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Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications
ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need
for a predictive theory applicable where no data is available, together with the variety of potential applications,
is an incentive to develop a fully microscopic approach to fission dynamics.

Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission frag-
ments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density
functional theory (DFT).

Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large ampli-
tude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM)
under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First,
a series of constrained EDF calculations map the configuration and potential energy landscape of the fissioning
system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the
nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential energy
surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the
scission line.

Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced
by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically
within 2 mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the
structure of the initial state and the prescription for the collective inertia. We emphasize that results are also
sensitive to the continuity of the collective landscape near scission.

Conclusions: Our analysis confirms that the adiabatic approximation provides an effective scheme to compute
fission fragment yields. It also suggests that, at least in the framework of nuclear DFT, three-dimensional collective
spaces may be a prerequisite to reach 10% accuracy in predicting pre-neutron emission fission fragment yields.

I. INTRODUCTION

Nuclear fission is the mechanism under which a (usu-
ally heavy) atomic nucleus may split into two or more
fragments, thereby releasing a large amount of energy [1].
In addition to important applications in energy produc-
tion or national security, fission also plays a crucial role in
determining the stability of superheavy elements [2]. As
a consequence, it is one of the primary mechanisms that
terminate nucleosynthesis, and there have been specula-
tions that fission fragments could be re-absorbed in the
r-process flow [3–5]. Fission is also an important mecha-
nism used to produce short-lived exotic nuclides at exper-
imental facilities with radioactive ion beams, and is thus
a portal to studying the frontiers of nuclear stability.

Although the mechanism of nuclear fission has been
known for over 80 years, reliably predicting its char-
acteristics solely on the basis of our knowledge of nu-
clear forces and quantum many-body methods remains
an elusive goal [6]. In common with most of nuclear
structure theory, one of the main hurdles to develop-
ing such a predictive theory of fission is our relatively
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poor knowledge of nuclear forces. In addition, nuclear
fission is a prime example of a non-equilibrium, time-
dependent, large amplitude collective motion where a
many-body system of strongly-interacting fermions de-
cays through the coupling to a number of open chan-
nels. In light of these theoretical difficulties, it is quite
remarkable that current fission theory can reproduce the
30 orders of magnitude range of experimentally measured
spontaneous fission half-lives [7, 8] and predict the main
characteristics of the mass yields in neutron-induced fis-
sion of actinides [9].

Today, there is a relative consensus that nuclear den-
sity functional theory provides the most promising frame-
work to describe fission microscopically [6]. By refor-
mulating the original nuclear many-body problem in
terms of an energy density functional of the isoscalar
particle density ρ, it offers tremendous conceptual and
practical simplifications. In particular, the full many-
body Schrödinger equation reduces to a Hartree-Fock-
Bogoliubov-like equation which is easily implemented
on modern computers. In addition, the concept of nu-
clear deformation, which is a particular realization of the
generic spontaneous symmetry breaking so essential to
the success of the EDF approach, allows to cast bridges
between microscopic and phenomenological models of fis-
sion. Historically, these models, where the nucleus is
modeled as a deformed liquid drop with several correc-
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tions of quantum origin, have been extraordinarily suc-
cessful in applications, see, e.g., [10–16] for a selection of
some recent applications.

Nuclear DFT can be applied to fission in two differ-
ent flavors. In time-dependent density functional theory
(TDDFT), the real-time evolution of the nuclear sys-
tem is simulated from an initial condition up to scis-
sion [17, 18]. This approach automatically includes one-
body dissipation effects: as the nucleus changes its shape,
single-particle excitations (or quasi-particle excitations
when pairing correlations are taken into account) are
included, which slows the collective motion. TDDFT
is probably the most promising approach to describe
the structure of the fission fragments and various recent
works have shown extremely encouraging results [19–22].
However, realistic simulation of a single fission event in-
cluding full symmetry breaking and full treatment of
pairing correlations is at the limit of what current su-
percomputers can handle [22]. Since predicting fission
fragment distributions in this framework would probably
require sampling thousands of such events, this approach
is currently inapplicable.

