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The pole extrapolation method is applied to the semi-inclusive inelastic scattering off the deuteron
with tagged spectator protons to extract the high-x structure function of the neutron. This approach
is based on the extrapolation of the measured cross sections at different momenta of the spectator
proton to the non-physical pole of the bound neutron in the deuteron. The advantage of the method
is in the possibility of suppression of the nuclear effects in a maximally model independent way. The
neutron structure functions obtained in this way demonstrate a surprising x dependence at x ≥ 0.6
and 1.6 ≤ Q2 ≤ 3.38 GeV2, indicating a possible rise of the neutron to proton structure functions
ratio. If the observed rise will be valid in the true deep-inelastic region then it may indicate new
dynamics in the generation of high-x quarks in the nucleon. One such mechanism we discuss is the
possible dominance of short-range isosinglet quark-quark correlations that can enhance the d-quark
distribution in the proton.

PACS numbers: 24.85.+p, 13.40.-f, 13.60.-r, 13.85.Ni,14.20.Dh

I. INTRODUCTION

Detailed knowledge of the u- and d- quark densities at
large Bjorken x is one of the important unresolved issues
in the QCD structure of the nucleon. This structure is
very sensitive to quark correlation dynamics at short dis-
tances [1]. The high-x distribution is important also to
LHC physics, in which due to QCD evolution, the par-
tons at very large virtualities are sensitive to the high-x
quark distributions measured at lower Q2.

The extraction of the separate u- and d-quark distri-
butions in the nucleon requires either the measurement
of the deep-inelastic scattering (DIS) structure function
of the proton and neutron or weak interaction measure-
ments off the proton in the charged current sector. Cur-
rently, the bulk of the data comes from the studies of in-
clusive DIS off the proton and deuteron, with the latter
being used to extract the neutron structure functions. In
this case, nuclear effects such as the relativistic motion of
the bound nucleons and their medium modification in the
deuteron become increasingly important at higher x ren-
dering the extracted neutron structure functions strongly
model dependent (see e.g. Refs. [2–4]).

One solution to the problem is to consider a new gen-
eration of experiments in which DIS off the deuteron is
followed by the detection of a recoil proton [5, 6], i.e.:

e+ d→ e′ +X + p . (1)

Such processes are more complex due to the large final-
state interactions (FSI) of the DIS products with the
spectator proton at large momenta [7, 8]. Their advan-
tage however lies in the possibility of applying “pole ex-
trapolation procedure” [9, 10] at small momenta of the
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proton, in which case all nuclear effects due to Fermi mo-
tion, FSI and medium modification can be significantly
suppressed in a practically model independent way.

In Sec. II we introduce the general concept of pole ex-
trapolation and explain why it is best suited for reac-
tions involving a deuteron target. Section III presents
the theoretical framework of tagged deep inelastic scat-
tering which is then used in Sec. IV to elaborate the pole
extrapolation procedure for reaction (1). In Sec. V we
present the details of the pole extrapolation applied to
the recent BONuS data and our results for neutron struc-
ture function at large Bjorken x. In Sects. VI and VII we
discuss the results and present the conclusions.

II. GENERAL CONCEPT OF POLE
EXTRAPOLATION

The pole extrapolation was first suggested by Chew
and Low [11] for probing the structure of “free” π-mesons
or the neutron by studying (a): h+ p→ h′+π+Ns and
(b): h+p→ h′+n+π+

s reactions. In these reactions, Ns
and π+

s can be considered as spectators to the underlying
h + π → h′ + π and h + n → h′ + n subprocesses, in
which h is an external probe. Their idea was that by
extrapolating the invariant momentum transfer to the
unphysical pole values of the bound particles (mπ and
mn in this case), it will be possible to extract the “free”
cross sections of the underlying subprocesses.

