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Abstract

Properties of hot and dense matter are calculated in the framework of quantum hadro-dynamics

by including contributions from two-loop (TL) diagrams arising from the exchange of iso-scalar and

iso-vector mesons between nucleons. Our extension of mean-field theory (MFT) employs the same

five density-independent coupling strengths which are calibrated using the empirical properties

at the equilibrium density of iso-spin symmetric matter. Results of calculations from the MFT

and TL approximations are compared for conditions of density, temperature, and proton fraction

encountered in the study of core-collapse supernovae, young and old neutron stars, and mergers of

compact binary stars. The TL results for the equation of state (EOS) of cold pure neutron matter

at sub- and near-nuclear densities agree well with those of modern quantum Monte Carlo and

effective field-theoretical approaches. Although the high-density EOS in the TL approximation for

cold and beta-equilibrated neutron-star matter is substantially softer than its MFT counterpart,

it is able to support a 2M� neutron star required by recent precise determinations. In addition,

radii of 1.4M� stars are smaller by ∼ 1 km than obtained in MFT and lie in the range indicated

by analysis of astronomical data. In contrast to MFT, the TL results also give a better account of

the single-particle or optical potentials extracted from analyses of medium-energy proton-nucleus

and heavy-ion experiments. In degenerate conditions, the thermal variables are well reproduced

by results of Landau’s Fermi-Liquid theory in which density-dependent effective masses feature

prominently. The ratio of the thermal components of pressure and energy density expressed

as Γth = 1 + (Pth/εth), often used in astrophysical simulations, exhibits a stronger dependence

on density than on proton fraction and temperature in both MFT and TL calculations. The

prominent peak of Γth at supra-nuclear density found in MFT is, however, suppressed in TL

calculations. This outcome is analogous to results of non-relativistic models when exchange

contributions from finite-range interactions are included in addition to those of contact interactions.
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I. INTRODUCTION

The equation of state of dense matter plays a central role in describing the collective

properties of laboratory nuclei, medium-energy heavy-ion collisions, and astrophysical phe-

nomena involving core-collapse supernovae, neutron stars from their birth to old age, and

mergers of compact binary stars. In hydrodynamic simulations of compact objects, the

equation of state (EOS) is required for baryon densities ρB ranging from 10−8 fm−3 to sev-

eral times the nuclear saturation density of ρ0 = 0.16 fm−3, temperatures T up to 100 MeV

and beyond, and electron fractions Ye = ρe/ρB from 0 to 0.5. The physical state of mat-

ter, determined by the minimization of the free energy, depends on the ambient conditions

characterized by ρB, T and Ye. At sub-nuclear densities and moderate temperatures (T

up to ∼ 20 MeV), the preferred phase is inhomogeneous containing nucleons, light nuclear

clusters (e.g., d, t, and He) as well as heavier neutron-rich nuclei. At near-nuclear and

supra-nuclear densities, a homogeneous phase of bulk matter comprised of nucleons pre-

vails. Baryons beyond nucleons (e.g., hyperons), phase transitions to Bose condensates, and

sub-hadronic degrees of freedom (quarks) may also enter in the description of the EOS as ρB

increases well beyond ρ0. In astrophysical settings, contributions from charge neutralizing

leptons (electrons, positrons and muons), neutrinos of all flavors, and photons must also be

considered when appropriate. Examples of EOS’s based on non-relativistic and relativistic

field-theoretical descriptions of nucleonic matter at the mean-field level that are currently

used in astrophysical applications can be found in Refs. [1–10].

Attempts to constrain the EOS to be consistent with the empirical properties of nuclei

and bulk nuclear matter with varying isospin content, data from medium energy-heavy-ion

collisions and astrophysical observations are growing in number (see the recent review in Ref.

[11], and references therein). On the nuclear front, experimental data on nuclear masses,

symmetry energy and its density dependence, neutron skin thicknesses, dipole polarizabil-

ities, level densities, etc., have been used to pin down the EOS at near- and sub-nuclear

densities. Collective flow observables, such as the mean transverse momentum vs rapidity,

elliptic flow, etc., in medium heavy-ion collisions have shed light on the single-particle po-

tential felt by nucleons (used in the construction of the EOS) for ρB up to ∼ 3ρ0 for nearly

isospin-symmetric bulk matter. On the astrophysical front, precise determinations of neu-

tron star masses up to 2M� [12, 13] have put stringent constraints on the high-density EOS.
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Estimates of neutron star radii, which further constrain the EOS at supra-nuclear densities,

are beginning to become available (see Ref. [11] for a summary and relevant references).

These developments have provided the impetus for studies of hot and dense matter beyond

the mean-field level for the conditions encountered in astrophysical applications.

In this paper, we apply the theory of quantum hadro-dynamics (QHD) - extended from

the Walecka model to include scalar meson self-interactions [14] (see Refs. [15, 16] for reviews)

- beyond the mean-field level to study the nuclear EOS at both zero and finite temperatures

for proton fractions x = ρp/ρB ranging from zero for pure neutron matter (PNM) to 0.5

for symmetric nuclear matter (SNM). QHD is a relativistic field theory in which nucleons

(protons and neutrons) interact via the exchange of iso-scalar scalar φ and vector V µ, and

isovector pseduo-scalar π and vector ρµ mesons. The theory respects the internal discrete

symmetries of parity, charge symmetry, and time invariance, and continuous SU(2)⊗SU(2)

chiral symmetry and its spontaneous breaking that are required by the underlying theory of

quantum chromodynamics (QCD) [16, 17]. A recent systematic study of chiral symmetry

in QHD can be in found Refs. [18, 19]. The mean-field approximation of QHD has been

widely used to study the EOS of bulk matter and the properties of finite nuclei [15, 16, 20].

Recent EOS tables based on relativistic mean-field theory (MFT) constructed for use in

astrophysical simulations can be found in [6, 7].

A systematic improvement beyond the MFT approximation was carried out in Refs. [17,

21] in terms of a loop expansion for computing the ground state energy of nuclear matter.

However, two-loop (TL) contributions beyond MFT were found to be very large and more

significant than contributions from MFT so that the loop expansion could not be regarded

as perturbatively convergent. The ensuing unphysical predictions for the bulk properties at

the nuclear equilibrium density resulted in abandoning loop expansion as a viable scheme

for some time. The method was revived in Ref. [22] where form factors at the vertices of

the loops were used to regulate the high-momentum behavior of the loop contributions from

the Lamb shift and vacuum fluctuation pieces with the result that the empirical properties

of nuclear matter were recovered.

An effective loop-renormalization scheme was not available until recent studies [23, 24]

treated QHD as an effective field theory (see Refs. [25–28] for accounts on effective field

theory (EFT), and Refs. [29–32] for chiral EFT including heavy mesons) and adapted in-

frared loop regularization [33–35]. In chiral EFT, a proper power counting in the single
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nucleon sector [36] was made feasible either by using a non-relativistic theory or by using

infrared regularization which expands anti-nucleon pole contributions as contact terms [33–

35]. In the scheme for many-body systems, when treating the TL contribution to the ground

state energy, only the terms having manifest density dependence are kept; the pieces with

anti-nucleon (or negative energy state) contributions, e.g., “Lamb shift” and “vacuum fluc-

tuation” terms, as well as the pure meson loops [18, 19], are considered as due to short range

physics and renormalized by terms already present in the QHD Lagrangian. This procedure

had been partially employed in an early TL study [37], and in various Hatree-Fock (HF)

calculations, e.g., [38, 39], but without ample justification. It should be pointed out that

field-theoretical studies are still incomplete, the current three-loop calculation being in the

exploratory stage [40].

Our objectives in this work are to (1) extend the TL calculations by including iso-vector

meson (π, and ρµ) exchanges in the loops with non-linear scalar meson self-interactions

in the Lagrangian; (2) fit the coupling strengths utilizing the available nuclear properties

and study the phenomenology in detail; (3) develop the finite temperature formalism; and

(4) study the thermal properties relevant to astrophysical phenomena such as core-collapse

supernovae, proto-neutron stars, and mergers of compact binary stars. These issues have

not been addressed together in previous studies [23, 24, 37]. This work is also motivated

by the observation in Refs. [41, 42] that exchange contributions are needed to reconcile the

single-particle potential (or the real part of the optical potential) with the collective flow

observables in medium energy heavy-ion collision experiments. Our results for the single-

particle potential provide a contrast to other relativistic versions in Refs. [43–45].

As noted in Refs. [38, 39], the relativistic HF calculation is similar to the TL one in [37],

but the TL formalism is much simpler than the HF which requires self-consistency. This

advantage can benefit studies of finite nuclei. Different versions of HF calculations [46–50]

exist, some of which include vertex form factors and/or density dependent couplings. From

the EFT perspective, these procedures introduce uncertainties that are degenerate with the

non-linear couplings in the Lagrangian. Thus far, finite temperature calculations have not

been addressed in relativistic HF calculations.

There exist numerous non-relativistic EOS calculations. Recently, chiral EFT’s have

been applied to study two- and three-nucleon potentials, with couplings determined from

low-energy nucleon-nucleon scattering data and properties of light nuclei (see reviews in
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Refs. [51, 52]). Different microscopic perturbative schemes are employed, including the

Hamiltonian framework using the EFT potential with or without similarity renormaliza-

tion group transformation [53–55], as well as the EFT Lagrangian framework [56–59]. The

numerically intensive non-perturbative methods, based on either an empirical or an EFT

potential, have been used mainly to study light nuclei and neutron matter [60–63]. Thermal

properties have been addressed in Refs [56–59] below and around the nuclear saturation

density. Extensions to supra-nuclear densities well beyond ρ0 have been hampered owing

both to the non-relativistic treatment and the relatively small high-energy scale required in

the EFT approach.

In contrast to the above calculations, the QHD couplings are calibrated at the saturation

density using nuclear bulk properties with sub- and supra- nuclear properties emerging as

predictions. According to the density functional theory [20], such fitted couplings implicitly

include some effects of higher-order, many-body correlations that are not included in the

approximate energy density functional. Including TL contributions improves the density

functional by adding non-analytic density dependences to the MFT density functional. There

are also non-relativistic density functionals (e.g., Skyrme [64]), which are based on contact

nucleon-nucleon interactions. These functionals have been widely used to study properties

of nuclei (see review [20]) as well as of high-density matter. Recently, a detailed study of

thermal properties using non-relativistic density functionals has been carried out in Ref. [65].

The organization of the paper is as follows. In Sec. II, the Lagrangian density of QHD

featuring interactions between nucleons and mesons is presented. Section III is devoted to

a discussion of the finite temperature formalism at the MFT and TL levels. Formulas to

calculate zero temperature properties at the MFT and TL levels are given in Sec. IV. A

self-consistent procedure to calculate the thermal properties is described in Sec. V along

with a comparison to a perturbative approach. Results at zero temperature for isospin sym-

metric and asymmetric matter, and for structural attributes of neutron stars, are presented

in Sec. VI. This section also includes comparisons with results of modern non-relativistic

approaches as well a discussion of the single-particle potential of relevance to heavy-ion colli-

sions. Thermal properties are studied in Sec. VII where results of relevance to astrophysical

simulations of core-collapse supernovae, proto-neutron stars and mergers of compact binary

stars are discussed. This section also contains a comparison of the exact numerical calcula-

tions with those in the degenerate limit to illustrate how the Landau effective mass captures
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the behavior of the thermal state variables as a function of density to leading order effects

in the temperature. Our summary and conclusion are contained in Sec. VIII. Working for-

mulas for the TL contributions are collected in Appendix A. In Appendix B, non-relativistic

limit expressions for the TL contributions are given. Appendix C contains expressions that

facilitate the evaluation of the single-particle spectrum. Degenerate and non-degenerate

limit expressions to examine the thermal properties are summarized in Appendix D.

II. THE LAGRANGIAN DENSITY OF QHD

The Lagrangian density of QHD employed in Refs. [14, 66] incorporates the non-linear

realization of SU(2) ⊗ SU(2) chiral symmetry. Such symmetry realization was systemati-

cally studied in Refs. [18, 19]. Here we only mention the relevant interaction terms. The

interactions between nucleons and mesons are delineated in the Lagrangian density

LN = N

[
iγµ (∂µ + igρρµ + igvVµ) +

gA
fπ
γµγ5 ∂µπ −M + gsφ

]
N . (2.1)

Here, N = (p, n)T is the isospin-multiplet of proton and nucleon Dirac spinor fields; γµ and

γ5 are the Dirac matrics, and ∂µ ≡ ∂/∂xµ; ρµ ≡ ρiµ τi/2 and π ≡ πi τi/2 are iso-vector vector

and pseduo-scalar (Goldstone) fields, with τ i being isospin Pauli matrices and i = 0,±1 as

isospin indices; φ and V µ are iso-scalar scalar and vector fields. The pion decay constant

fπ = 93 MeV, and nucleon axial charge gA = 1.26 [18, 19]. The pseudo-vector nucleon-π

interaction is a result of chiral symmetry breaking [18, 19, 66].