By contrast, the adiabatic approximation to fission re-
lies on the observation that fission timescales are much
longer than the timescales of single-particle excitations.
Typical estimates of the time it takes for the nucleus to
go from saddle to scission is in the range of 10−19−10−21

s (the more realistic the model, the longer the timescale)
[22–25]; time-scales associated with Fermi energies of -8
MeV are τsp = ~/λFc ≈ 10−22 s. As a result, one may
assume equilibrium at all times and decouple the large
amplitude motion of the system as a whole from inter-
nal excitations. In practice, this can be very effectively
achieved by introducing a small set of collective variables
such as multipole moments, pairing fields, etc., and pre-
calculating the potential energy surface of the nucleus as
a function of these variables. This strategy has proven
especially fruitful to compute spontaneous fission half-
lives through simple multi-dimensional quantum tunnel-
ing [2, 7, 26–32]. As we will show in this work, it is also
the ideal framework to compute charge and mass distri-
butions.

In this paper, we will use such an adiabatic approach
to large amplitude collective motion based on the time-
dependent generator coordinate method (TDGCM) to
compute the fission fragment charge and mass distribu-
tions (before any neutron emission) for the benchmark
case of 240Pu. While the TDGCM was already intro-
duced as early as 1991 [25], there have been very few
applications to the calculation of fission fragment distri-
butions [33, 34]. Here, we will perform a comprehensive
study by examining in details the role in the collective
dynamics of the initial state and of the collective inertia.
We will also estimate systematic uncertainties by com-
paring predictions from two different functionals. The
purpose of this work is to establish a complete bench-
mark that can be used to gauge future progress.

In section II, we briefly describe the main features of

the theoretical approach. We recall the general ansatz
of the TDGCM, discuss the calculation of the potential
energy surface and of the time-evolution of the system.
In section III, we analyze the results by discussing the
numerical convergence of the calculation, the sensitivity
to the initial state, to the collective inertia, to the EDF,
etc. We conclude with a brief summary and outlook in
section IV.

II. THEORETICAL FRAMEWORK

This section presents the methodology adopted to de-
termine a collective Schrödinger-like equation that de-
scribes low-energy fission dynamics. We also explain how
to extract the fission fragment distributions from the time
evolution of the resulting collective wave packet.

A. Overview of the method

In this work, fission is described as a slow adiabatic
process driven by a few collective degrees of freedom,
or collective variables. The time-dependent extension to
the generator coordinate method provides an appropriate
formalism to describe such a large amplitude motion in
nuclei [35, 36]. In this approach, we assume that the
many-body state |Ψ(t)〉 of the fissioning system takes the
generic form

|Ψ(t)〉 =

∫
q

f(q, t)|Φq〉dq. (1)

The set {|Φq〉}q is made of known many-body states
parametrized by a vector of continuous variables q ≡
(q1, . . . , qN ). Each of these qi is a collective variable
and must be chosen based on the physics of the prob-
lem. Inserting the form (1) in the time-dependent many-
body Schrödinger equation, which governs the evolution
of the fissioning nuclei, yields an equation for the un-
known weight function f(q, t), the Hill-Wheeler equation,

∀q :

∫
q′
〈Φq|

[
Ĥ − i~ ∂

∂t

]
|Φq′〉f(q′, t) = 0. (2)

In this work, we will assume that the potential part of the
nuclear Hamiltonian Ĥ is approximated by an effective
two-body interaction of the Skyrme or Gogny type. Nu-
merically solving the time-dependent Hill-Wheeler equa-
tion for fissioning systems would require a tremendous
amount of computational resources and has not been at-
tempted yet. Instead, a widespread approach consists in
injecting an additional assumption about the generator
states |Φq〉, known as the Gaussian overlap approxima-
tion (GOA) [1, 35, 37]. In its simplest formulation, the
GOA assumes that the overlap between two generator
states 〈Φq|Φq′〉 has a Gaussian shape that depends on
the difference (q−q′). In this work we use a more flexible
version of this method introduced in [38–40]. We assume
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that one can find a change of variables q → α = α(q)
such that the overlap reads

〈Φq|Φq′〉 ' exp

(
−1

2

∑
k

[αk(q)− αk(q′)]
2

)
. (3)

Within this approximation, the Hill-Wheeler equation re-
duces to a local, time-dependent Schrödinger-like equa-
tion in the space Q of the coordinates q,

i~
∂g(q, t)

∂t
= Ĥcoll(q) g(q, t). (4)

The complex function g(q, t) is the unknown of the equa-
tion. It is related to the weight function f(q, t) appearing
in (1) and contains all the information about the dynam-

ics of the system. The collective Hamiltonian Ĥcoll(q) is
a local operator acting on g(q, t),

Ĥcoll(q) = − ~2

2γ1/2(q)

∑
ij

∂

∂qi
γ1/2(q)Bij(q)

∂

∂qj
+ V (q),

(5)
where

• The potential V (q) and the symmetric collective
inertia tensor B(q) ≡ Bij(q) can be determined

from the original nuclear Hamiltonian Ĥ and the
generator states |Φq〉. These quantities reflect the
potential and kinetic properties of the system in
the collective space.