The general concept of pole extrapolation can be seen
if one considers a target A that consists of two bound con-
stituents B and C in the reaction in which B is probed
by a particle h, while the particle C emerges as a specta-
tor. The impulse approximation (IA) (Fig. 1) amplitude
of such process has a structure:

MIA = Mh1+B→h2+X
G(B)

t−M2
B

χ†CΓA→BCχA, (2)
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FIG. 1. (Color online) IA contribution to h1+A→ h2+C+X
reaction, with C acting as a spectator.

where χA and χC represent the wave functions of in-
coming composite particle A and outgoing spectator
particleC. The vertex ΓA→BC characterizes the A→ BC
transition and the propagator of bound particle B is de-

scribed by G(B)
t−M2

B
, with t = (pA − pC)2. As it follows

from Eq. (2), the IA amplitude has a singularity in the
non-physical limit t → M2

B . The most important prop-
erty which makes this singularity significant is the “loop”
theorem [9], according to which any other process beyond
IA will not be singular due to a loop integration. Thus,
even though non-IA terms can be large in the physical
domain, they will be corrections in the t→M2

B limit.
The accuracy of the extrapolation depends on the mag-

nitude of

l = m2
B − tthr , (3)

where tthr is the threshold value for the physical domain.
For the reaction (a) tthr = 0, l = m2

π ≈ 0.02 GeV2,
and for (b) tthr = (mN − mπ)2, l = 2mNmπ − m2

π ≈
0.24 GeV2. While l is small for reaction (a), the problem
is that the pole is positive and t < 0, so the extrapolation
requires a crossing of the t = 0 point which makes the
result very sensitive to small variations in the method of
extrapolation. For reaction (b), even if one stays in posi-
tive domain of t, l is quite large, introducing ambiguities
in the analytic form of the pole extrapolation.

It was observed in Ref. [9] that pole extrapolation is
well suited for reactions (1) for which A ≡ d, B ≡ n and
C ≡ p. In this case tthr = (Md−mp)

2 and the variable l is
very small, l = 2mn|εb|−ε2b ≈ 0.004 GeV2, with deuteron
binding energy εb ≈ 2.2 MeV. Another advantage is the
positiveness of t = (pp − pD)2 > 0, thus no zero crossing
issues arise. These features make the extrapolation pro-
cedure in reactions (1) very precise. Because of this, the
pole extrapolation in processes involving the deuteron is
considered as a main method in extraction of different
neutron structure functions at future electron-light-ion
colliders [12].

III. THEORETICAL FRAMEWORK OF
TAGGED SPECTATOR DIS

From the above discussion, it follows that reaction (1)
is well suited for the extraction of neutron structure func-
tions using the pole extrapolation method. The reaction
(1) can be described through four nuclear structure func-
tions F SI

L,T,TL,TT , which depend on Q2, x, αs,ps⊥, where

ps is the proton momentum, and αs = 2
Es−pzs
ED−pzD

is the

light-cone momentum fraction of the deuteron carried by
the spectator proton normalized such that αs + αi = 2
(αi is the equivalent quantity for the struck neutron).
The virtual photon has energy ν and momentum q,

Q2 = q2 − ν2, Bjorken x = Q2

2mNν
, and ẑ||q. Consid-

ering the proton integrated over the azimuthal angle φ in
the Lab frame, one obtains:

dσ

dxdQ2d3ps/Es
=

4πα2
EM

xQ4

(
1− y − x2y2m2

N

Q2

)
×

[
F SI
2D(Q2, x, αs,ps⊥) +

2ν tan2 θ
2

mN
F SI
1D(Q2, x, αs,ps⊥)

]
,

(4)

where F SI
2D = F SI

L + Q2

2q2
ν
mN

F SI
T , F SI

1D =
FSI

T

2 , and y = ν
Ee

.