The Lagrangian density describing meson interactions is

Lmeson =
1

2
∂µφ ∂

µφ−
(

1

2
+
κ3
3!

gsφ

M
+
κ4
4!

g2sφ
2

M2

)
m2
sφ

2 +
1

2
∂µπi∂µπi −

1

2
m2
ππ

iπi

− 1

4
V µνVµν +

1

2
m2
v VµV

µ − 1

4
ρiµνρ

µν
i +

1

2
m2
ρρ
i
µρ

µ
i , (2.2)

where

Vµν ≡ ∂µVν − ∂νVµ and

ρµν ≡ ∂µρν − ∂νρµ + i
gρ
2

[ρiµτi , ρ
j
ντj] . (2.3)

are the field tensors with τi,j denoting the Pauli matrices, and [ , ] standing for a commutator.

The coupling constant gρ in Eq. (2.3) indicates that ρiµ couples to the iso-vector vector current

including its own contributions, which is also known as universal vector meson dominance
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(UVMD) [66]. The same coupling is assigned to π-π-ρ interaction [18, 19] without being

shown here. The masses of the different fields are: M = 939 MeV (nucleon), ms = 550 MeV

(φ meson), mv = 783 MeV (V µ), mρ = 770 MeV (ρiµ), and mπ = 138 MeV (πi). According

to the expansion scheme proposed in Refs. [23, 24, 66], the meson masses, ms, mv, mρ are

on the order of the nucleon mass M , and the non-linear couplings, κ3 and κ4 are of order 1.

The five coupling strengths, gs, gv, gρ, κ3, and κ4 are calibrated against empirical properties

of nuclear matter at its equilibrium density.

III. FINITE TEMPERATURE FORMALISM

Although the finite temperature field theory formalism can be found in various text books

(e.g., [67]), we summarize the relevant formulas in the QHD context to see how TL effects

are manifested. (Chiral EFT studies of thermodynamics can be found in e.g. Ref. [59],

but no mean field minimization is needed in these calculations. The finite temperature

formalism for MFT calculations in QHD can be found in [68–70].) The grand canonical

partion function is [15, 67]

Z ≡ Tr exp [−β (H − µpNp − µnNn)] ≡ exp
[
−βΩ

(
T, V, µp,n;φ, V , b

)]
. (3.1)

Here, β ≡ 1/T with T being temperature; H, Np, and Nn are the Hamiltonian, proton, and

neutron number operators (Np and Nn are also used later to denote the proton and neutron

numbers with NB = Np + Nn denoting the baryon number); V , µp, µn are the volume and

nucleon chemical potentials; φ, V , and b are the ensemble average values of φ, V 0, and ρ0,0

fields at a given temperature. (Only the zeroth components of V µ and neutral ρ0,µ develop

non-zero expectation values due to rotation and isospin symmetry.) In the following, bg

denotes the collection of these expectation values. The relations between bg and (T, µi) can

be obtained by extremizing the grand canonical chemical potential Ω:

∂Ω

∂φ

∣∣∣∣
T,µp,n

=
∂Ω

∂V

∣∣∣∣
T,µp,n

=
∂Ω

∂b

∣∣∣∣
T,µp,n

= 0 . (3.2)

Other state variables, such as the particle number, entropy, and pressure that depend on T

and µi can be computed via

Ni = − ∂Ω

∂µi

∣∣∣∣
T,V,µj ,bg

, S = − ∂Ω

∂T

∣∣∣∣
V,µp,n,bg

and Ω = −PV = E − TS −
∑
i=p,n

µiNi(3.3)
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We do not need to differentiate Ω with respect to the bg variables, because their values

extremize Ω. In homogenous matter, the volume dependence of the state variables can be

factored out. From now on, we define densities of Ω, E, and S as ω, E , and S:

ω(T, µp,n; bg) = −P (T, µp,n; bg) = E − TS −
∑
i

µiρi (3.4)

ρi = − ∂ω

∂µi

∣∣∣∣
T,µj ,bg

and S = − ∂ω

∂T

∣∣∣∣
µp,n,bg

(3.5)

In this study, we use ρp,n and T as the independent variables. The free energy density is

F(ρp,n, T ; bg) ≡ E − TS = ω +
∑
i

µiρi , (3.6)

with µi being a function of temperature, density, and bg through Eq. (3.5). Based on the

free energy density F(ρp,n, T ; bg), the other state variables are computed using

S = − ∂F
∂T

∣∣∣∣
ρp,n,bg

and µi =
∂F
∂ρi

∣∣∣∣
T,ρj ,bg

, (3.7)

and P (T, ρp,n; bg) through Eq. (3.4). In the derivatives above, bg are held fixed because of

the identities [see Eq. (3.2)]:

∂F(T, ρp,n; bg)

∂φ

∣∣∣∣
T,ρp,n

=
∂ω(T, µp,n; bg)

∂φ

∣∣∣∣
T,µp,n

(3.8)

∂F(T, ρp,n; bg)

∂V

∣∣∣∣
T,ρp,n

=
∂ω(T, µp,n; bg)

∂V

∣∣∣∣
T,µp,n

(3.9)

∂F(T, ρp,n; bg)

∂b

∣∣∣∣
T,ρp,n

=
∂ω(T, µp,n; bg)

∂b

∣∣∣∣
T,µp,n

, (3.10)

A. Formalism at the MFT level

The grand canonical chemical potential ω(0)(T, µp,n; bg) at the mean-field level (MFT) is

[68–70]:

ω(0) = V(φ)− 1

2
m2
vV

2 − 1

2
m2
ρb

2 − γsT
∑
i

∫
d3k

(2π)3
ln
[
1 + e−β(E

∗(k)−νi)
]
. (3.11)

Here,

V(φ) ≡

(
1

2
+
κ3
3!

gsφ

M
+
κ4
4!

g2sφ
2

M2

)
m2
sφ

2
. (3.12)

For densities and temperatures of interest here, contributions from anti-nucleons and mesons

are negligible and are not included. The various symbols are: γs = 2 is the spin-degeneracy,
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E∗(k) ≡
√
M∗2 + k2 with M∗ ≡ M − gsφ and k ≡ |k|, νp ≡ µp − gvV − 1

2
gρb, and

νn ≡ µn − gvV + 1
2
gρb. From now on, unless explicitly stated, the momentum variable, e.g.,

k, is the norm of the space component, |k|.

For completeness, we collect the MFT results in the following. The Fermi-Dirac distribu-

tion is denoted as ni(k) ≡ {exp [β (E∗(k)− νi)] + 1}−1. By using Eq. (3.5), we can compute

state variables as functions of T and µp,n.

ρi(T, νp,n;φ) = γs

∫
d3k

(2π)3
ni(k) , (3.13)

E(0)(T, µp,n; bg) = V(φ)− 1

2
m2
vV

2 − 1

2
m2
ρb

2
+ ρp

(
gvV +

1

2
gρb

)
+ ρn

(
gvV −

1

2
gρb

)
+ γs

∑
i

∫
d3k

(2π)3
E∗(k)ni(k) , (3.14)

S(0)(T, µp,n; bg) = −γs
∑
i

∫
d3k

(2π)3

[(
1− ni(k)

)
ln
(
1− ni(k)

)
+ ni(k) ln (ni(k))

]
(3.15)

F(0)(T, µp,n; bg) = ω(0) +
∑
i

µiρi = E(0) − TS(0) (3.16)

P(0)(T, µp,n; bg) = −ω(0) (3.17)

To solve bg for a given T , the conditions to be met are:

∂ω(0)

∂φ

∣∣∣∣
µp,n,T

=
dV(φ)

dφ
− gsγs

∑
i

∫
d3k

(2π)3
M∗

E∗(k)
ni(k) = 0 , (3.18)

∂ω(0)

∂V

∣∣∣∣
µp,n,T

= −m2
vV + gvρB = 0 , (3.19)

∂ω(0)

∂b

∣∣∣∣
µp,n,T

= −m2
ρb+

1

2
gρ (ρp − ρn) = 0 . (3.20)

The relations in Eq. (3.13) and Eq. (3.18) can be combined to solve µp,n and bg to yield ρp,n

and T , based on which all the other state variables become functions of ρp,n and T .

B. Formalism including two-loop contributions

The two-loop contribution to ω at finite temperature can be computed in the imaginary-

time formalism [67–70]. The conclusion in Refs. [23, 24] is that the properly regularized

loop contribution arises only from the GD propagator, which is the density-dependent piece

of the full baryon’s propagator written as

Gi(p) = ( 6p∗ +M∗)

[
1

p∗2 −M∗2 + iε
− i2πni(p)δ(p∗2 −M∗2)

]
≡ GF (p) +GD(p) .(3.21)

10



FIG. 1. Feynman diagram for the two-loop contribution to the grand canonical potential density

ω. The exchange of mesons φ, V µ, ρµ and π is indicated by the wavy line.

Above 6p∗ = γµp∗µ, where γµ are the usual Dirac matrices. The Fermi-Dirac distribution ni(p)

is as in Section III A, and p∗0 = p0 − gvV − gρb t3/2 (t3 = ±1 for proton and nucleon). This

assertion, although only proved for zero temperature can be generalized to finite tempera-

ture. Terms depending on either the anti-nucleon or meson density, as well as the vacuum

polarization terms independent of densities, can be subsumed in the meson couplings of the

Lagrangian and need not be kept here. The real-time formalism [68–70] can also be used,

but at the expense of extra 2× 2 matrix structures for the vertices and propagators.

The general meson exchange two-loop contribution to the grand chemical potential den-

sity δω(1) has the following general structure [67]:

δω(1) =
γs
4
g2
∫

d4p

(2π)4
d4q

(2π)4
Tr [GD(q)Γ(p− q)GD(p)Γ(q − p)]D(q − p) , (3.22)

where the interaction vertex Γ involves isospin. We first introduce the following definitions

considering the trace in the above equation:

fs(p
∗, q∗) ≡ 4

(
p∗ · q∗ +M∗2) ,

fv(p
∗, q∗) ≡ 8

(
p∗ · q∗ − 2M∗2) ,

fpv(p
∗, q∗) ≡ 16

(
p∗ · q∗ −M∗2) , (3.23)

where fs, fv, and fpv are due to scalar, vector, and psedovector coupings; p∗ · q∗ ≡ p∗µq∗µ =√
M∗2 + |p|2

√
M∗2 + |q|2 − p · q. Moreover, the meson propagators can be expressed in

terms of

D(k;m) ≡ 1

k · k −m2
. (3.24)
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With these notations, the TL contributions from the four meson exchanges are:

δω(1,φ) = −γs
4
g2s

∫
dτpdτq fs(p

∗, q∗)D(k;m∗s) [np(p)np(q) + nn(p)nn(q)] , (3.25)

δω(1,v) = −γs
4
g2v

∫
dτpdτq fv(p

∗, q∗)D(k;mv) [np(p)np(q) + nn(p)nn(q)] , (3.26)

δω(1,ρ) = −γs
16
g2ρ

∫
dτpdτq fv(p

∗, q∗)D(k;mρ)

× [np(p)np(q) + nn(p)nn(q) + 4np(p)nn(q)] , (3.27)

δω(1,π) = −γs
16

(
gAM

∗

fπ

)2 ∫
dτpdτq fpv(p

∗, q∗)D(k;mπ)

× [np(p)np(q) + nn(p)nn(q) + 4np(p)nn(q)] . (3.28)

In the above expressions, dτp ≡ d3p/ [(2π)32E∗(p)]; p∗ and q∗ are all “on shell”, i.e., p∗2 =

q∗2 = M∗2; k = p∗ − q∗. The scalar meson φ mass used in the two-loop is modified to

m∗s
2 ≡ ms

2

(
1 + κ3

gsφ

M
+
κ4
2

(gsφ)2

M2

)
. (3.29)

owing to its non-linear self-interactions.

The choice of k = p∗ − q∗ implicitly assumes UVMD as mentioned in section II. From

energy momentum conservation, in D(k;mπ), k = p− q, whose time component k0 could be

different from E∗(p)− E∗(q) if ρµ does not couple to the iso-vector vector current from π.