• The metric γ(q) is a positive, real, scalar field in-
troduced by the change of variable q→ α(q) used
for the GOA approximation, see Eqs.(8)-(9).

Equation (4) will be referred to as the TDGCM+GOA
equation.

Our approach to compute fission yields is essentially
a two-step process. We first compute the static fields
V (q), B(q) and γ(q) for a given range of the collective
variables. Then we determine the dynamics of the sys-
tem by numerically solving the TDGCM+GOA equation.
Eventually, the fission yields are extracted as the flux of
the collective wave packet g(q, t) through a hyper-surface
of the collective space corresponding to scission configu-
rations. In the following sections, we describe in more
details each of these steps.

B. Static part of the calculation

The determination of the various fields in (5) is by
far the most time- and resource-consuming part of the
calculation. The size of the calculation grows exponen-
tially with the number N of collective variables needed
to ensure a good fidelity of the physics model. It is well-
known that in macroscopic-microscopic models, N must
be of the order of 5 in order to reach a satisfactory level
of accuracy [41]. Owing to the variational principle, it is

often implicitly assumed that N ≤ 2 should be sufficient
in DFT calculations. Our analysis will show that N = 3
collective variables are probably needed to make the leap
in accuracy needed by applications.

1. Determination of the generator states

Generator states are obtained by solving the Hartree-
Fock-Bogoliubov (HFB) equations of the EDF method
under constraints on the expectation values of the ax-
ial quadrupole, Q̂20, and octupole, Q̂30, moments. To
model the particle-hole channel we use either the SkM*
parametrization of the Skyrme functional, or the D1S
parametrization of the Gogny functional. In the case
of the Skyrme EDF calculations, the pairing channel is
modeled by a density-dependent surface-volume poten-
tial characterized by two pairing strengths, one for neu-
trons and one for protons. These pairing strengths are
adjusted on the local three-point odd-even mass differ-
ence indicator in 240Pu; details are given in [42]. As
customary for calculations with the Gogny EDF, the
same parametrization of the Gogny force is used in both
particle-hole and particle-particle channels.

Before detailing the methods used to produce the com-
plete self-consistent PESs, we briefly recall two important
features extensively discussed in Ref. [43]. The first one
is related to the fact that iterative HFB solvers may con-
verge to a local minimum of the total binding energy in-
stead of the targeted global minimum, which may lead to
a spurious hysteresis behavior of the total binding energy
when computing the PES iteratively from neighbor to
neighbor. The second noteworthy characteristics of self-
consistent PES is the presence of what will be referred
to by the generic label of “discontinuities”. Since each
point of the PES is a solution to the variational problem,
there is no guarantee that two neighboring points in the
(Q̂20, Q̂30) collective space, which is a two-dimensional
projection of the full Hilbert space, are actually “close”
in the full Hilbert space. As a consequence, the expecta-
tion value of various one body observables may not be a
continuous function of the collective variables.

Calculations with the Skyrme EDF are performed with
the HFODD solver of [44] in a one-center harmonic os-
cillator (HO) basis including up to Nmax = 30 HO shells.
We recall that in HFODD basis states are character-
ized by the Cartesian frequencies ~ωx, ~ωy and ~ωz; the

equivalent spherical frequency ω0 = (ωxωyωz)
1/3 and the

(here, axial) basis deformation ωz/ωx are parametrized
as a function of the quadrupole moment according to the
formulas given in [42]. In the pairing channel, the usual
cut-off in the quasi-particle space is set at Ecut = 60
MeV for calculations with surface-volume pairing. Each
point in the PES is computed independently of one an-
other using several successive preconditioners (solutions
to a Woods-Saxon potential, axial calculation).