The calculation of Eq. (4) at ps < 700 MeV/c and
x > 0.1 is based on the assumption [5, 7, 9] that the
scattering proceeds through the interaction of the virtual
photon off one of the bound nucleons in the deuteron.
Two main diagrams contribute: IA (Fig. 2a) and final-
state interaction (FSI) diagrams (Fig. 2b), where the lat-
ter accounts for the rescattering of the recoil nucleon off
the products of DIS. While the calculation of the IA term
requires the knowledge of the deuteron wave function and
the treatment of the off-shellness of the bound nucleon,
the FSI term requires in addition the modeling of the
deep inelastic rescattering dynamics. In Ref. [7], we de-
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FIG. 2. (Color online) IA(a) and FSI(b) contributions to
reaction (1).

veloped a theoretical model for the calculation of the FSI
contribution based on the extension of the generalized
eikonal approximation (GEA) model [13, 14] to the DIS
domain (see also Ref. [15]). The off-shell effects were
treated within the virtual nucleon approximation (VNA)
which works reasonably well for up to ∼ 500 MeV/c of
spectator nucleon momenta, as our previous experience
in the quasi-elastic regime shows [16, 17, 19].

The calculations based on this approach [7] demon-
strated a good agreement with the first data from Jef-
ferson Lab (JLab) [18] (referred to as Deeps data) in the
x > 0.3 and ps ≥ 300 MeV/c region, describing all the
major features of the angular and momentum distribu-
tions. The conclusion from these comparisons was that
at x > 0.3, the FSI is dominated by the “compound”
DIS products scattering off the recoil nucleon, which can
be characterized by a diffractive scattering amplitude.
The wide kinematical range of Ref. [18] allowed us to
extract the deep inelastic FSI cross sections as a func-
tion of x and Q2. The success in the description of the
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data [18], motivated us to apply the pole extrapolation
to extract the neutron structure functions F2n(x,Q2).
The data, however, were taken at large recoil momenta
ps ≥ 300 MeV/c rendering large uncertainties in the pole
extrapolation procedure [10]. More recently, a dedicated
tagged DIS experiment was completed by the BONuS
collaboration [20, 21], where the recoil proton was mea-
sured at unprecedentedly small momenta of 78 MeV/c.
These data are the first in their kind for which the pole
extrapolation can be performed with a higher degree of
accuracy.

IV. POLE EXTRAPOLATION OF TAGGED DIS
PROCESSES

The pole extrapolation in (1) uses the fact the IA am-
plitude of Fig. 2a (similar to Eq. (2)) can be expressed
as [9]:

Mµ
IA =< X|JµEM(Q2, x)|n > ū(pd − ps)ū(ps)

Γd→pnχd
|εb|(Md +mn −ms) + 2MdTs

, (5)

where Ts is the kinetic energy of the spectator proton.
In Eq. (5) the pole is associated with negative kinetic

energy of the spectator at: T pole
s = − |εb|2 (1 +

mn−mp

Md
) ≈

− |εb|2 . While the above IA amplitude diverges at Ts →
T pole
s , the FSI amplitude is finite due to an extra loop

integration. In the Ts → T pole
s limit [9]:

Mµ
FSI → JµEM(Q2, x)ū(pd − ps)ū(ps)Γd→pnχd∫

d3k

2k2(2π)3
AFSI(k)

2(mN + T pole
s − k0)

, (6)

where k0 = Es −
√
m2
p + (ps − k)2 and AFSI is the

diffractive-like amplitude of the rescattering of DIS prod-
ucts off the spectator proton. Eq. (6) is finite at the pole
as compared to the singular behavior of IA term. This
result is the essence of the “loop” theorem [9].

The pole extrapolation procedure for the extraction
of F2n consists of multiplying the measured structure

function, FSI,EXP
2D (Eq. (4)) by the factor I(αs,ps⊥, t) [9],

which cancels the singularity of the IA amplitude and is
normalized such that

F extr
2n (Q2, x, t) = I(αs,ps⊥, t) · FSI,EXP

2D (Q2, x, αs,ps⊥),
(7)

approaches the free F2n(Q2, x, t) in the t → m2
n limit

with FSI effects being diminished.

V. POLE EXTRAPOLATION OF THE BONUS
DATA

We applied the above described method to the BONuS
data [20, 21], which is covering the kinematic range of
0.93 ≤ Q2 ≤ 3.38 GeV2 and invariant mass of the DIS

products 1.18 ≤ W ≤ 2.44 GeV. The spectator proton
was detected at ps = 77.5, 92.5, 110, 135 MeV/c, covering
a wide angular range of −0.9 ≤ cos θs ≤ 0.9.