This would lead to a time-like π propagator in the loop, signaling π production. The same

argument applies to the ρµ meson. Without further knowledge of π and ρµ propagators in

dense medium, we assume UVMD in this study.

Integrations of the angular dependences in Eqs. (3.25)-(3.28) are easily performed. The

resulting expressions are presented in Appendix A. In the non-relativistic limit, i.e., in

the low-density region, these expressions become physically transparent, and are shown

in Appendix B. The importance of relativistic kinematics and retardation effects will be

discussed in the section on results.

Perturbative analysis

Here, the approximation scheme proposed in Refs. [59, 71] is applied whereby the rela-

tion between the density ρi and the chemical potential µi is kept the same as in MFT, i.e.,

Eq. (3.13). As a result, µi is not the physical chemical potential, and will be labeled as µ
(0)
i

12



in the following. As outlined in Refs. [59, 71], this approximation provides a systematic ex-

pansion of the free energy density functional at finite temperature. The so-called anomalous

diagrams arising in the zero-temperature limit [72–74] start at the three-loop level, and are

not considered in this calculation. To get ω(1), we sum up the MFT and TL contributions

to get

ω(1)(T, µ
(0)
p,n; bg) = ω(0)(T, µ

(0)
p,n; bg) + δω(1)(T, νp,n;φ) , (3.30)

with νp ≡ µ
(0)
p − gvV − 1

2
gρb, and νn ≡ µ

(0)
n − gvV + 1

2
gρb. Here δω(1) depends on νp,n and

φ but not on V and b. By using Eq. (3.13), we compute ρi for given µ
(0)
i , T , and bg. Note

that in this approximation, µ
(0)
i is not the physical chemical potential which motivates the

notation used. Based on

F(1) ≡ ω(1)(T, µ
(0)
p,n; bg) +

∑
i

µ
(0)
i ρi , (3.31)

and F(0) = ω(0) + µ
(0)
i ρi (Eq. (3.16)), we get

F(1) = F(0)(T, ρp,n; bg) + δω(1)(T, νp,n;φ) (3.32)

To solve for φ, V and b for given T and ρp,n, we invoke Eq. (3.10) (note that δω(1) does not

have manifest V and b dependences) and require the following conditions to be satisfied:

∂F(1)

∂V

∣∣∣∣
ρp,n,T

=
∂F(0)

∂V

∣∣∣∣
ρp,n,T

= −m2
vV + gvρB = 0

∂F(1)

∂b

∣∣∣∣
ρp,n,T

=
∂F(0)

∂b

∣∣∣∣
ρp,n,T

= −m2
ρb+

1

2
gρ (ρp − ρn) = 0

∂F(1)

∂φ

∣∣∣∣
ρp,n,T

=
∂F(0)

∂φ

∣∣∣∣
ρp,n,T

+
∂δω(1)

(
T, νp,n(T, ρp,n, φ);φ

)
∂φ

∣∣∣∣∣
ρp,n,T

= 0

=
dV(φ)

dφ
− gsγs

∑
i

∫
d3k

(2π)3
M∗

E∗(k)
ni(k)

+
∂δω(1)

(
T, νp,n;φ

)
∂φ

∣∣∣∣∣
νp,n,T

+
∑
i

∂δω(1)

(
T, νp,n;φ

)
∂νi

∣∣∣∣∣
νj 6=i,T,φ

∂νi(T, ρp,n;φ)

∂φ

∣∣∣∣
T,ρp,n

.(3.33)

From the above mean field equations and Eq. (3.32), we can compute the entropy density S(1),

the physical chemical potential µi, the energy density E(1) = F(1) + TS(1), and the pressure

P(1) = −F(1) +
∑

i µiρi using Eq. (3.7). Note that in general µi 6= µ
(0)
i and P(1) 6= −ω(1).
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TABLE I. Empirical properties used to constrain the coupling strengths in the Lagrangian for the

MFT and two-loop calculations. The various symbols are: ρ0, the equilibrium density, B0, the

binding energy, Kv,0, the compression modulus, m∗0/M , the Landau effective mass scaled with the

vacuum mass, all for isospin symmetric nuclear matter; S2,0 is the nuclear symmetry energy.

ρ0 (fm−3) B0 (MeV) S2,0 (MeV) Kv,0 (MeV) m∗0/M

0.16 16.0 35.0 250 0.73

IV. ZERO TEMPERATURE PROPERTIES

As mentioned in section I, the coupling constants in the Lagrangian are fixed using the

empirical properties of nuclear matter. The properties used for calibrating the model are

listed in Table I, where the lower index “0” denotes quantities evaluated at ρ0 = 2k2F0/(3π
2)

where P (ρ0) = 0 and E(ρ0)/ρ0 −M = −B0. The symmetry energy and incompressibility

are defined as

Kv ≡ 9
∂P

∂ρB

∣∣∣∣
x

and S2 ≡
1

8ρB

∂2E
∂x2

∣∣∣∣
x=0.5,ρB

, (4.1)

where x = ρp/ρB is the proton fraction. The single particle spectrum is given by

γs εi(k) =
∂E
[
np,n;φ[np,n], V [np,n], b[np,n]

]
∂ni(k)

=
∂E
[
np,n;φ, V , b

]
∂ni(k)

∣∣∣∣∣
bg

(4.2)

as E is a functional of the nucleon distribution function ni(q), and bg; the latter is also a

functional of ni(q). The calculation is greatly simplified owing to bg extremizing E . The

Landau effective mass, proportional to the density of states at the Fermi surface, defined by

m∗i (ρB, x) ≡ kF,i

(
∂εi(k)

∂k

)−1∣∣∣∣∣
k=kF,i

(4.3)

helps to examine the thermodynamics in the degenerate limit (see Appendix D). When

convenient, we use the variables (ρB, x) or (ρp, ρn) to indicate isospin asymmetry.
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A. Mean field theory (MFT)

At zero temperature, the MFT energy density is

E(0)(ρp,n; bg) = V(φ)− 1

2
m2
vV

2 − 1

2
m2
ρb

2
+ ρp

(
gvV +

1

2
gρb

)
+ ρn

(
gvV −

1

2
gρb

)
+γs

∑
i=n,p

∫
d3k

(2π)3
E∗(k)ni(k) , (4.4)

where ni(k) = θ(kFi − k) and ρi = γsk
3
Fi/(6π

2). The expectation values of the meson fields

satisfy

gvV =
g2v
m2
v

ρB and gρb =
g2ρ
m2
ρ

ρp − ρn
2

ρs,p + ρs,n ≡ γs
∑
i

∫
d3k

(2π)3
M∗

E∗(k)
ni(k) = −∂V(φ)

∂M∗ , (4.5)

where ρs,i are the nucleon scalar densities. Based on the above equations,

∂M∗

∂ρB

∣∣∣∣
x

= (−)
x M∗

E∗F,p
+ (1− x) M∗

E∗F,n

−3 ρp
E∗F,p
− 3 ρn

E∗F,n
+
(

∂2

∂M∗2
− 3

M∗
∂

∂M∗

)
V(φ)

, (4.6)

∂M∗

∂x

∣∣∣∣
ρB

= (−)
M∗ρB

(
1

E∗F,p
− 1

E∗F,n

)
−3 ρp

E∗F,p
− 3 ρn

E∗F,n
+
(

∂2

∂M∗2
− 3

M∗
∂

∂M∗

)
V(φ)

. (4.7)

Here E∗F,i ≡
√
k2F,i +M∗2. The first equation above agrees with the result obtained in

Ref. [75] for x = 0.5. The second order partial derivative vanishes owing to isospin symmetry

around x = 0.5.

The chemical potentials are given by

µi = ∂E/∂ρi = gvV + t3
1

2
gρb+ E∗F,i , (4.8)

with t3 = +1 and −1 for proton and neutron. The incompressibility Kv and symmetry

energy S2 at arbitrary ρB and x are [75]

Kv,(0) = 9ρB

[
g2v
m2
v

+
g2ρ
m2
ρ

(
x− 1

2

)2

+ π2

(
x2

kF,pE∗F,p
+

(1− x)2

kF,nE∗F,n

)
(4.9)

+

(
x
M∗

E∗F,p
+ (1− x)

M∗

E∗F,n

)
∂M∗

∂ρB

∣∣∣∣
x

]

S2,(0) =
ρB
8

[
g2ρ
m2
ρ

+ π2

(
1

kF,pE∗F,p
+

1

kF,nE∗F,n

)
+

1

ρB

(
M∗

E∗F,p
− M∗

E∗F,n

)
∂M∗

∂x

∣∣∣∣
ρB

]
,(4.10)
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where the lower index (“0”) stands for results at the MFT level. The single-particle spectrum

from Eq. (4.2) reads as

ε(0),i(k) = gvV + t3
1

2
gρb+

√
k2 +M∗2 . (4.11)

As a result, m∗i = E∗F,i. At the equilibrium density ρ0, the Fermi momentum kF0 =

1.333 fm−1 and m∗0 = 0.73M (c.f. Table I), whence the value of φ or equivalently M∗

at ρ0 is M∗
0 =

√
m∗0

2 − k2F0 = 0.674M and gsφ0 = M −M∗
0 .

The five couplings, gs, gv, gρ, κ3 and κ4 are determined as follows. At ρ0, the thermody-

namic identity simplifies to E −
∑

i µiρi = 0 because P = 0. Thus, the proton and nucleon

chemical potentials in isospin-symmetric matter are µ0 = E/ρ0 = M −B0. Using Eqs. (4.8)

and (4.5),

µ0 − E∗F0 =
g2v
m2
v

ρ0 with E∗F0 =
√
k2F0 +M∗

0
2 . (4.12)

From the symmetry energy constraint in Eq. (4.10), we have

S2,0 −
k2F0

6E∗F0

=
ρ0
8

g2ρ
m2
ρ

. (4.13)

From the binding energy constraint,

M −B0 −
Ekin0
ρ0

=
V(φ0)

ρ0
+

1

2

g2v
m2
v

ρ0 , (4.14)

where Ekin0 is the last term in Eq. (4.4) at ρ0. From the self-consistent equation for φ in

Eq. (4.5), we have

1

gsφ0

ρs,0
m2
s

=
1

g2s
+
κ3
g2s

1

2

gsφ0

M
+
κ4
g2s

1

6

(
gsφ0

M

)2

, (4.15)

where ρs,0 is the nucleon scalar density at ρ0.

From Eq. (4.9) for the incompressibility (for the second term on the right, see Eq. (4.6)),

Kv,0 − 3
k2F0

E∗F0

= 9ρ0

[
g2v
m2
v

+
M∗

0

E∗F0

∂M∗

∂ρB

∣∣∣∣
x=0.5

]
. (4.16)

These five equations can be readily solved; the so determined coupling strengths are shown

in Table II. The symmetry energy stiffness parameter evaluated at the saturation density is

L = 3ρB
∂S2

∂ρB

∣∣∣∣
x=0.5

= 2S
(kin)
2

1− 18

(
S
(kin)
2

kF

)2{
1 + 3

(
M∗

kF

)2
∂ lnM∗

∂ ln ρB

∣∣∣∣
x=0.5

}
+

3

8

g2ρ
m2
ρ

ρB , (4.17)

where S
(kin)
2 =

1

6

k2F
E∗F

.
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TABLE II. Coupling strengths for the MFT and TL calculations. Values for the masses are

M = 939 MeV, ms = 550 MeV, mv = 783 MeV, mρ = 770 MeV, and mπ = 138 MeV, whereas

fπ = 93 MeV and gA = 1.26. The last column shows the resulting symmetry energy stiffness

parameter L. The parameter sets below give the same saturation density, binding energy, and

symmetry energy as in Table I. The sets labelled TL(235), TL(250), and TL(270) give Kv = 235,

250 and 270 MeV, with Landau effective masses m∗/M = 0.74, 0.73, and 0.72, respectively.

g2s g2v g2ρ κ3 κ4 L (MeV)

MFT 96.36 118.45 70.13 2.08 −6.77 103.62

TL(235) 71.26 49.58 60.72 5.94 −2.48 83.66

TL(250) 74.03 56.58 57.97 4.84 −4.47 85.09

TL(270) 74.65 61.45 58.06 3.70 1.97 84.51

B. Two-loop contributions

At zero temperature,

E(1)(ρp,n; bg) = E(0)(ρp,n; bg) + δω(1) (T → 0) ≡ E(0)(ρp,n; bg) + δE(1)(ρp,n;φ) , (4.18)

where the second term is evaluated with the Fermi distribution ni(k) = θ (kFi − k) in