Calculations with the Gogny EDF are performed with
a HFB solver based on a two-center, cylindrical, HO basis
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[45], which is particularly well suited for the description
of highly elongated systems. The basis includes states of
both oscillators from all shells up to Nmax = 11 and the
basis parameters are optimized at each deformation. The
D1S PES was computed using a special iterative retro-
propagation technique. For a given set of constraints,
the HFB iterative solver is initialized from a previously
converged HFB solution with neighboring constraints. If
a discontinuity is found between two neighboring pre-
scission HFB solutions, the solution with the highest to-
tal binding energy is recalculated, starting from the one
with the lowest total binding energy. This algorithm
can be automated and provides a reproducible method
to generate the PES while removing hysteresis. Within
the domain of pre-scission configurations, this approach
“explores” all discovered valleys and selects among them
the ones with the lowest energy. Points in the fusion val-
ley (post-scission) are not retro-propagated so that the
GCM state (1) is enriched with a maximum number of
pre-scissionned configurations. To conclude with, note
that both methods described above provide PES that
may contain discontinuities. This feature is an intrinsic
limitation of our 2D self-consistent description.

2. Collective Fields

The collective inertia tensor is an essential input to the
collective Hamiltonian (5). In a strict TDGCM approach
to nuclear dynamics, the inertia tensor is fully derived
from the many-body Schrödinger equation alongside the
collective equation, yielding what is referred to in the lit-
erature as the GCM inertia tensor (or GCM collective
mass) [36]. However, earlier studies based on transla-
tional invariance pointed out that the GCM inertia is not
a satisfactory approximation of the nuclear collective in-
ertia [46]. The most popular alternative for the collective
inertia tensor is to use the expression obtained by taking
the adiabatic limit of the time-dependent Hartree-Fock-
Bogoliubov equations. This ATDHFB inertia tensor was
shown to yield the exact translational mass [47]. It is
important to make the following three remarks:

• If the collective potential V (q) is taken as the HFB
potential energy, the quantization of the ATDHFB
equations yields the same expression as Eq.(4)-
(5). It is then fully justified to use either the
GCM or the ATDHFB inertia tensor. In the GCM
framework, however, the derivation of the collective
Schrödinger equation yields additional zero-point
energy (ZPE) corrections to the HFB potential en-
ergy. These corrections can be expressed as a func-
tion of the mass tensor. It has thus argued that one
could postulate a phenomenological ZPE for the
quantized ATDHFB equation of motion by simply
taking the GCM ZPE formula and substituting the
ATDHFB inertia tensor in it.

• Both the GCM and ATDHFB inertia are formu-

lated as a function of the inverse of a matrix analog
to the QRPA matrix [6]. In practice, inverting such
a matrix is a tremendous challenge, and nearly all
applications have been obtained in the cranking ap-
proximation, where the residual interaction among
quasi-particles is neglected and the QRPA matrix
is diagonal and given byMij,µν = (Ei +Ej)δiµδjν .

• Irrespective of the prescription retained for the col-
lective inertia tensor, its expression also involves
the derivatives of the generalized density with re-
spect to the collective variables. In practice, these
derivatives are often approximated locally at point
q by introducing a quasi-particle representation
of the collective momentum operator defined by
P = (P̂1, . . . , P̂N ) with P̂k = −i~∂/∂qk. When
combined with the aforementioned cranking ap-
proximation, this approach has been dubbed the
perturbative cranking [48]. Note that it can be
applied both for the GCM and for the ATDHFB
inertia tensor.

In this work, we have employed the perturbative crank-
ing approximation of the inertia tensor, using either the
GCM or ATDHFB formula.

In the GCM+GOA approximation, the collective iner-
tia tensor B, which is the inverse of the collective mass
tensor M, reads

Bij(q) = [M−1]ij(q)

=
1

2~2

∑
kl

G−1
ik (q)

(
∂2h(a,a′)

∂ak∂a′l

∣∣∣∣
q

− ∂2h(a,a′)

∂ak∂al

∣∣∣∣
q

+
∑
n

Γnkl(a)
∂h(a,a′)

∂an

∣∣∣∣∣
q

G−1
lj (q). (6)

In this expression, all derivatives are evaluated at point
a = a′ = q. The reduced Hamiltonian h(a,a′) is defined
from the norm and Hamiltonian kernels by

h(a,a′) =
H(a,a′)

N (a,a′)
=
〈Φa|Ĥ|Φa′〉
〈Φa|Φa′〉 , (7)

and the metric tensor G ≡ Gij , which characterizes the
change of variable q→ α(q), is defined by

Gij(q) =
∑
k

∂αk
∂qi

∂αk
∂qj

. (8)

The determinant of this matrix gives the metric γ(q) in
the TDGCM+GOA equation,

γ(q) = det G(q). (9)

The notation Γnkl stands for the Christoffel symbol. It is
related to the metric tensor G(q) through the relation

Γnkl(q) =
1

2

∑
i

G−1
ni (q)

(
∂Gki
∂al

+
∂Gil
∂ak

− ∂Glk
∂ai

)
. (10)
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The last term in the expression of the collective inertia
tensor comes from the dependency of the metric tensor
G on the collective variables q. This term is not present
in the “constant width” version of the GCM+GOA.