A. Renormalization Procedure

The problem in implementing the pole extrapolation
procedure directly was in the fact that in the BONuS
experiment different spectator momenta were measured
at different and poorly known efficiencies. In the BONuS
analysis this issue was solved by normalizing the data for
each ps bin at cos θs ≤ −0.2 to an IA model [21]. For our
analysis, we chose to renormalize the data to the VNA
calculation [7] discussed in Sec. III, since it also contains
the FSI effects (referred in the text as VNA FSI). For
these calculations we used the parameterization of the
FSI amplitude (AFSI) obtained from the comparisons
with the Deeps data [18].

The BONuS data are presented as ratios R of the
BONuS data to the specific plane-wave impulse approx-
imation (BONuS IA) model discussed in Ref. [21]. The
overall normalization of the data was fitted for each spec-
tator momentum setting for two values of initial beam
energies. To obtain the absolute cross sections (required
for the pole extrapolation), we first multiplied the re-
ported R ratios by the BONuS IA calculation. Then
these cross sections have been fitted to our VNA FSI
calculations for each experimental ps setting and initial
beam energy in the range of x < 0.5 where neutron DIS
structure functions are sufficiently well known and have
small contributions from nuclear effects. The results are
presented in Figs. 3 and 4. For each column in these
figures, corresponding to a fixed spectator momentum ps
and initial electron energy Ebeam, one overall normal-
ization factor was obtained. The values of the normal-
ization factors with their errors are shown in Table I.
The quoted normalization parameters are relative to the
BONuS normalization values. Since BONuS obtained
their absolute cross sections by fitting their IA model,
we basically renormalized the BONUS cross sections to
take into account the FSI effects. As it was mentioned
above the parameters of FSI are fixed from the analy-
sis of the only existing (Deeps) experiment of reaction
(1) [18]. This experiment covered larger values of the
spectator proton momentum (≥ 300 MeV/c) which was
good for the extraction of FSI parameters. However, the
restricted kinematics of Deeps measurements prevent us
in obtaining the sufficiently detailed FSI parameteriza-
tion to be able to describe the shape of the ratio R in a
more refined way in the cos(θs) ≈ 0 region dominated by
the FSI of produced resonances. Further refinements of
FSI parameters, will allow to address the more detailed
structure of the cross section dominated by resonance
production.

In Figs. 3 and 4 we also compare the results of VNA
calculation within the impulse approximation (referred
to as VNA IA) with the same normalization factors of
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Table I. These calculations indicate that the FSI effects
are not negligible and they increase with the spectator
momentum ps.

Ebeam ps norm. error χ2/dof

(GeV) (MeV) factor

4.23

77.5 1.316 0.036 2.39

92.5 1.279 0.033 4.61

110 1.378 0.041 11.1

135 1.494 0.055 10.2

5.27

77.5 1.176 0.025 6.54

92.5 1.203 0.026 12.4

110 1.244 0.031 15.7

135 1.417 0.047 20.8

TABLE I. Normalization factors obtained by fitting the
BONuS data to our VNA model calculations including FSI.

To estimate the errors in the normalization factors
we investigated their dependence on several VNA FSI
model ingredients: The first is the choice of the deuteron
wave function. To estimate the wave function uncertainty
we used a selection of different deuteron wave functions,
AV18 [22], CDBonn [23], Paris [24], and WJC1 [25], re-
sulting in < 0.5% variations. The uncertainty in the pa-
rameterization of the FSI amplitude obtained in Ref. [7]
resulted in 2-3% variations. Finally, in the VNA calcula-
tion at x < 0.5, we used the neutron structure functions
parameterization from Ref. [26], whose average accuracy
in this region is ∼3%.