δω(1)(T, νp,n;φ). The single particle spectrum, ε(1),i(k) = ε(0),i(k) + δε(1),i(k) is discussed

in Appendix D. At the two-loop level, the five coupling constants are determined from

µ0 − E∗F0 =
g2v
m2
v

ρ0 +
∂δE(1)
∂ρB

∣∣∣∣
φ0,x=0.5

(4.19)

S2,0 −
k2F0

6E∗F0

=
ρ0
8

g2ρ
m2
ρ

+ δS2,(1) (4.20)

M −B0 −
Ekin0
ρ0

=
V(φ0) + δE(1)

ρ0
+

1

2

g2v
m2
v

ρ0 (4.21)

Kv,0 − 3
k2F0

E∗F0

= 9ρ0

[
g2v
m2
v

+
M∗

0

E∗F0

∂M∗

∂ρB

∣∣∣∣
x=0.5

]
+ δKv,(1) (4.22)

E∗F0

m∗0
= 1 +

E∗F0

kF0

∂δε(1)(k)

∂k

∣∣∣∣
k=kF0

, (4.23)

where Ekin0 is the same as in the MFT calculation. The relation between M∗ and ρB at

x = 0.5, and hence ∂M∗/∂ρB, is provided by

ρs +
∂δE(1)
∂M∗

∣∣∣∣
ρB ,x=0.5

+
dV(φ)

dM∗ = 0 . (4.24)
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In Eq. (4.19), the TL contribution is
∂δE(1)
∂ρB

∣∣∣
φ0,x=0.5

. In Eq. (4.20), the TL contribution to

symmetry energy (note ∂M∗

∂x

∣∣
x=0.5

= 0) is

δS2,(1) =
1

8ρB

∂2δE(1)
∂x2

∣∣∣∣
ρB ,bg,x=0.5

. (4.25)

In Eq. (4.21), the extra energy due to TL is E(1)/ρ0. In Eq. (4.22), the TL contribution is

δKv,(1) = 9ρB

[
∂2δE(1)
∂ρ2B

∣∣∣∣
bg,x=0.5

+
∂M∗

∂ρB

∣∣∣∣
x=0.5

∂2δE(1)
∂M∗∂ρB

∣∣∣∣
x=0.5

]
. (4.26)

These equations for fixing the five parameters are highly nonlinear. The fitted couplings

and the predicted stiffness parameter L are shown in Table II.

V. SELF-CONSISTENT CALCULATION OF THERMAL EFFECTS

For given values of the chemical potential µp,n and temperature T , the single-particle

spectrum can be decomposed as

εi
[
p; bg, np,n (k)

]
= ε(0),i(p; bg) + δε(1),i

[
p; bg, np,n (k)

]
, (5.1)

ni (k) =
1

eβ(εi(k)−µi) + 1
, ρi = γs

∫
d3k

(2π)3
ni (k) . (5.2)

The first term in Eq. (5.1), ε(0),i, corresponds to the spectrum of MFT defined in Eq. (C2).

The second term, δε(1),i, arises from TL contributions the T = 0 analog of which is given in

Eq. (C6) with ni(k) = θ (kFi − k). Through its dependence on ni(k) in Eq. (5.2) at finite T ,

δε(1),i depends on the full spectrum εi itself. This feature necessitates a self-consistent pro-

cedure for the determination of εi similar to that encountered in Hartree-Fock calculations

(see also, Refs. [42, 76] in the context of non-relativistic models with finite-range interac-

tions). At given values of ρB and T , the chemical potentials µp,n, the meson fields bg, the

spectra εi(k) and the distribution functions ni(k) can be determined by an iterative process

starting with the T = 0 spectra as guesses and updating the results with each iteration until

convergence is achieved. Based on the self-consistent spectra and distribution functions, the

entropy density is given by

S
[
np,n(k)

]
= −γs

∑
i

∫
d3k

(2π)3

[(
1− ni(k)

)
ln
(
1− ni(k)

)
+ ni(k) ln (ni(k))

]
, (5.3)

and the energy density by

E
[
bg, np,n(k)

]
= E(0)

[
bg, np,n(k)

]
+ δE(1)

[
bg, np,n(k)

]
. (5.4)
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The expressions for E(0) and δE(1) can be derived from E(0) in Eq. (3.14) and δω(1) in

Eqs. (3.25)–(3.28), but with the use of the self-consistent n(k). The pressure is then obtained

from P = −E + TS +
∑

i µiρi. The free energy density ensues from

F
[
T, bg, np,n(k)

]
= E

[
bg, np,n(k)

]
− TS

[
bg, np,n(k)

]
. (5.5)

Two points are worth noting here: (1) the T → 0 limit of the self-consistent calculation

agrees with the T = 0 calculation in section (IV), and (2) the self-consistent calculation at

the MFT level is the same as the one discussed in section III A.

In order to express the F as a function of T and ρp,n, we first need to determine µp,n in

terms of bg, ρp,n, and T . The second step is to solve for bg for given T and ρp,n. As bg should

minimize the free energy at fixed T and ρp,n, the first derivative of F wrt bg vanishes. This

derivative can be expressed as

∂F
[
T, bg, np,n

]
∂ bg

∣∣∣∣∣
T,ρp,n

=
∂E
[
bg, np,n

]
∂ bg

∣∣∣∣∣
T,np,n

+
∑
i

∫
d3k

(2π)3

[
∂E
[
bg, np,n

]
∂ni(k)

− T
∂S
[
np,n

]
∂ni(k)

]∣∣∣∣∣
T,bg,nj 6=i

∂ni
[
k;T, ρp,n, bg

]
∂ bg

∣∣∣∣∣
T,ρp,n

.(5.6)

(In order to simplify notation, the k-dependence in np,n(k) is suppressed when used in

arguments of functions.) Above, ∂/∂ni(k) are functional derivatives, which is why the∫
d3k
(2π)3

is involved. Further simplification of Eq. (5.6) occurs with use of the relations

∂S
[
np,n

]
∂ni(k)

∣∣∣∣∣
T,bg,nj 6=i

= γsβ
(
εi
[
k; bg, np,n

]
− µi

)
, (5.7)

∂E
[
bg, np,n

]
∂ni(k)

∣∣∣∣∣
T,bg,nj 6=i

= γsεi
[
k; bg, np,n

]
. (5.8)

which renders the term involving integrals in Eq. (5.6) to vanish with the result

∂F
[
T, bg, np,n

]
∂ bg

∣∣∣∣∣
T,ρp,n

=
∂E
[
bg, np,n

]
∂ bg

∣∣∣∣∣
T,np,n

(5.9)

This indicates that all the meson fields satisfy the same equations as those in the T = 0 case,

except with the theta function substituted with the self-consistent one for ni(k). The bg

can then be determined in terms of ρp,n, and T , based on which ni
[
k;T, ρp,n, bg

]
, E
[
bg, np,n

]
,

S
[
np,n

]
, and F

[
T, bg, np,n

]
are now functions of T and ρp,n.
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From Eqs. (5.7), (5.8) and the expression in Eq. (5.9) set to 0, we can check that

∂F
[
T, bg, np,n

]
∂ T

∣∣∣∣∣
ρp,n

= −S and
∂F
[
T, bg, np,n

]
∂ ρi

∣∣∣∣∣
T,ρj 6=i

= µi . (5.10)

Self-consistent vs perturbative calculations

Here the relationship between the self-consistent and perturbative calculations of thermal

effects is examined. We restrict ourselves to the degenerate situation when T/TFi
� 1, where

TFi
is the Fermi temperature. The FLT result for the entropy density in Eq. (5.3) is [77]

S =
π2

3
T
∑
i

Ni(0) , Ni(0) = γs

∫
d3k

(2π)3
δ (εi (k)− µi) , (5.11)

where Ni(0) is the density of states at the Fermi surface of species i, and εi(k) and µi are the

T = 0 single-particle spectrum and chemical potential, respectively. The Landau effective

mass m∗i in Eq. (4.3) is proportional to Ni(0). We begin by rewriting Eq. (3.32) as

F(1)

[
T, bg, n(0)p,n(k)

]
= E(1)

[
bg, n(0)p,n(k)

]
− TS(0)

[
n(0)p,n(k)

]
. (5.12)

In order to differentiate the perturbative calculation from the self-consistent calculation, the

order indices (0) and (1) in subscripts are kept manifest. Explicitly, bg in the above equation

is solved perturbatively, which is different from the bg in the self-consistent calculation. The

distribution functions n(0)p,n(k) are defined at MFT level, i.e.,

n(0)i (k) =
1

e
β
(
ε(0)i(k;bg)−µ

(0)
i

)
+ 1

, (5.13)

where µ
(0)
i has been discussed in relation to Eq. (3.30) and can be determined in terms of

bg and T through

ρi = γs

∫
d3k

(2π)3
n(0)i (k) . (5.14)
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Similar to the derviation in Eq. (5.6), we can compute the entropy density utilizing (bg being

held fixed due as it extremizes F(1) for given T and ρp,n )

∂F(1)

[
T, bg, n(0)p,n

]
∂ T

∣∣∣∣∣
ρp,n,bg

=

−S(0)
[
n(0)p,n

]
+
∂E(1)

[
bg, n(0)p,n

]
∂ T

∣∣∣∣∣
ρp,n,bg

− T
∂S(0)

[
n(0)p,n

]
∂T

∣∣∣∣∣
ρp,n,bg

= −S(0)
[
n(0)p,n

]
+ γs

∑
i

∫
d3k

(2π)3

[
ε(1)i
[
k; bg, n(0)p,n

]
−
(
ε(0)i
[
k; bg

]
− µ(0)

i

)] ∂n(0)i

[
k;T, ρp,n, bg

]
∂ T

∣∣∣∣∣
ρp,n,bg

= −S(0)
[
n(0)p,n

]
+ γs

∑
i

∫
d3k

(2π)3
δε(1)i

[
k; bg, n(0)p,n

] ∂n(0)i

[
k;T, ρp,n, bg

]
∂ T

∣∣∣∣∣
ρp,n,bg

. (5.15)

In the degenerate limit, the above reduces to

−
∂F(1)

[
T, bg, n(0)p,n

]
∂ T

∣∣∣∣∣
ρp,n,bg

= T
π2

3

∑
i

N(0)i(0)

[
1−

∂δε(1)i
∂ε(0)i

∣∣∣∣
ε(0)i=µ

(0)
i

]
, (5.16)

N(0)i(0) ≡ γs

∫
d3k

(2π)3
δ
(
ε(0)i − µ(0)

i

)
. (5.17)

This suggests that the perturbative results approach the FLT limit, but are controlled by

effective masses that are different from the Landau effective masses. Specifically,

m∗
′

i = E∗F,i

[
1−

∂δε(1)i
∂ε(0)i

∣∣∣∣
k=kF,i

]
, (5.18)

whereas the Landau effective masses are (cf. Appendix C)

m∗i = E∗F,i

[
1 +

∂δε(1)i
∂ε(0)i

∣∣∣∣
k=kF,i

]−1
. (5.19)

To first order in the derivative term, the two results agree. Eliminating the derivative term,

m∗
′

i = E∗F,i

[
2−

E∗F,i
m∗i

]
. (5.20)

In our calculations, the perturbative results indeed approach m∗
′
i instead of m∗i , differences

between the two being apparent only at very high densities.

VI. RESULTS AT ZERO TEMPERATURE

For the most part, results of TL numerical calculations in this paper employ the parameter

set TL(250) in Table II, which is labeled TL in figures and their associated discussions. The
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FIG. 2. Dirac effective masses M∗/M vs. baryon density ρB in SNM (x = 0.5) and PNM (x = 0)

for the MFT and TL calculations.

starting point for both MFT and TL calculations is the determination of the Dirac effective

masses, M∗’s, which feature prominently in the expressions for the energy and pressure. The

scalar couplings in Table II, which determine M∗’s, ensure that at ρ0 the Landau effective

masses, m∗’s, in the two calculations are the same. The density dependences of M∗’s in

symmetric nuclear matter (SNM) with proton fraction x = 0.5 and pure neutron matter

(PNM) with x = 0 are shown in Fig. 2. In TL calculations the decrease of M∗ with density

is much slower than in MFT. At 1 fm−3, M∗/M for TL is ∼ 0.4 (0.5) in SNM (PNM),

whereas the corresponding values for MFT is ∼ 0.1 (0.2). The larger values of M∗/M in TL

calculations arise from the repulsive TL contributions to the single particle energy from the

exchange of the scalar meson φ (see discussion below).