The potential energy term V (q) is the sum of the HFB
energy at point q and zero-point energy corrections,

V (q) = 〈Φq|Ĥ|Φq〉 −
1

2
Tr BG

− 1

8
Tr

[
G−1 ∂

2〈Φq|Ĥ|Φq〉
∂qi∂qj

]
. (11)

The potential is formally the same as in the constant
width approximation, but the G inertia tensor is now
space-dependent.

Equations (6) and (11) can be simplified in the partic-
ular case of the perturbative cranking approximation. In
this case, one introduces the moments

M
(K)
ab =

1

2
(Q12 ∗

a , Q12
a )M−K

(
Q12
b

Q12 ∗
b

)
, (12)

associated with the constraints qa and qb. Equation (12)
is written in the quasi-particle basis. The matrix M−K
is the inverse of the Kth power of the QRPA matrix.
In the cranking approximation, it is simply given by
(M−K)ij,µν = δiµδjν/(Ei + Ej)

K . The matrix of these
constraint operators have the generic block structure

Q̃a =

(
Q11
a Q12

a

Q21
a Q22

a

)
. (13)

The matrix element M
(K)
ab is obtained by linearizing each

of the block matrices involved and taking a regular scalar
product. Based on this definition, one can show that the
metric tensor G reads

G =
1

2
[M(1)]−1M(2)[M(1)]−1, (14)

and the collective inertia tensor becomes

B =
1

4
G−1[M(1)]−1G−1. (15)

Equations (14)-(15) only depend on the characteristics of
the constrained HFB solutions at point q.

C. Dynamic part of the calculation

The main advantage of the adiabatic approach to fis-
sion is the perfect decoupling between static and dynami-
cal aspects of the process. Once the potential energy sur-
face V (q) has been computed and the collective inertia B
and metric tensor G are determined, the time-evolution
can be performed independently. In this section, we dis-
cuss practical aspects of the time evolution, including
inputs and implementation.

1. Initial state

The starting point of the dynamics calculation is a
collective wave packet g(q, t = 0) representing the com-
pound nucleus after the absorption of a low energy neu-
tron. In the full scattering theory picture, such a state
depends both on the structure of the compound system
and on the neutron entrance channel. In this work, the
initial state is built arbitrarily from the assumption that
it should mainly be localized at low deformations, in the
inner potential well of the potential energy surface. To
simulate such an induced fission event, we also impose
the average energy of the initial state to be 1 MeV higher
than the inner fission barrier. These requirements are not
enough to uniquely define the initial state but they may
constrain strongly the resulting fission yields.

To build a low deformation wave packet, we begin with
computing a series of quasi-bound states as described
in [33, 34]. This is achieved by extrapolating the inner
potential barrier with a quadratic form, which defines
a new potential V ′(q). Replacing the original poten-
tial V (q) by its extrapolated counterpart defines a new

collective Hamiltonian Ĥ ′coll(q). Its eigenvalues are the
quasi-bound states {gk(q)},

Ĥ ′coll(q) gk(q) = Ek gk(q). (16)

The normalized solutions of Eq. (16) are defined up to a
phase. Since the collective Hamiltonian H ′(q) is real, we
choose real solutions gk with the following sign conven-
tion, ∫

q∈{Q20>0, Q30>0}
gk(q)dq > 0. (17)

The eigenstates gk(q) with the lowest energies are all lo-
calized at low deformation and contain different phonons
in the Q̂20 and/or Q̂30 degrees of freedom. In practice,
we determine the first 100 of them using a Krylov-Schur
algorithm implemented in the SLEPc library [49]. The
highest energy state lies roughly 16 MeV above the inner
barrier energy.