As it follows from Table I our fitting procedure yielded
rather large values for χ2/dof. This is mainly due to
small values of the statistical errors in BONuS data which
was taken into account in the fitting procedure. Inclu-
sion of the systematic errors of BONuS data will signifi-
cantly reduce the magnitude of χ2/dof. However we did
not to include the latter into the fit since it was unclear
whether these errors are uncorrelated. Finally, as a test
that the renormalization procedure yielded a valid re-
sults we compared our extracted (by pole extrapolation
method) neutron structure functions at x < 0.5 with the
data available from the analysis of inclusive d(e, e′)X re-
actions [26]. Note that the inclusive d(e, e′)X reactions at
x < 0.5 have small contribution from nuclear effects and
neutron data in this kinematics can be considered rather
reliable. As Fig. 5 shows our results agrees reasonably
well with that of Ref. [26].

B. Pole Extrapolation in the x > 0.5 Regions

The experimental uncertainties in the absolute cross
section of the BONuS data depend only on the momenta
of the spectator proton ps at given Ebeam and not on the
range of the x being probed. Therefore, the normaliza-
tion factors that we obtained for the x < 0.5 region, can

be applied to the BONuS data set also in the x > 0.5 re-
gion, where the neutron structure functions are not well
constrained. In this way, we obtained the renormaliza-
tion of the BONuS data set for the whole measured region
of x. Using these renormalized data in the pole extrap-
olation procedure described in Sec. IV, we extracted the
neutron structure functions for the whole range of the x
covered by BONuS experiment.

The extracted F2n for the largest two Q2 bins of the
BONuS experiment are presented in Fig. 5 and Table II.
These represent the weighted average of the extrapolated
values taken over all θs bins. The final statistical errors
are similar to those of the BONuS data averaged over
backward θs [20].

Our procedure of renormalization and pole extrapo-
lation rendered systematic errors which are presented
(as open error bars) in Fig. 5. To estimate the sys-
tematic errors in the extracted F2n values, we took into
account statistical and systematic errors of the BONuS
non-normalized cross sections as well as errors in the es-
timation of the renormalization coefficients of Table I.

To estimate the final systematic errors in the F2n which
are extracted in the pole extrapolation, we carried out
a Monte Carlo simulation where each of the inputs in
the pole extrapolation (BONuS un-normalized cross sec-
tions, renormalization coefficients and the uncertainty in
the factor I(αs, ps⊥, t) due to the choice of the particu-
lar deuteron wave function) are distributed randomly in
the Gaussian form with a width corresponding to their
estimated errors. With such randomly distributed input
values the pole extrapolation is carried out. The widths
of the distribution of the extracted F2n values are taken
as an estimate for the systematic errors in our procedure.
These are the systematic errors quoted in Table II. Note
that in the future experiments [28] these systematic er-
rors can be largely reduced by achieving more reliable
absolute measurements of the data.

Q2(GeV2) x F2n stat. sys. F2n
F2p

stat. sys.

1.66

0.25 0.251 0.002 0.022 0.761 0.006 0.066

0.34 0.181 0.002 0.020 0.644 0.006 0.073

0.44 0.153 0.002 0.017 0.600 0.008 0.067

0.56 0.118 0.002 0.015 0.671 0.010 0.084

0.77 0.090 0.001 0.009 1.268 0.019 0.132

3.38

0.40 0.147 0.004 0.023 0.628 0.017 0.10

0.51 0.091 0.002 0.014 0.571 0.010 0.089

0.62 0.061 0.001 0.007 0.518 0.013 0.057

0.72 0.046 0.001 0.004 0.634 0.017 0.052

0.87 0.030 0.001 0.003 1.54 0.066 0.158

TABLE II. F2n and its ratio to F2p with statistical and sys-
tematic errors, obtained with the pole extrapolation method
applied to the renormalized BONuS data.
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FIG. 3. (Color online) Ratio R of the BONuS data to a plane-wave model (see Ref. [21] for details) as a function of spectator
cos θs compared to our VNA IA (black dashed curve) and FSI (dotted blue curve) calculation for Ebeam = 4.23 GeV. An overall
normalization factor was fitted for each ps value in the model to the FSI calculation, see text for details. The IA calculation is
shown using the same normalization factor.