Figure 3 shows the energy per baryon E/NB ≡ E/ρB−M from MFT and TL calculations

in SNM and PNM. For ρB ≤ 0.4 fm−3 in SNM, MFT and TL calculations give nearly the

same result chiefly because the energy and curvature at the equilibrium density ρ0 are fixed

to the same values in obtaining the coupling strengths of the two models. But for densities

ρB ≥ 0.4 fm−3, the TL energy is much smaller than that for MFT.

In PNM, results of MFT and TL calculations differ significantly both in the low density

region, ρB ≤ 0.1 fm−3, and in the high density region, ρB ≥ 0.4 fm−3. In the low density

region (Fig. 4), the TL energy is larger than that of MFT, noted earlier in Refs. [37–39].

When kF,i/m � 1 where m is the mass of the exchanged meson, the leading terms of

the exchange energies vary as k3F,i and k5F,i/m
2 (as can be ascertained by Taylor expanding

the non-relativistic exchange integrals in Appendix B), and with overall signs that oppose
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contributions from the direct (Hartree) terms. The net exchange energies in SNM and

PNM thus acquire different density dependences because of the different coupling strengths

associated with the different mesons being exchanged, as well as kF in PNM being greater

than that in SNM at the same density ρB. It is reassuring that exchange contributions

bring the QHD energy for PNM in the low density region close to results of non-relativistic

microscopic calculations, see also Refs. [20, 78].

In Fig. 5(a), we compare our MFT and TL results for PNM energy to those of modern

microscopic calculations [62, 79–83], in which nucleon-nucleon interactions that reproduce

scattering data and binding energies of light nuclei were used. In some cases (QMC1, QMC2,

and QMC3), the role of different three-nucleon interactions were also explored. The figure

caption provides some details of these calculations. The agreement of the TL results with

those of potential model calculations up to ρB ≤ 0.13 fm−3 is much better than for the MFT
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results. The total energy per nucleon in MFT at low densities receives contributions from

terms proportional to ρ
2/3
B /M∗(ρB) from the kinetic energy and ρB from direct (Hartree)

terms involving ω and ρ meson interactions. Additional non-trivial density dependences

arise from the exchange of mesons with different masses, and hence ranges, when TL (Fock)

contributions are added to the MFT parts (see Fig. 6 with its associated discussion below

for more details). The agreement with the results of potential model calculations can thus

be attributed to the inclusion of TL or exchange diagrams at low densities. For nuclear

densities and beyond, the TL energies are smaller than those of MFT, but significantly

larger than the results of non-relativistic treatments. Nevertheless, the EOS remains causal

owing to the relativistic structure of QHD.

In Fig. 5(b), we compare our TL results with three different Dirac-Brueckner-Hatree-Fock

(DBHF) calculations [84–88]. The TL energies are above those of DBHF for ρB ≥ 0.1 fm−3,

but at lower densities agree very well with the results of DBHF3 [87, 88] and are slightly larger

than the DBHF1 ones [84]. In Refs. [85, 86], results are not available for ρB ≤ 0.08 fm−3

which precluded a direct comparison with DBHF2 in this region.

In order to explore the sensitivity of the TL results to the values of the compression

modulus and symmetry energy chosen to determine the various coupling strengths, addi-

tional calculations with Kv,0 = (235, 270) MeV and S2,0 = (33, 35) MeV, which yielded

L = (75.6, 80.6) MeV were performed (see Table II) for the parameter values). In both of

these cases, the agreement with the results of non-relativistic approaches for ρB ≤ 0.13 fm−3

was satisfactory, but not as good as for the set with Kv,0 = 250 MeV, S2,0 = 35 MeV,

and L = 85.09 MeV. Unless specified otherwise, subsequent results will be for the coupling

strengths associated with this latter set.

Individual contributions to the total TL (exchange) energy per particle from the exchange

of the various mesons are shown in Fig. 6 for both SNM and PNM. For interactions between

nucleons mediated by the pseudo-scalar πi and scalar φ mesons, the TL terms provide

positive contributions to the energy, whereas the corresponding direct (Hartree) terms are

zero and negative, respectively. For interactions mediated by the vector mesons V µ and

ρi,µ for which the Hartree terms are positive, contributions from the TL terms are negative

except at high densities for which positive contributions ensue owing to relativistic effects.

Because the ρi,µ and V µ meson masses are similar, the turnover densities for these two cases

are close. In SNM, the turnover density is 1.15 fm−3; the corresponding M∗ = 0.37M ,
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FIG. 5. Panel (a) shows a comparison of the MFT and TL results for PNM energy vs ρB

with those of a variational calculation “APR” [79], quantum Monte Carlo (QMC) calculations,

“QMC1” [62, 80], “QMC2” based on a N3LO chiral potential with momentum cut-off 414 MeV [81],

and “QMC3” [83], and the N3LO chiral perturbation theory calculation (“Pert”) with a momen-

tum cut-off of 500 MeV [82]. For “QMC3”, the two curves shown are with S2 = 32 and 33.7

MeV, respectively. Panel (b) compares the TL results with three different DBHF calculations:

“DBHF1” [84], “DBHF2” [85, 86], and “DBHF3” [87, 88].

leading to kF/M
∗ = 1.46. In PNM, the turnover density is 1.03 fm−3, M∗ = 0.44M , and

kF/M
∗ = 1.49. These values may be contrasted with kF/M ' 2.533 [89] for the case of

photon or gluon exchange between particles of mass M . For both SNM and PNM, the

net TL contribution to the total energy is positive with a density dependence reflecting

contributions from sources with differing masses of the exchanged mesons.

In the low density region when kF/M
∗ � 1, the non-relativistic expressions for the

TL energy given in Appendix B can be used to determine the density at which relativistic

effects begin to become important. In Fig. 7, results for the total exchange energies from the
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FIG. 7. The total two-loop energy and its non-relativistic approximation in SNM and PNM.

relativistic and non-relativistic approximation in both SNM and PNM are shown. In SNM,

agreement between the two schemes extends up to 0.2 fm−3, but begins to fail thereafter.

The deviation in PNM starts at a lower density, 0.1 fm−3, than for SNM because of its

higher Fermi momentum at the same density. At supra-nuclear densities, relativistic effects

are clearly important in both cases.

The symmetry energies S2 vs ρB for the MFT and TL calculations are shown in Fig. 8.

The top panel in this figure shows contributions from terms involving kinetic, direct and

exchange contributions from the ρ-meson to S2 in the two cases. The symmetry energy

stiffness parameter L for the TL calculation (85.09 MeV) is smaller than that for MFT

(103.62 MeV). There are three factors all of which reduce L for TL: (1) the contribution

proportional to ρB from ρ-meson exchange is smaller in TL because the gρ coupling is smaller
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FIG. 8. The symmetry energy S2 vs ρB. In MFT, contributions to S2 arise from both the ρ-meson

and scalar φ-meson interactions [Eq. (4.10)]. The latter piece is termed Skin2 in Eq. (4.17). In the

TL calculation, there is an additional contribution from the exchange diagram [Eq. (4.25)].

than in MFT, (2) the Skin2 is smaller than in MFT because the M∗ is larger in TL, and (3) the

exchange diagram contribution to symmetry energy has a much weaker density dependence

for near nuclear densities.

The difference between the energy of PNM and SNM receives contributions from beyond

quadratic terms in α = 1− 2x, and can be expressed as

∆E ≡ (EPNM − ESNM)/NB =
∑

`=2.4,...

S`α
` , (6.1)

where

S` =
1

`!

∂`E(ρB, α)/NB

∂α`

∣∣∣∣
α=0

; ` = 2, 4, .... (6.2)

In MFT, we find the coefficient of the quartic term in α from kinetic sources to be

Skin4 =
1

27
Skin2

[
1 +

3

4

k2F
E∗2F

(
1 +

k2F
E∗2F

)]
− 1

96

M∗k2F
E∗3F

∂2M∗

∂x2

∣∣∣∣
x=1/2

, (6.3)
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TABLE III. Contributions from quadratic and quartic terms of symmetry energies to the difference

∆E between the PNM and SNM energies at the nuclear density ρ0 = 0.16 fm−3.

Model M∗ Skin2 Sρ2 Sex2 S2 Skin4 Sex4 ∆E

MFT 0.674 18.2 16.8 − 35.0 0.63 − 35.9

MFT + TL 0.785 14.8 15.1 5.1 35.0 0.6 −0.1 35.9

where Skin2 = k2F/(6E
∗
F ). Table III lists the contributions from Skin2 and Skin4 as well as that

from ρ-meson exchange, Sρ2 , to ∆E at the nuclear equilibrium density ρ0. The contribution

of Skin4 is small relative to Skin2 at near nuclear densities. At supra-nuclear densities, it helps

to bring S2 + S4 close to ∆E as shown in Fig. 9.

The TL contribution, S4 = Skin4 + Sex4 , is not readily amenable for analytical manipula-

tions, but is straightforward to calculate numerically. In this case, use of Eq. (6.3) is inap-

propriate because the MFT piece of the kinetic energy alone does not satisfy ∂E/∂M∗=0.

However, its use does not yield significantly different results from the exact numerical cal-

culations up to twice the saturation density but differences become noticeable at higher

densities. At ρ0, S4 = 0.5 MeV is of similar magnitude to Skin4 at the MFT level. We

found very little difference between the results of S2 and S2 + S4 as functions of ρB (see

Fig. 9). This feature is attributable to the inherent structure of the exchange terms that

have opposite signs relative to the direct terms in the calculation of energies at the densities

shown. For the structural properties of neutron stars, we report results from the use of S2

to keep neutron-star matter charge neutral and in beta-equilibrium for both MFT and TL

calculations. Negligible differences were found with the use of S2 + S4.

The pressure P vs. ρB is shown in Fig. 10 for both SNM and PNM. Fig. 11 shows results

for PNM at sub-saturation densities. As expected from the results for energy in Fig. 3 and

Fig. 4, the MFT and TL results for pressure are close to each other in SNM for ρB ≤ 0.3 fm−3;

above this region, the MFT pressure becomes larger than that of TL. In PNM, the situation

is somewhat diffrent; for ρB ≥ 0.05 fm−3, the MFT pressure is larger than that of TL, but

at sub-nuclear densities, the trend is reversed. For neutron star structure, however, these

differences below ρB ≤ 0.08 fm−3 may not matter because the appropriate EOS there would

be that of inhomogeneous matter containing nuclei. We turn now to address the question
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of whether these EOS’s can support a two solar mass neutron star as required by recent

precise determinations [12, 13].

Cold catalyzed neutron stars are charge neutral and in beta-equilibrium with respect to

reactions involving decays of the neutron and capture on the proton that result in proton,

electron (e), and muon (µ) concentrations which depend on the baryon density. Neutrinos

of both electron and muon flavors escape the system due to their long mean free paths.

Imposing the conditions of charge neutrality, ρp = ρe + ρµ, and beta-equilibrium, µn− µp =

µe = µµ, the equilibrium proton fraction, x̃, is determined from

∂

∂x

[
E

NB

(ρB, x) + E`(x)

]
= 0 , (6.4)

where contributions from the leptons, E`(x) = Ee(x) + Eµ(x), are to good accuracy given

by their free Fermi gas energies as interactions give negligible contributions owing to the

smallness of the fine structure constant α. Furthermore, it suffices to keep the x-dependence

of E
NB

(ρB, x) to order (1− 2x)2 with the multiplicative factor of S2(ρB) as noted before.

Constructing EOS’s for charge neutral and beta-equilibrated matter for both MFT

and TL cases, mass-radius relations from solutions of the structure equations of Tolman-

Oppenheimer-Volkoff are shown in Fig. 12. Results for the TL calculations are indicated by

values of the compression modulus used (see Table II) used to test sensitivity. As the EOS’s

for the TL case are generally softer than that of MFT, lower maximum masses are obtained

(see also Table IV). However, two-loop EOS’s with compression moduli ≥ 250 MeV are able
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to reach the value of ∼ 2M�. Because of the lower values of the symmetry energy stiffness

parameter L in the case of TL calculations, radii that are about a km lower than their MFT

counterparts are obtained for the maximum mass star. The radii for 1.4M� TL stars are

also lower than that for MFT, and are within 2σ values estimated from observations [11].

The structural attributes of the maximum mass and 1.4M� stars are summarized in Table.