In order to investigate the sensitivity of our calcula-
tions to different initial conditions, we have solved the
TDGCM+GOA equations for two different choices of ini-
tial states, both based on the set of quasi-bound states gk.
Our first choice relies only on the collective ground-state
g0. The modulus of g0 is roughly a Gaussian centered
on the minimum of V ′(q) and characterized by a width
close to the dimension of the first potential well. Since
its average energy lies below the fission barrier, we boost
this state in the Q20 > 0 direction in order to simulate a
fission event,

g(q, t = 0) = g0(q) exp(ikQ20). (18)

The amplitude k of the boost is determined so that the
average energy of the initial state lie 1 MeV above the
inner fission barrier (BI).
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Our second choice consists in building the initial state
as a Gaussian superposition of the quasi-bound states gk,

g(q, t = 0) =
∑
k

exp

(
(Ek − Ē)2

2σ2

)
gk(q). (19)

Given σ, the parameter Ē is chosen so that the average
energy of the initial state is again 1 MeV above the in-
ner fission barrier. The parameter σ controls the energy
spread of this wave packet. Its value is set to 0.5 MeV so
that the weight associated to gk is significant (> 5%) in
the range [BI ;BI + 2 MeV].

2. Boundary conditions

Practical as well as physical reasons, discussed further
in Sec. III B, justify solving the TDGCM+GOA equation
in a finite domain Ω of the (Q̂20, Q̂30) collective space.
However, as time goes by, the initial wave packet propa-
gates and should eventually leak outside of the simulation
box. To account for this effect, Ω is extrapolated with
a band B of artificial points continuously connected to
its boundary. In this new region, the potential decreases
linearly as a function of the distance to Ω, whereas the in-
ertia tensor and the metric are kept constant. On top of
this, an imaginary term −i~A(q) (with A(q) a real scalar
field) is added to the collective Hamiltonian. This mech-
anism absorbs progressively the leaking wave packet and
avoids spurious reflections. We define A(q) as a simple
third order polynomial that increases smoothly from 0 on
the inner border of the band B and reaches its maximum
at the outer border.

3. Collective dynamics with the FELIX solver

Starting from an initial state as described in Sec.II C 1,
we solve the TDGCM+GOA equation with the finite el-
ement solver FELIX. A first version of this code was pre-
viously released under the GPL-2 open source license and
is available in the Computer Physics Communication Li-
brary [50]. For the purpose of this work, we developed a
new version that takes into account the metric term γ(q)
in Eq. (4). This section briefly recalls the numerical im-
plementation of the TDGCM+GOA equation in FELIX
and emphasizes the recent updates.

The solver relies on a continuous Galerkin finite el-
ement method to discretize the space Q of the collec-
tive coordinates. The first step of this method consists
in partitioning the domain of interest into a mesh of 2-
dimensional simplices (triangles). The numerical solution
is then expanded on the basis of the continuous Lagrange
elements of order 2 denoted here as {li(q)}i,

g(q, t) =

m∑
i=1

Gi(t) li(q). (20)

Applying the Galerkin finite element method, we search
for a numerical solution g(q, t) of the form (20) that ver-
ifies

∀t ∈ [0, tmax],∀i ∈ [1,m] :

〈li(q)|
[
i~
∂

∂t
− Ĥcoll(q)

]
| g(q, t)〉 = 0, (21)

where the scalar product 〈.|.〉 includes the metric γ(q) as
follows,

〈f |g〉 =

∫
Ω

dq f∗(q) g(q)γ1/2(q). (22)

This process yields a discretized system of m equations
with the m coefficients Gi(t) as unknowns. It can be
written in the condensed matrix form

i~M
∂G(t)

∂t
= [H− i~A]G(t), (23)

where G(t) denotes the m-dimensional vector of coeffi-
cients. The m×m real matrices M,H and A are defined
by

Mab = 〈la(q)|lb(q)〉,
Aab = 〈la(q)|A(q)lb(q)〉,
Hab = 〈la(q)|Hcoll(q)lb(q)〉.

(24)

Once the matrix elements are computed, FELIX per-
forms the time integration of equation (23) based on
a Crank-Nicolson scheme. This unitary and implicit
method requires solving a m ×m complex sparse linear
system at each time step. Our implementation of sparse
matrix inversions is based on the Quasi Minimal Residual
method as described in Ref. [51].

4. Fission fragment distributions

A fully quantum mechanical derivation of the proper-
ties of the fission fragments from TDGCM states is faced
with several major difficulties. The first challenge is to
describe two well separated fragments from a single den-
sity associated with the compound system. The second
challenge is to project each of the fragment wave func-
tions onto the eigenspace of the observable of interest (Z,
N , angular momentum, etc.)

