga “q; 05 qj FQBT-&T@, (9)
o 812 (¢” +m2)(qg +m2) YR

ik

where the isospin tensor is

Fgf = 0P (—deym?2 + 2¢3G; - @) +eae™ 1T G (T % @) -
(10)
The low-energy constants ¢34 have been fitted (within
the empirical uncertainties imposed by wN scattering)
to nucleon-nucleon scattering phase shifts [36], while the
cp and cp constants have been fitted to reproduce the
binding energies of 3H and 3He as well as the B-decay
lifetime of 3H [39].
At the Hartree-Fock level, the first-order terms in 4y,
arising from contact three-nucleon forces proportional to
the low-energy constants cg and cp are given by

6
CEk?f gAcDm?ru3

UI q, k =
(@k) = Grapan, ¥ s@nr,) A,
— arctan 2u — arctan(u + x) — arctan(u — )
3+ 5u? — 322 n1+(u+x)2
12z 1+ (u—2x)?

{2u—2u* (11)

—In(1+ 4u
+4un(+ )+

where kfc = 31%(pn + pp)/2, T = q/m; and u = ks /m.
The 2m-exchange Hartree diagrams proportional to ¢ 3



give rise to the isovector optical potential strength func-
tion

2.6,5
_gamau ci—cg ., 1
Uila ks) = 1874 f4 {03u+ 2z n 1+ (u—2)?
(c3 —2¢1)u }

A TS R T e

while the 2m-exchange Fock diagrams proportional to
C1,3,4 yield

m@@):géﬂﬁ%{—&{m@maﬂwm
FH (u,u) 9, H (u, m)} + (2¢4 — c3) [G(g:, ) 8,G(, )
+qmmacmw)_u@+@ﬂuﬁmmuam
1 (u, ) amf(u,x)} + /0 e [1SClauH(g,u) O, H (€, x)
+(3¢3 + 204)0uGIE, 1) Dy G(E, ) + 2(3¢3 — ca)

<0,1(60)0,1(60)] | (13)

with auxiliary functions

G(z,u) = 4UYZC(QuQ — 3) + 4z [ arctan(u + )
+arctan(u — 2)] + (2 —u* — 1) In m , (14)
H(z,u) = u(l+u*+2?) - i[l—i—(u—i—xﬁ]
u+z)?
x 1+ (u—x)?] lnm, (15)
uz u u?)3
I(z,u) = F(&LZ + 32?) — %(1 +u?)? + é {(122)
St (1 - 3u)(1 4 — IZ)] In m . (16)

The terms second-order in dy,, are relatively small, and
the explicit expressions are given in the Appendix.

Finally, we consider the second-order perturbative con-
tribution from two and three-body forces, U2(12\2 43N Which
is approximated by employing a density-dependent NN
interaction constructed from V3y as described in Refs.
[47-49]. The second-order contributions, shown in Figs.
2(a) and 2(b), are given by

SN (g wikp, )

1 Z |(prP3s15st1ts| Vi | g hassatta)|?
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- nina2ng
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FIG. 4: (color online) Contributions to the real part of the
proton and neutron optical model potentials from the n3lo450
chiral two- and three-body forces as a function of the momen-
tum ¢ and isospin asymmetry d,, at nuclear matter saturation
density po.

2b),2N
21(5 ) (Qaw;kfa(snp)
1 hyhssysstits|VER |7 Passatts)]?
:7Z|< 1hgsisstits) 2N|QP28§2 2)| n1Tiang
2 W+ € —€ —€3—1in
123
x (27m)36(hy + hs — 7 — ph). (18)
where np, = 1 — n, and V;ﬁ is the sum of the free-

space nucleon-nucleon potential Von and the density-
dependent two-body force Vjhed [47, 48]. All single-
particle energies are computed self-consistently:

epnl(a) = ¢*/2M + 22N (g) (19)
1),3N 2
+ SN (g) + Re =2 (g, e(q)).

The expressions are computed for arbitrary isospin asym-
metry, and the linear and quadratic terms in d,, are ex-
tracted numerically.