IV. For all models, the central baryon chemical potential of the maximum mass star, µc, is

below the limit of 2.1 GeV set by the maximally compact EOS of a neutron star derived

in [90]. The central densities, nc ∼ 7n0, of the TL neutron stars are larger than those of

MFT stars because of the softening caused by the exchange contributions to the pressure.

A natural question to ask then is the role of additional hadronic or sub-hadronic degrees

of freedom, not considered in this work, at high densities. The discovery of 2M� stars has

placed severe constraints on the high-density behavior of the EOS, particularly those with
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FIG. 12. Neutron star mass-radius diagram for the MFT and TL calculations.

hyperons, Bose condensates or quarks (see, e.g., [11, 90] for reviews). A substantial softening

of the EOS by these additional degrees of freedom is disfavored by the observed 2M� masses.

In the case of hybrid stars with hyperons, repulsive hyperon-nucleon and hyperon-hyperon

interactions have been invoked to keep the EOS sufficiently stiff to obtain 2M� stars (see,

e.g., [91]). In the case of quarks, a somewhat low hadron-to-quark transition density [ntr ∼

(2-4)n0] and a stiffer than the perturbative quark matter EOS with the squared sound

speed significantly larger than c/3 is favored [92, 93]. An exploration of these aspects in

conjunction with the TL calculations presented here is beyond the scope of this work, but

will be taken up in subsequent studies.

As mentioned in the introduction, in order to reconcile the nuclear EOS with measure-

ments of collective flow such as the mean transverse momentum vs. rapidity, elliptic flow,

etc., in medium energy heavy-ion collision experiments, the exchange potential needs to be

included in the mean field experienced by nucleons [41–43, 76]. A recent discussion of this

topic in the context of non-relativistic models can be found in Ref. [76]. Here we examine

the nucleon optical potentials from MFT and TL calculations. In the context of a relativistic

theory, the Schrodinger-equivalent optical potential, Vopt, is the single particle potential that

when used in the non-relativistic Schrodinger equation gives the same scattering results as

originally computed in a relativistic theory [43, 44, 94, 95]. Following Ref. [94], one can

express the single particle spectrum in Eq. (C2) for the MFT and Eq. (C11) for the TL as

ε(p) =

√
p2 +

(
M − gsφ

)2
+ Σv (p) . (6.5)
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TABLE IV. Mmax is the maximum mass of the neutron star and Rmax its radius. Other entries

are the central density nc, energy density εc, pressure Pc, and the chemical potential µc for both

Mmax and 1.4M� configurations. The radius of a 1.4M� neutron star is given by R1.4. The largest

well-measured neutron star mass is 2.01±0.04M� [13]. Current estimations from analyses of x-ray

data place Rmax = 11.0± 1.0 km and R1.4 = 11.5± 0.7 km [11].

Property Value Value Value Value

[MFT] [TL235] [TL250] [TL270]

Mmax(M�) 2.37 1.91 1.995 2.05

Rmax(km) 11.80 10.60 10.87 11.07

nc(fm
−3) 0.8736 1.166 1.094 1.043

εc(MeV fm−3) 1137.4 1484.2 1397.9 1276.3

Pc(MeV fm−3) 547.08 542.32 535.13 516.46

µc(MeV) 1928.3 1738.0 1766.3 1719.7

R1.4(km) 13.68 12.67 12.92 13.07

nc(fm
−3) 0.357 0.479 0.44 0.414

εc(MeV fm−3) 359.18 492.82 449.50 417.71

Pc(MeV fm−3) 43.89 66.40 58.76 53.87

µc(MeV) 1129.1 1166.7 1154.9 1140.2

The optical potential is then expressed as

Vopt (p) ≡ Σv (p)− gsφ+

(
gsφ
)2 − Σv (p)2

2M
+

Σv (p)

M
Ekin , (6.6)

where Ekin ≡ ε(p)−M is the asymptotic kinetic energy.

In Fig. 13, we show Vopt (p (Ekin)) vs. Ekin in SNM for ρB = 0.1, 0.16, 0.3, and 0.4

fm−3, respectively. For each density, the upper curve is the MFT result whereas the lower

curve corresponds to TL calculations. Note that results for the three higher densities are

shifted by a constant amount shown in the figures’s legend. For low Ekin, the MFT and

TL results are close to each other. This trend is, however broken for increasing Ekin as in

MFT, Vopt increases linearly with Ekin [see Eq. (6.6)], much faster than the TL result does.

Previous microscopic many-body calculations, proton-nucleus scattering measurements, and

phenomenological extractions from heavy-ion collisions all point to a slower increase of Vopt
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Fermi momentum.

than in MFT [95]. Comparing with the results from Ref. [95], the inclusion of TL contribu-

tions makes the Vopt to agree better with the phenomenological values. Extrapolating the

current TL results to higher Ekin than shown may be questionable because point nucleon-

meson couplings likely oversimplify the physical situation.

The neutron and proton Landau effective masses are shown in Fig. 14 for different proton

fractions x. For each x, the TL results are larger than those of MFT for the same ρB. The
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isospin splitting of the effective masses is such that those for neutron are always larger than

for the proton as x decreases from its SNM value of 0.5. This pattern is similar to those of

microscopic non-relativistic models and many phenomenological models although exceptions

exist in the latter category [65]. For the isospin invariant nucleon-nucleon interactions used

in the MFT and TL calculations here, m∗n at x is the same as m∗p at (1 − x). Beyond the

saturation density, the Landau mass for each x exhibits a minimum marked by a cross ×

which is characteristic of field-theoretical calculations. For isospin invariant interactions in

non-relativistic calculations, this feature would be absent [65]. To assess the importance

of relativistic kinematics, the density at which the effective Dirac mass M∗ becomes equal

to the proton (neutron) Fermi momentum is marked by asterisk ∗ on the proton (neutron)

curve. For MFT, the ×-density is larger than the ∗-density, i.e., the turnover of m∗ lies in

the relativistic region, whereas for TL the situation is reversed (for x = 0.1 the ∗-density is

larger than 1 fm−3 and is not shown in the plot).

The behavior m∗’s for the MFT and TL calculations merits examination as the differences

between m∗’s in the TL results at low densities are larger than those in MFT. The origin of

these differences can be traced back to the role of pion exchange in the two-loop contribution.

The small pion mass sets a distinct low-density scale in the TL results. To illustrate this

feature, in Fig. 15 we show the TL results of m∗i for x = 0.1 and 0.5 without including

the π contribution in the calculation of the single particle spectrum [Eq. (4.2)]. Results

without the contribution from ρ exchange is also shown for comparison. For the two proton

fractions shown, and for both the neutron and the proton, excluding the π contribution

leads to a significant change, i.e., ∂m∗i /∂ρB is substantially modified, while excluding the ρ

contribution changes m∗i gradually with density. In the following section, we will see that

m∗i play central roles in the finite temperature properties of the EOS.

The neutron and proton chemical potentials for the MFT and TL calculations are shown

in Fig. 16. The results in this figure serve to gauge the role of thermal effects on the chemical

potentials (to be presented in subsequent sections). As x decreases from its value of 0.5 in

SNM, µp decreases relative to µn at a given density ρB. The µi for MFT are larger than

those of TL for ρB ≥ 0.2 ∼ 0.3 fm−3, similar to the comparison in Fig. 3.
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FIG. 15. The neutron and proton Landau effective masses m∗ vs. ρB for different proton fractions.

Here “wo π” and “wo ρ” are results without including π and ρ two-loop contributions in calculating

the single particle spectra.
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FIG. 16. The zero temperature neutron and proton chemical potentials (inclusive of masses) vs

density for different proton fractions.

VII. RESULTS AT FINITE TEMPERATURE

In this section, we discuss the thermal components of the state variables defined by

Qth ≡ Q(ρB, x, T ) − Q(ρB, x, T = 0), where Q stands for any of pressure, energy, chemical

potential, etc. The full TL and MFT calculations are compared with each other as well as to

the results of Fermi-liquid theory (FLT) valid in the limiting situation of degenerate matter

in which the temperature is much smaller than the Fermi energy. In this limit, the entropy is
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FIG. 17. Comparison between the Landau masses m∗p,n (from a self-consistent (SC) calculation)

and m∗
′
p,n (from the perturbative (P) approach) for proton fractions x = 0.1 and 0.5.

proportional to the temperature T , and the thermal pressure, energy and chemical potentials

are proportional to T 2. The magnitudes of these state variables are controlled by the Landau

effective masses and their first density derivatives. The FLT working formulas are collected

in Appendix D. As shown in section V, the TL(SC) and TL(P) calculations yield different

Landau effective masses, m∗p,n and m∗
′
p,n. The difference between them is small (below ≈ 3%)

for 0 < ρB < 1 fm−3, as shown in Figure 17. Discernible differences in the slopes occur only

for ρB ≥ 1.5 fm−3. For contrast, therefore, results of the thermal properties for both TL

calculations are presented below; those labeled TL(P) are based on the perturbative scheme

in Sec. III B, whereas those termed TL(SC) refer to the self-consistent approach in Sec. V. In

the low density region when the thermal de Broglie wavelength becomes much smaller than

the inter-particle separation, 2πρ
1/3
i /
√

3MT � 1, the non-degenerate situation prevails and

the single particle distribution is adequately given by the classical Maxwell distribution [96].

The relevant formulas can be found in Appendix D.

In Fig. 18, we show the total pressure P vs. ρB in SNM at select temperatures for

MFT and TL(P) calculations. For the range of ρB and T of relevance here, the TL(SC) and

TL(P) pressures closely overlap as their thermal components are nearly the same (see Fig. 20

below). The middle curve in each panel corresponds to the case for which the relations

dP

dρB

∣∣∣∣
ρc,Tc

=
d2P

dρ2B

∣∣∣∣
ρc,Tc

= 0 (7.1)

are satisfied indicating the occurrence of a liquid-gas phase transition. The critical temper-

ature Tc, density ρc, and pressure Pc are 16.05 MeV, 0.055 fm−3 and 0.268 MeV fm−3 for TL,
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FIG. 18. Pressure isotherms at low density for SNM. The middle curve in each panel corresponds

to the temperature at which the liquid-gas phase transition occurs.

and 15.40 MeV, 0.051 fm−3, and 0.235 MeV fm−3 for MFT, leading to Pc/ (ρc Tc) = 0.304

and 0.299 for TL and MFT. These ratios can be compared to the value 0.375 for a Van der

Wals EOS (see the discussion in Ref. [65]). Empirical estimates of Tc from nuclear physics

experiments lie in the range 15-20 MeV [59, 97].

Figures 19 (a) and (c) show the entropy per baryon at temperatures of T = 20 and 50

MeV, and for proton fractions x = 0 (PNM) and 0.5 (SNM) from MFT and TL calculations.

At sub-nuclear densities, the three calculation results approach their corresponding classical

limits [Eq. (D6)] detailed in Appendix D. In Ref. [65], the MFT results at low density

using the same QHD Lagrangian was shown to agree with the non-degenerate limit results

including the first order correction from the fugacity expansion. In the high density region,

the FLT result S/NB ∝ Tm∗i /k
2
F,i helps to understand the behaviors with respect to T and

ρB. The TL(P,SC) results are about 20-30% larger than those of MFT for both proton

fractions reflecting the similar behaviors of the Landau effective masses m∗i shown in Fig. 14

(m∗
′
p,n are close to m∗p,n cf. Figure 17). In the density region shown, 0 < ρB < 1 fm−3, the

TL(P) and TL(SC) curves differ by less than 1% (too small to be seen in the figures), a larger

difference occurring for ρB > 1.2 fm−3. The right panels (b) and (d) show the ratios between

the degenerate limit entropy and the full result for each case. Densities below which these

ratios differ significantly from unity mark the onset of the semi-degenerate regions before

matter enters the non-degenerate regions. For all cases shown, the full results approach their
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FIG. 19. Entropy per nucleon at T = 20 and 50 MeV for proton fractions x = 0 and 0.5. The

left panels compare the TL(P,SC) and MFT results. The right panel shows ratios between the

degenerate limits (DL) and the corresponding full results. The ratios for PNM are shifted by -0.5.

corresponding degenerate limits above 0.4-0.5 fm−3 for T = 20 MeV. As expected, for results

of T = 50 MeV the densities beyond which the degenerate limit applies, ∼ 1 fm−3, are much

larger than for T = 20 MeV. Degenerate limit expressions beyond the leading order FLT

results derived in Ref. [98] may be used to extend the ranges of partial degeneracy for which

an analytical treatment remains valid.