In this work, we adopted the empirical approach de-
scribed in [34, 52], which is based on computing the
flux of the collective wave packet. The TDGCM+GOA
equation implies the following continuity equation for the
quantity |g(q, t)|2γ1/2(q),

∂

∂t
|g(q, t)|2γ1/2(q) = −∇ · J(q, t), (25)

where the current J(q, t) reads

J(q, t) =
~
2i
γ1/2(q)B(q)

×
[
g∗(q, t)∇g(q, t)− g(q, t)∇g∗(q, t)

]
. (26)
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As time goes by, the collective wave packet progressively
escapes the simulation domain Ω through its boundary
(also denoted frontier in this paper). Each infinitesimal
surface element of the frontier line is assumed to be the
entrance point of a channel associated with a given frag-
mentation (AH , AL). The probability to measure this
fragmentation is estimated from the time-integrated flux
F (ξ, t) through each of the oriented surface elements ξ of
the frontier line on the discretized mesh,

F (ξ, t) =

∫ t

t=0

dt

∫
q∈ξ

J(q, t) · dS. (27)

The fission fragment mass yield for mass A is defined
formally as

Y (A) ∝
∑
ξ∈A

lim
t→+∞

F (ξ, t), (28)

where A is the set of all oriented hyper-surfaces ξ be-
longing to the frontier hyper-surface such that one of the
fragments has mass A. In practice, the fragment mass
number at any point of the frontier is calculated as the
integral of the nuclear density on one side of the neck [42].
This procedure produces non integer values. Moreover,
one elementary surface ξ may contain several fragmenta-
tions, especially if the mesh is coarse. For these reasons,
we equally distribute the flux component F (ξ, t) between
the masses calculated at the vertices of the elementary
surface ξ,

Y (A) = C
∑
ξ

1

N

∑
v∈A(ξ)

lim
t→+∞

F (ξ, t). (29)

The sum on ξ runs over the whole scission hyper-surface.
The set A(ξ) contains the vertices of ξ where the mass of
one of the fragments is in the interval [A− 1/2;A+ 1/2].
The normalization constant C is chosen as usual such
that

Atotal∑
A=0

Y (A) = 200. (30)

Albeit simple to implement and containing sufficient
physics, we note that such an evaluation of the number
of particles in the fragments is not performed in a fully
quantum mechanical formalism. Several effects should
be taken into account, which could ultimately impact
our predictions:

1. First, the HFB solutions of the fissioning system
with mass A, in particular at scission, do not have
good numbers of protons and neutrons. As a re-
sult, the HFB wave function contains components
with particle number A ± 2, A ± 4, etc. As a re-
sult, the yield of each fragment includes a spurious
contribution coming from the split of one of these
subsystems. We thus expect that projecting the
HFB wave function of the compound nucleus into
good particle numbers may reduce the width of the
fission yields.

2. Eventually, the number of particles in the frag-
ments themselves should also be computed by pro-
jecting the full wave-function on good particle num-
ber. Each point of the frontier line would therefore
be associated with a distribution of fragment mass
and charges [21]. Taking into account this distribu-
tion would probably have the opposite effect of the
projection on good particle number for the fission-
ing nucleus and should broaden the fission yields.

3. At scission, the fragments are still strongly entan-
gled. This point was first mentioned in [53], where
a technique to disentangle the fragments based on
a unitary transformation of the quasi-particles was
introduced; see also [42] for details. If this opera-
tion is not performed, we can expect exchanges of
nucleons between the two pre-fragments and there-
fore a broadening of the raw fission yields.

Although difficult to quantify at this point, we expect
that the cumulative effect of this missing physics will in-
duce a global widening of the fission yields. In this work,
we chose to account for such effects phenomenologically
by convoluting the raw flux with a Gaussian function of
the number of particles. The width of this Gaussian is set
to 4 for the mass yields; see also discussion in Sec.III B.
As the charge to mass ratio is roughly 2.55 the width for
the number of charge is set to 4/2.55 = 1.6. We briefly
discuss in section III E 3 the uncertainty coming from the
choice of this Gaussian width.

III. RESULTS

In this section, we present the result of our simula-
tions. We discuss the characteristics of the potential en-
ergy surface depending on the EDF used, the numerical
convergence of the TDGCM+GOA calculations and the
sensitivity of the yields to various inputs of the calcu-
lation, such as the EDF, the initial state, the collective
inertia tensor and the convolution width.