We show in Fig. 4 the various contributions to the
real part of the single-particle potential for protons and
neutrons in asymmetric matter at a density of py com-
puted from the n3lo450 chiral NN potential. We notice
that when employing the n3lo450 low-momentum chi-
ral nuclear potential (and also the n3lo414 potential),
the second-order perturbative contribution is always less
than the Hartree-Fock contribution, in contrast to the
behavior observed in Ref. [12] using the n3lo500 poten-
tial. We find that three-nucleon forces in general enhance



E (MeV)
0 50 100 150 200
80 [T v Al T I T
v

oYY === Chinal v SkLya | ]

60 v Empirical ¢  SKM* ]
r — — RMF BHF ]

K —— DBHF m  Gogny 1
40 =

D) R L T T e 7

U, MeV)

_2 ce b b b b b Py \*‘ Py T

q.6 1.8 2 22 24 26 28 3 32
1

g (fm ")

FIG. 5: (color online) Energy dependence of the isovector real
optical model potential at saturation density from chiral ef-
fective field theory. Shown for comparison are the predictions
of other microscopic, semi-microscopic, and phenomenological

models (see Ref. [33]).

isospin inversion due to the repulsive character of three-
body forces in homogeneous matter.

The magnitude and energy dependence of the real
isovector part of the optical potential are poorly con-
strained by experiment. From Refs. [19-21, 25, 50-52]
one finds that the magnitude is expected to decrease with
energy according to Uy = (28 £6) MeV — (0.15+0.05) E,
which we show as the empirical band in Fig. 5. The
chiral effective field theory prediction shown in Fig. 5
is consistent with the empirical constraints but has sig-
nificantly smaller uncertainties, typically of about 5-10
MeV over a wide range of scattering energies. The re-
gion for isospin inversion is predicted to lie in the range
FEinw = 155 £ 45MeV, and the two low-momentum in-
teractions alone would give a much narrower region of
Fiw = 12010 MeV. The results from other microscopic
many-body calculations are shown, including Brueckner-
Hartree-Fock “BHF” [53] and Dirac-Brueckner-Hartree-
Fock “DBHE” [33], as well as semi-microscopic mean field
models: “RMEF” [54], “Gogny” [55], “SKM*” [56], and
“SkLya” [57]. We refer the reader to Ref. [33] for addi-
tional details and analysis.

In addition to variations in the resolution scale, also
the order-by-order convergence [58, 59] in the chiral ex-
pansion provides an estimate of the theoretical uncer-
tainty and associated cutoff artifacts. For this purpose
we have computed as well the optical potential from the
NLO (next-to-leading order) and N2LO chiral potentials
with cutoffs A = 450 and 500 MeV [58]. At thresh-
old the uncertainties for both sets of cutoffs are similar:
U#0(0) = 3246 MeV and UP%°(0) = 3146 MeV. At the
isospin inversion energy the uncertainties are slightly re-
duced: U (Ejny) =0+5 MeV and UPY(E;y,,) =0+4
MeV. Accounting for these uncertainties would not qual-

[T S RTI N B

FIG. 6: Energy dependence of the isovector imaginary optical
potential at saturation density from chiral two- and three-
body forces. Also shown are the subleading 5,21,, contributions
to both the real and imaginary potentials.

itatively alter the error bands shown in Fig. 5, except
at low scattering energies. We also note that beyond
an energy of E ~ 200 MeV, significant artifacts were ob-
served in the calculation of the optical potential from the
n3lo414 potential, suggesting a breakdown in the chiral
effective field theory expansion.

In Fig. 6 we show the subleading contribution U;;
to the real optical potential as a function of projectile
energy. For low-energy scattering on neutron-rich tar-
gets we can expect an isoscalar shift of roughly (15 —
20MeV)dz,, while for energies greater than E > 100
MeV the quadratic term is consistent with zero. The lat-
ter observation has the important consequence that ex-
trapolations of phenomenological optical potentials into
the neutron-rich region of the nuclear chart can be valid
for energies beyond E > 100 MeV. This is supported by
a similar feature in the volume imaginary component,
where in Fig. 6 we see that the quadratic 672”0 term Wiy
is consistent with zero for all scattering energies consid-
ered. The Lane parametrization of the volume imaginary
optical potential strength therefore provides an excellent
approximation to the true isospin asymmetry dependence
over a large range of energies. We note that since no
isovector component for the volume imaginary contribu-
tion could be extracted from the most recent analyses in
Refs. [20, 21] due to the uncertainties in the scattering
data at large energies, our result is a prediction that may
be verified at RIB facilities.

Finally, we consider the quality of fitting the isospin
asymmetry dependence of the proton and neutron real
optical potentials up to quadratic 672”, terms. In Fig. 7
we show as a representative example the isospin asymme-
try dependence of the optical potential for a scattering
energy of 50 MeV employing the n3lo450 chiral nuclear
potential. For values of the isospin asymmetry up to
Onp = 0.1 the leading contribution is isovector in char-
acter and the Lane parametrization works well. Even at
bnp = 0.2 the second-order 62, isoscalar contribution be-
comes evident. At the highest value of 6,, = 0.4, the
isoscalar 5%]3 term gives a contribution to the optical po-
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FIG. 7: Isospin asymmetry dependence of the proton and
neutron real optical potentials in infinite nuclear matter at
saturation density po. A scattering energy of £ = 50 MeV
has been chosen.

tential that is about 1/4 that of the isovector contribu-
tion.