In Figs. 20, we show Pth vs. ρB for SNM and PNM at T = 20 and 50 MeV, respectively.

All results converge to their classical limits [Eq. (D5)] in the low density region, and also

approach their degenerate limits for ρB exceeding 0.4-0.5 fm−3 for T = 20 MeV and 0.8 −

0.9 fm−3 for T = 50 MeV. The TL(P,SC) results are systematically larger than the MFT ones

at high density owing to differences in their m∗p,n’s shown in Fig. 14. Differences between

the TL(P) and TL(SC) results at T = 20 MeV are negligible for ρB < 0.5 fm−3, and at most

≈ 6% for 0.5 < ρB < 1 fm−3. At T < 20 MeV, the differences in the degenerate region would
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FIG. 20. Thermal pressure at T = 20 and 50 MeV for proton fractions x = 0 and 0.5. The left

panels compare the TL(P,SC) and MFT results. The right panel shows ratios between the results

of the full calculations and their degenerate-limit values. The ratios for PNM are shifted by -0.5.

be similar to that at T = 20 MeV reflecting the differences in their respective Landau masses

in Fig. 17. At T = 50 MeV, the two results differ by less than 1% for 0 < ρB < 1 fm−3. For

both temperatures differences in the pressure are larger than those for the entropy because of

its dependence on the derivatives of the Landau masses. Although the qualitative behavior

of the degenerate limit results at T = 50 MeV are similar to the full results, quantitative

differences persist unlike at T = 20 MeV for which the quantitative agreement is better. It

is worth pointing out that the TL results do not exhibit the pronounced maximum in the

thermal pressure as do those of MFT, but are similar to results of non-relativistic calculations

(e.g., Ref. [65, 98]).

The thermal energies per nucleon Eth/NB at T = 20 and 50 MeV are shown in Fig. 21. In

the high density and degenerate limit, the density dependence is the same as for the entropy

per baryon, but the temperature dependence is quadratic. For both SNM and PNM, the
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FIG. 21. Thermal energy per nucleon at T = 20 and 50 MeV for proton fractions x = 0 and 0.5.

The left panels compare the TL(P,SC) and MFT results. The right panel shows ratios between the

results of the full calculations and their degenerate-limit values. The ratios for PNM are shifted

by -0.5.

relation (S/NB)2 = 4aEth holds, where a is the level density parameter. Whereas conver-

gence to the low-density classical limit (Eq. (D6)) at both temperatures is good for MFT,

the TL results are influenced by contributions from pion exchange which are required to

achieve a similar convergence. In a different calculation without iso-vector meson exchange

(not shown here), the convergence is, however, improved. For the thermal energy, relativis-

tic corrections (proportional to T/M∗) to the classical result of 1.5T improve agreement

with the full results. Such corrections at the leading T/M∗ order are also present for the

entropy per baryon (in this case, however, the leading ln
[
ρ
2

(
2π
MT

)3/2]
term dominates, c.f.

Appendix D). The small differences between the TL(P) and TL(SC) thermal energies evi-

dent in the degenerate region share the same pattern as that for the entropy because of the

linear dependence on the Landau masses.
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FIG. 22. (a) Thermal components of the neutron chemical potentials at T = 20 MeV at the

indicated proton fractions. (b) Ratios of results from full and degenerate-limit calculations.

The thermal components of the neutron chemical potential are shown in Figs. 22 and

23 from MFT and TL calculations. In the low density region, the results approach to

the classical gas limit shown in Eq. (D7). At high density, for both SNM and PNM and

temperatures, the TL curves are above the MFT curves, in contrast to the comparisons for

the other state variables due to the overall negative sign in Eq. (D3) (note also that in 3-

dimensions, the chemical potential is always less than the Fermi energy). Differences between

the full and degenerate or non-degenerate limit results occur at near nuclear densities for

which matter is in the semi-degenerate regime for which an analytical treatment is not

possible. This region is indicated by the curves that go off scale in this figure because the

exact results approach zero there. The differences between the TL(P) and TL(SC) chemical

potentials resemble those observed for the pressure, because µpρp + µnρn = E − TS + P ,

which is dominated by the pressure term.

In recent astrophysical simulations of core-collapse supernovae, evolution of proto-neutron
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FIG. 23. Same as Fig. 22, but for T = 50 MeV.

stars and mergers of compact binaries, the thermal index

Γth ≡ 1 +
Pth

Eth
(7.2)

has been employed to capture thermal effects as functions of baryon density and lepton

fraction YLe [99–102]). In Fig. 24, results of Γth are shown for the MFT and TL calculations

for matter with only nucleons, and with nucleons, leptons and photons. Ideal gas contribu-

tions from leptons are included as in Ref. [65]. Two-loop contributions arising from photon

exchange are justifiably neglected owing to the smallness of the fine structure constant [67].

The results in this figure prompt the following observations:

(1) In the low density region for nucleons only matter, Γth → 5/3 for both TL and MFT

calculations for all proton fractions, characteristic of classical non-relativistic gases;

(2) In the low density region with contributions from leptons and photons, Γth → 4/3

because of the dominant contributions from relativistic leptons;

(3) Around 1 fm−3, both MFT and TL with and without leptons yield Γth ∼ 1.4. At

higher densities, Γth → 4/3 for MFT, because the electron mass and nucleon M∗’s lose their
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curves are for matter with nucleons only, whereas the lower curves are for nucleons with leptons

and photons.

significance relative to their Fermi momenta; the associated Landau masses m∗i become

proportional to their Fermi momenta leading to Pth/Eth → 1/3. The density dependence of

the nucleon m∗i in the TL case is more complicated than in MFT and the approach to the

asymptotic value of Γth is postponed to much higher densities than for MFT.

(4) The maximum values of Γth attained in TL calculations, 1.7-1.8 (for T = 20 MeV)

and 1.6-1.7 (for T = 50 MeV), are significantly smaller than those in MFT, 1.9-2.1 (for

T = 20 MeV) 1.9-2 (for T = 50 MeV). The dependence on Ye is weak, but that on ρB

is more pronounced. In this respect, the TL results here resemble those of non-relativistic

treatments in which finite-range interactions are employed [98].

VIII. SUMMARY AND CONCLUSION

In this paper, we have studied hot and dense nucleonic matter in the EFT framework

of QHD beyond the mean field approximation by including contributions from two-loop

diagrams. Based on the same QHD Lagrangian, results of MFT and TL approximations for
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conditions of relevance to the study of core-collapse supernovae, neutron stars and mergers

of compact binaries were calculated and compared. The Lagrangian employed is the same as

in Ref. [103] (termed NL3 in the literature), but with the addition of pseudo-vector nucleon-

pion coupling which preserves chiral symmetry. Results at the MFT level were checked to

be the same as those of NL3 in the literature. The TL calculations add significant density-

dependent contributions to the Hartree terms of MFT from the exchange of iso-scalar,

iso-vector and pseudo-scalar mesons. For both approximations, the same set of five density-

independent nucleon-meson couplings were used. In each case, the coupling strengths were

determined utilizing the empirical properties of zero-temperature bulk matter, namely, the

binding energy, Landau mass, incompressibility, and symmetry energy all at the equilibrium

density of isospin-symmetric nuclear matter. Our principal findings are summarized below.

The decrease of the TL Dirac effective mass, M∗, with density is much slower than in

the MFT case. This feature, in conjunction with relativistic effects, renders the Landau

masses, m∗n,p, to also decrease more slowly than in MFT. The overall behavior of m∗n,p

vs ρB is qualitatively similar to that of non-relativistic models which consider exchange

contributions from finite-range interactions (see, e.g., Ref. [65]). At T = 0 in MFT, the 16

MeV binding energy of SNM results from the competition between the scalar (attraction)

and vector (repulsion) meson exchanges, but in the TL calculation part of the repulsion

( ∼ 10 MeV) comes from the exchange diagrams. To achieve saturation at the empirical

values, the coupling strengths, particularly g2s and g2v , exhibit a distinct pattern: g2s < g2v

in MFT, but g2s > g2v in TL; moreover, their magnitudes in the TL case are about half of

those in the MFT. The T = 0 EOS for TL is significantly softer than that of MFT: for

SNM, the difference starts around ∼ 0.4 fm3, whereas for PNM, the dissimilarity begins at a

lower density ∼ 0.2 fm3. It is also noteworthy that with minor adjustments of the coupling

strengths, the TL energies in PNM at low and near-nuclear densities agree with those of

modern non-relativistic QMC and EFT calculations. The contribution of quartic terms in

the neutron-proton asymmetry parameter x to the difference of PNM and SNM energies was

found to be small, that in TL calculations being much smaller than in MFT.

The neutron-star matter EOS’s of both MFT and TL calculations support a 2M� star

required by recent precise determinations. In the TL case, a slightly stiffer than the nominal

case EOS we studied in detail had better success. The symmetry energy stiffness parameter

L in TL calculations (∼ 83 MeV) is smaller than that in MFT (∼ 103 MeV) by about 20

44



MeV. Consequently, TL calculations yield smaller (by about 1 km) neutron star radii than

those in MFT. We have verified that even smaller values of L (in the suggested range in

Ref. [11]), and hence smaller neutron star radii can be obtained with additional scalar-iso-

vector couplings, but at the expense of more involved TL calculations. Work is in progress

to find a minimal set of density-independent couplings that yield radii in the range of 11-13

km for 1.4M� stars as indicated by analyses of astrophysical observations [11].

The density-dependent TL single-particle potentials differ substantially from those of

MFT. As is well known, the Schrodinger-equivalent optical potential, Vopt(Ekin), of MFT

increases linearly with Ekin, and is in disagreement with those obtained from analyses of

proton-nucleus scattering and heavy-ion experiments. The TL results for Vopt increase more

slowly with energy than those of MFT, and are in better agreement with extractions from

measurements. The qualitative behaviors with density and energy are similar to those of

non-relativistic models in which exchange contributions from finite-range interactions are

considered [65]. The TL calculations of Vopt offer a contrast to other modifications of MFT

in which either density-dependent couplings and/or momentum cut-off procedures which

introduce additional functions and/or parameters are employed [44].

The Landau effective mass plays a key role in low-temperature thermodynamics. The

MFT and TL calculations of m∗n,p share a common feature, viz, at a given density ρB, both

m∗n and m∗p increase with the proton fraction x in matter. However, the isospin splitting at

low density in the TL calculation is much larger than in MFT. This difference is caused by

pion exchange in the TL calculation, which is absent in MFT. Moreover, for given x and

ρB, the TL m∗n,p are systematically larger than those of MFT.

Contrasting the thermal properties of nucleonic matter for MFT and TL calculations was

another goal of this study. On the formalism level, we demonstrated that our TL finite

temperature results recover the zero temperature limit (not a trivial task) and satisfy ther-

modynamic consistency. Thermal effects calculated from a self-consistent approach were

contrasted with those from a perturbative approach. Except at the highest densities (ap-

proaching ∼ 2 fm−3), results from these two methods were found to be consistent with each

other. A study of the liquid-gas phase transition (without Coulomb interactions) yielded the

critical temperatures Tc = 16.05 (15.40) MeV for the TL (MFT) calculations in agreement

with accepted values. The entropy per particle, thermal components of pressure, energy, and

chemical potential were calculated for T = 20 and 50 MeV, and x = 0.1 and 0.5 to gauge
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the range of variation in astrophysical settings. The results agree with the non-degenerate

limits at low density and high temperature. At high densities and low temperature for which

degenerate conditions prevail, results of FLT reproduce the exact results. Comparisons with

the limiting situations revealed the density and temperature ranges for which results of exact

calculations are needed.

The thermal index, Γth, increasingly being used in astrophysics simulations, was also

computed for representative values of T and x with and without contributions from leptons

(electrons and positrons) and photons. Γth varies weakly with T and x, but more significantly

with ρB. MFT yields a prominent peak at supra-nuclear density with Γth exceeding (close

to) 2 at T = 20 (50) MeV without leptons, whereas in the TL calculations the peaks are

suppressed to values much below 2. Contributions from leptons and photons (the latter

significant only at high T ’s) further decrease Γth at all ρB. For sub-nuclear densities (<<

0.1 fm3), results of both MFT and TL approach the non-degenerate limit of Γth = 5/3,

but the presence of leptons and photons forces Γth toward 4/3 characteristic of relativistic

particles. At high density, the MFT results can be easily understood as m∗i → kF,i; the

dominance of relativity (with or without leptons) results in Γth → 4/3. The m∗i and m∗
′
i in

TL calculations have a more complicated density dependence in the region of interest here.