VI. DISCUSSION OF THE RESULTS

The most important advantage of the pole extrapola-
tion method is that the extracted neutron structure func-
tions are free from Fermi motion and nuclear medium
modification effects which are the main and unresolved
issues in high-x extractions in inclusive DIS off the
deuteron. Our results for F2n/F2p at x < 0.5 are in
fair agreement with the neutron structure functions ex-
tracted from the analysis of the inclusive data where no
significant nuclear effects are expected. However our re-
sults exhibit a few surprises at larger x (Fig. 5). First,
at x > 0.6, F2n is larger than the one extracted in inclu-
sive DIS. Note, however that Fermi effect uncertainties
in inclusive DIS analyses [4] still allow the values ob-
tained in Fig. 5. The second interesting property of our
results is the weak slope of the F2n/F2p ratio with in-
creasing x, even indicating a possible upward turn of the
ratio at x >∼ 0.7. The upward turn is observed also in
the d(e, e′)X analysis [29] for up to x = 0.7, in which
the medium modification effects in the deuteron are es-
timated using the observed correlation between nuclear
EMC and short-range correlation effects.

Our analysis was applied to the data beyond x = 0.7
and the intriguing result is that the tendency of an in-
crease of the F2n/F2p ratio continues. It is worth men-
tioning that the extracted slope of F2n/F2p is nearly in-
sensitive to our normalization procedure. Due to sub-DIS
values of W (≈ 1.18 GeV) corresponding to the highest

x values in Fig. 5 one can not directly relate the rise of
F2n/F2p to underlying properties of the u- and d-quark
distributions at x→ 1. At these W such a rise is related
to the F2n of the ∆ production. Thus the relation to
the properties of quark distributions can be made only
based on duality arguments. It is worth mentioning that
the recent duality paper [30] analyzing the same BONuS
data, concluded that the ∆-resonance contributes to the
duality, within 20-30% accuracy.

If one assumes, however, that the observed F2n/F2p

rise will persist in the ”true” DIS region then it is in-
triguing that such a rise can be an indication of the exis-
tence of an isosinglet qq short-range correlations (SRCs)
in the nucleon at x → 1. Such a correlation will re-
sult in the same momentum sharing effect, which is ob-
served recently in asymmetric nuclei in the NN SRC
region [31, 32]. According to this observation, the SRC
between unlike components in the asymmetric two-Fermi
system will result in the small component’s dominance in
the correlation region such that

f1n1(p) ≈ f2n2(p), (8)

where fi are the fractions of the components, and ni(p)
the high momentum distributions normalized to unity. If
such a qq SRC would be present in the nucleon, then the
above equation will translate to

u(x) ≈ d(x) (9)

at x→ 1, since the valence u and d quarks are normalized
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FIG. 4. (Color online) As Fig. 3 but for Ebeam = 5.27 GeV.
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FIG. 5. (Color online) F2n to F2p ratio obtained using the
pole extrapolation applied to the renormalized BONuS data.
Systematic errors are depicted as open error bars. The dotted
black and dashed red curves show the ratio obtained with F2n

parametrization of Ref. [26]. The F2p values are estimated
using the fit of Ref. [27].

to their respective fractions. Such a relation will result
in the the rise of the F2n/F2p ratio in the region of x in
which the qq correlations are dominant. Note that the
possible dominance of isosinglet ud SRCs is consistent

with the flavor decomposition of neutron and proton form
factors in the large Q2 region [33]

VII. CONCLUSION AND OUTLOOK:

For the first time the pole extrapolation procedure is
used to extract F2n from semi-inclusive scattering from
the deuteron with a tagged recoil proton. The extracted
results are free from Fermi and medium modification
effects. They indicate a possible inversion of the decrease
of the F2n/F2p ratios at large x. If such an increase would
observed in the “true” DIS region, it suggests the domi-
nance of a short-range isosinglet ud correlations, which
will result in the momentum sharing effects predicted for
asymmetric two-component Fermi systems in which a
short interaction takes place between unlike components.
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