The present work lays the foundation for improved
modeling of nucleon-nucleus scattering away from the
valley of stability. A strong isovector component to the
imaginary part of the optical potential, as found in the
present study, can inhibit radiative neutron-capture cross
sections on exotic nuclei [60] and strongly influence r-
process nucleosynthesis in cooler environments such as
the tidally ejected matter in neutron star mergers. The
isovector real part of the single-particle potential (to-
gether with the isoscalar 47, terms important at low
energies) may be more relevant for neutron star inner
crusts, where a lattice (or pasta structures) of neutron-
rich nuclei interact with a background of free neutrons.
At the higher energies attained at next-generation ra-
dioactive beam facilities, our predicted sign change in
the isovector real optical potential in the energy range
110 < Ejnp < 200MeV as well as the strength of the
isovector imaginary optical potential W ~ 8 — 12 MeV
can be tested.

Work supported in part by US DOE Grant No. DE-
FG02-97ER-41014, the BMBF, the DFG cluster of excel-
lence Origin and Structure of the Universe, by the DFG,
NSFC (CRC110).

I. APPENDIX: 6%,, CONTRIBUTIONS FROM
THREE-NUCLEON FORCES

Here we present results for the quadratic 531) correc-
tions to the nucleon-nucleus optical potential from three-
body forces at the Hartree-Fock level, which are found to
be significantly smaller than the leading 6, terms. The
short-distance contact term contribution, shown in Fig.

3(a), has the form

CEk?‘

Un(q, ky) = T2ri fAA,
X

(20)

The two diagrams from the one-pion exchange three-
body force, Figs. 3(b) and 3(c), yield

6,5 2
gacpmzu’ [8u”+3
Un(q. kg) = ) ‘
u(q, ky) 18(27Tf7r)4AX{ du?
§ u+5€+z71 +
w1+ (uta)? 14 (u—x)?
3 1+(u+$)2
sh—mF=5 .

In(1 + 4u?) — 6u

u—x—ax "

+

(21)

The Hartree diagrams, Figs. 3(d) and 3(e), from the two-
pion exchange three-body force proportional to ¢; and c3
give

2m8ub 6
UH(QJW) = 99(1427_(_}—)4{40310 + 5(303 — 4C1)
8u(2¢1 — c3) 8 3
W+ 5(01 _63)+ﬁ(401 — 3c3)

n(1-+40) 4 21—
Su(es — e1)(1+ 22 — ?)

1+ (uv+ )21+ (u—x)?

16u3(c3 — 2¢1)(1 + u? — 22) }

1+ (u+2)22[1 + (u—2)?)?

(22)

The Fock diagrams, Figs. 3(f) and 3(g), are split into two
parts depending on ¢; and c34:

gheimiu
3(4m fr)ta?

28, H(z, u)} +u[0,H(z,u)]” + 0, H (u, 7) [%(sax

Un(g, k) = {H(x,u) [u@iH(x,u)

—20,)H(x,u)| _ — QH(u,u)} + uH (u, w) 0,0, H(u, )

r=u

+ / N5 0, H(6.x) [uO2H(E.u) — 20,H(E.w)] } e

2m6u u
Un(q, k) = AT {(303 +2¢4) [0,G(, u)]?

18(4m fr)4x? | 3

2
+ 3“(3@,

+(2¢4 — ¢3)G(z,u) [QGMG(J;, u) —ud?G(x, u)}
—c4) [0u] (z, u)]2 +2(cg + ca)I(z,u) [u O21(z,u)
—20,1(z, u)} + (e3 — 2¢4) [@G(u, x) (%(3(%(%’(33, u)|m:u

—20,G(z, U)L:u - 2G(u, u)) + uG(u, u) 8,0,G(u, x)



+ /Oudg 8,G(€, 7) (u B2G (€, u) — 28uG(§,u))] +2(es
+ea) {&J(u, ) (%(3@ —20,)1(x,u)|,_, —2I(u, u))
Sl (u,w) 9udp I (u, ) + /0 CdEa, 1, 7) (u O2I(€,u)

—28,I(€, u))] } : (24)

with auxiliary functions defined in Eqs. (14)-(16).
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