In conclusion, the TL results are distinctly different from their MFT counterparts for

the EOS, the single-particle optical potential, and thermal properties. Based on the NL3

Lagrangian with the inclusion of an iso-vector pion-nucleon coupling, the meson exchange

diagrams improve results of the single-particle optical potential to be in agreement with

extractions from data. Although the EOS of TL is much softer than that of MFT, results

consistent with current neutron star data are obtained. The TL thermal properties differ

significantly from those of MFT, and are in semi-quantitative agreement with results of

non-relativistic models that include exchange contributions from finite-range interactions.

Our results also suggest some directions for further study. MFT underestimates nuclear

level densities for heavy nuclei owing to its low Landau effective mass; the ability to obtain

larger masses in TL calculations hint at better predictions. Thus, studies of finite nuclei

including TL contributions are worthwhile. As a bonus, one can also learn about the influ-

ence of exchange terms on spin-orbit splittings in nuclei, a success enjoyed by MFT. Unlike

the conventional Hatree-Fock method, the TL calculation does not require a self-consistent

single particle spectrum; instead, the ground state energy at T = 0 or the chemical poten-
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tial at T 6= 0 are minimized by adjusting the meson fields. This procedure could greatly

simplify calculations of finite nuclei, results of which can be contrasted with those of the

more involved relativistic Hartree-Fock procedure.
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Appendix A: Explicit expressions for the two-loop contribution δω(1)

Analytical integrations of the angular dependences render Eqs. (3.25)-(3.28)] into two-

dimensional integrals in the variables p = |p| and q = |q|. For the φ field, we obtain

A(φ)(p, q) = p2 + q2 +m∗s
2 − (E∗(p)− E∗(q))2 , (A1)

Θ(φ)(p, q) = ln

(
Aφ(p, q) + 2pq

Aφ(p, q)− 2pq

)
, (A2)

δ
(φ)
d =

1

M2

1

(2π)4

∫
dpdq

pq

E∗(p)E∗(q)
Θ(φ)(p, q) [np(p)np(q) + nn(p)nn(q)] , (A3)

δ(φ)e =
4

M2

1

(2π)4

∫
dpdq

pq

E∗(p)E∗(q)
Θ(φ)(p, q) [np(p)nn(q)] . (A4)

Analogous quantities can be defined for the other fields: A(v,ρ,π)(p, q), Θ(v,ρ,π)(p, q), δ
(v,ρ,π)
d ,

and δ
(v,ρ,π)
e . Also of use are quantities involving the scalar densities (with the spin degeneracy

factor γs = 2):

ρs,i = γs

∫
d3q

(2π)3
M∗

E∗(q)
ni(q) ,

αd =
1

8M∗2M4γ2s

(
ρ2s,p + ρ2s,n

)
and αe =

1

2M∗2M4γ2s
(ρs,pρs,n) , (A5)

and

λ(φ) =
1

2

(
M∗2

M2
− m∗s

2

4M2

)
, λ(v) = −1

2

(
M∗2

M2
+

m2
v

2M2

)
,

λ(ρ) = −1

8

(
M∗2

M2
+

m2
ρ

2M2

)
, and λ(π) = −1

8

m2
π

M2
. (A6)
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Utilizing the above expiressions, δω(1) in Eqs. (3.25)-(3.28) can be written compactly as

δω(1,φ)

M4
= γsg

2
s

(
αd + λ(φ)δ

(φ)
d

)
,

δω(1,v)

M4
= γsg

2
v

(
2αd + λ(v)δ

(v)
d

)
,

δω(1,ρ)

M4
= γsg

2
ρ

[
1

2
(αd + αe) + λ(ρ)

(
δ
(ρ)
d + δ(ρ)e

)]
,

δω(1,π)

M4
= γs

(
gA
fπ

)2

M∗2
[
αd + αe + λ(π)

(
δ
(π)
d + δ(π)e

)]
. (A7)

Appendix B: Non-relativstic (low density) limit expressions at zero temperature

For kF
M∗
� 1, non-relativistic conditions prevail. The expressions derived here help us to

understand the behavior of the TL contributions at low densities, and also serve as checks of

numerical calculations of the exact expressions at zero temperature. The emerging structure

is the same as in previous non-relativistic studies that include exchange interactions [41, 42].

The various TL contributions can be expressed in terms of the generic function

F (kF,i, kF,j;m) ≡
∫

d3p

(2π)3
d3q

(2π)3
θ(kF,i − |p|) θ(kF,j − |q|)

(p− q)2 +m2
, (B1)

where i and j stand for neutron or proton, and m is the mass of the meson through which

nucleon-nucleon interactions are occurring. Explicitly, the TL contributions in the non-

relativistic limit are

δE(1,φ) =
γs
2
g2s [F (kF,p, kF,p;m

∗
s) + F (kF,n, kF,n;m∗s)]

δE(1,V ) = −γs
2
g2v [F (kF,p, kF,p;mv) + F (kF,n, kF,n;mv)]

δE(1,ρ) = −γs
2
g2ρ

[
1

4
(F (kF,p, kF,p;mρ) + F (kF,n, kF,n;mρ)) + F (kF,p, kF,n;mρ)

]
δE(1,π) =

γs
2

(
gA
fπ

)2

m2
π

[
1

4m2
π

(
ρ2p + ρ2n

4
+ ρpρn

)
−1

4
(F (kF,p, kF,p;mπ) + F (kF,n, kF,n;mπ))− F (kF,p, kF,n;mπ)

]
(B2)
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The integrations can be done analytically with the result

(2π)4 F (kF,i, kF,j;m)

=
2

3
(k3F,i + k3F,j)

[
kF,i + kF,j −m arctan

(
kF,i + kF,j

m

)]
−2

3
(k3F,i − k3F,j)

[
kF,i − kF,j −m arctan

(
kF,i − kF,j

m

)]
+ ln

(
m2 + (kF,i + kF,j)

2

m2 + (kF,i − kF,j)2

)[
m4

24
+
k2F,i + k2F,j

4
m2 −

(
k2F,i − k2F,j

)2
8

]

−5

6
kF,ikF,j

(
k2F,i + k2F,j

)
− m2

6
kF,ikF,j . (B3)

Appendix C: Single-particle spectrum

From the zero-temperature energy density functional, the single-particle spectrum is ob-

tained from [65, 96, 104] :

γs εi(p) =
∂E
[
np,n;φ[np,n], V [np,n], b[np,n]

]
∂ni(p)

=
∂E
[
np,n;φ, V , b

]
∂ni(p)

∣∣∣∣∣
bg

, (C1)

where εi(k), φ, V , and b are functionals of np,n(k). Because the meson field expectation

values minimize E , their functional derivatives are zero. The single-particle spectrum at the

MFT level is

ε(0),i(p) =

√
p2 +M∗2 + gvV + t3

1

2
gρb , (C2)

with t3 = +1 for proton and −1 for neutron. After including the two-loop contributions,

ε(1),i(p) = ε(0),i(p) + δε(1),i(p) , (C3)

δε(1,φ,v),i(p) =
∂δE(1,φ,v)
∂ni(p)

=
(−)

4E∗(p)

∫
dτqni(q)

[
g2s fs D(m∗s) + g2v fv D(mv)

]
, (C4)

δε(1,ρ,π),p(p) =
∂δE(1,ρ,π)
∂np(p)

=
(−)

4E∗(p)

∫
dτq

1

4
[np(q) + 2nn(q)]×[

g2ρ fv D(mρ) +

(
gA
fπ

)2

M∗2 fpv D(mπ)

]
, (C5)

δε(1,ρ,π),n(p) = δε(1,ρ,π),p(p)
(
np ↔ nn

)
, (C6)

and ni(q) = θ (kF,i − q). From these results, we can compute m∗i (ρp,n), which controls

the thermodynamics at low temperature and high density (degenerate limit). Through a
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procedure similar to that in Appendix A, we obtain a compact expression for ε(1),i(p) with

the help of the functions

Λi ≡
ρs,i

4γsM∗M
, (C7)

∆
(φ,v,ρ,π)
i (p) ≡ 1

(2π)2

∫
dq

q

E∗(q)
Θ(φ,v,ρ,π)(p, q)ni(q) , (C8)

Λi ≡
(
g2s + 2g2v

)
Λi +

(
1

2
g2ρ +

(
gAM

∗

fπ

)2
)

(Λi + 2Λj) , (C9)

∆i(p) ≡
[
g2sλ

(φ)∆
(φ)
i (p) + g2vλ

(v)∆
(v)
i (p) + g2ρλ

(ρ)
(

∆
(ρ)
i (p) + 2∆

(ρ)
j (p)

)
+

(
gAM

∗

fπ

)2

λ(π)
(

∆
(π)
i (p) + 2∆

(π)
j (p)

)]
. (C10)

with Θ(φ,v,ρ,π)(p, q) as in Eq. (A2). The lower indices “i” and “j” are for protons and

neutrons, but the two are always different in the current discussion. The spectrum is then

ε(1),i(p) = E∗(p) + gvV + t3
1

2
gρb+ Λi

M

E∗(p)
+

M2

pE∗(p)
∆i(p) . (C11)

From Eq. (4.3), the Landau effective mass becomes

m∗i = E∗F,i

[
1− MΛi

E∗F,i
2 −

M2

kF,i

(
1

k2F,i
+

1

E∗F,i
2

)
∆i(kF,i) +

M2

k2F,i

(
d∆i

dp

)
p=kF,i

]−1
, (C12)

where

d∆
(φ)
i (p)

dp
=

1

π2

∫
dq

q2

E∗(q)

A(φ)(p, q)− 2p2E
∗(q)

E∗(p)

(A(φ)(p, q))
2 − 4p2q2

ni(q) . (C13)

Appendix D: Degenerate and non-degenerate limit expressions

In the absence of collective effective effects close to the Fermi surface, Landau’s Fermi

Liquid Theory (FLT) [77, 96, 105] enables the calculation of the degenerate-limit thermal

properties for a general single-particle spectrum. To leading order in temperature effects,

the explicit forms of the entropy density, thermal energy, thermal pressure, and thermal

chemical potential are

s = 2T
∑
i

aiρi ,
Eth
NB

=
T 2

ρB

∑
i

aiρi (D1)

Pth =
2T 2

3

∑
i

aiρi

(
1− 3

2

∑
j

ρj
m∗i

∂m∗i
∂ρj

)
, (D2)

µi,th = −T 2

(
ai
3

+
∑
j

ρjaj
m∗j

∂m∗j
∂ρi

)
, (D3)
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where ai =
π2

2

m∗i
k2F,i

is the level density parameter. Expressions for next-to-leading order in

temperature effects have been recently worked out in Ref. [98].

In the non-degenerate limit when the particle’s de Broglie wave length is much smaller

than the inter-particle distance, i.e., 2πρ
1/3
i /
√

3MT � 1, the Fermi-Dirac distribution ap-

proaches the classical Maxwell distribution. In this case, the thermal state variables can be

expended in terms of fugacity. Here we only collect the relevant formulas for the leading

order terms, which are the same as those of the classical gas state variables. Assuming both

protons and neutrons are in this limit,

S/NB '
1

ρB

∑
i

ρi

{
5

2
− ln

[
ρi
2

(
2π

M∗T

)3/2
]

+
ρi
8

( π

M∗T

)3/2
− 15T

4M∗

}
, (D4)

Pth '
∑
i

{
ρiT

[
1 +

ρi
4

( π

M∗T

)3/2]
− P ∗Fi

}
− δV (D5)

Eth

NB

' 1

ρB

∑
i

{
3

2
Tρi

[
1 +

ρi
4

( π

M∗T

)3/2
+

5T

4M∗

]
− T ∗Fi

ρi

}
+
δV

ρB
+M∗ , (D6)

µth,i ' T

{
ln

[
ρi
2

(
2π

M∗T

)3/2
]

+
ρi
2

( π

M∗T

)3/2
− 15T

8M∗

}
+
(
M∗ − E∗Fi

)
(D7)

where P ∗Fi
and T ∗Fi

are the Fermi pressure and energy of species i at T = 0. Above, the next-

to-leading order expressions in terms of the fugacity and T/M∗ (i.e., relativistic corrections)

for MFT are from Refs. [96, 104], where expressions for δV arising from the T -dependence

of M∗ can also be found. Contributions from exchange terms are not included above, but

are expected to be negligibly small at very low densities as they are proportional to ρ2i .
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