A. Collective landscape in the (Q̂20, Q̂30) space

As mentioned in section II C, the first step toward the
dynamical description of fission is to determine the char-
acteristics of the potential energy surface of the com-
pound nucleus in the collective space, here defined by the
two collective variables (Q̂20, Q̂30). In terms of the cylin-
drical coordinates (z, ρ, θ), our choice for the quadrupole
and octupole moments is

Q̂20(z, ρ, θ) = 2z2 − ρ2

Q̂30(z, ρ, θ) =

√
7

4π
(z3 − 3

2
zρ2)

(31)

With this convention, we computed the potential energy
surface for the Gogny D1S and the Skyrme SkM* [54]
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Figure 1. (color online) Potential energy surfaces obtained with the SkM* (a) and D1S (b) EDF in axial symmetry. The red
line separates configurations with QN > 4 from the others. The curvilinear abscissa ξ starts at the symmetric scission points
and runs along the frontier (red line). Values of ξ are indicated along the scission line.

EDF. The range of collective variables is 0 to 600 b for
Q̂20 and from 0 to 80 b3/2 for Q̂30. The D1S poten-
tial energy surface contains roughly 37,000 un-scissioned
points distributed on a regular mesh of step ∆q20 = 1 b,

∆q30 = 0.75 b3/2. Because the HFODD DFT solver used
for SkM* calculations breaks axial symmetry, the time
of calculation is significantly longer. As a result, fewer
points were computed and the unsciscionned SkM* PES
grid is coarser, with approximately 1,500 points. Most of
the points are nodes of a regular grid with ∆q20 = 5 b,

∆q30 = 4 b3/2. To compensate for this coarse grid, addi-
tional calculations were performed in the scission region,
where system properties vary quickly. In order to ensure
that the characteristics of the mesh do not affect our con-
clusions, we built an auxiliary potential energy surface
for D1S based on 2,500 points sampled from the origi-
nal 37,000. These points are distributed in the same way
as for the SkM* mesh. We checked that fission fragment
distributions obtained with this coarser grid is essentially
unchanged compared to the original one.

Figure 1 shows the potential energy surface obtained.
Note that these two PES contain a zero-point energy
correction, i.e. the potential energy corresponds to (11)
with the GCM inertia. Keeping in mind the comments
made in II B 2, this means that we work here in a strict
GCM framework. Both interactions yield a similar over-
all topology, although the potential variations are often
more pronounced with D1S. We clearly distinguish an in-
ner symmetric fission barrier followed by an outer asym-
metric one. The table I lists the position and height of

these fission barriers. Both EDF predict the same posi-
tions for the saddle points, whereas the barrier heights
may vary by more than 3 MeV. Note that calculations
with the Gogny force were performed with an axial code;
including triaxiality effects would roughly lower the bar-
riers by 3 MeV for the D1S case [55]. In the rest of this
paper, and for the sake of comparison between Skyrme
and Gogny EDF, all results of TDGCM simulations rely
on axial PES unless explicitly specified.

Table I. (color online) Characteristics of the PES. The ground-
state energy (E0) in the first potential well is given in MeV.
The height of the inner and outer fission barriers (BI/BII)
are in MeV relative to E0.

E0 BI BII QII
20 (b) QII

30 (b3/2)
SkM* (axial) -1808.89 9.3 7.6 128 9.5
SkM* (triax.) -1808.81 7.7 7.6 128 9.5
D1S (axial) -1810.81 12.4 11.9 130 10.4

B. Position of the frontier

While static properties are computed over a wide range
of the collective space, only a sub-domain Ω of all such
HFB states is needed to define the GCM state (1). The
choice of Ω is an important step in our approach as the
frontier of ∂Ω determines the output channels of the dy-
namics. Three criteria guided our selection:
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1. Configurations with a potential energy much larger
than the energy of the fissioning system do not con-
tribute to the dynamics. As a consequence, all
points with a potential energy greater than 100
MeV above the ground state are not included in
Ω.

2. The collective wave packet should follow continu-
ous collective paths toward the frontier. In terms
of dynamics, a wave packet passing through a dis-
continuity of the HFB states travels suddenly from
one valley of the full space to another one. By doing
so, it misses intermediate configurations and their
associated potential barrier. Such spurious cross-
ings are not physical and particular attention must
be paid so that they do not occur inside the selected
domain Ω.

3. The frontier should contain configurations that are
as close as possible to two well separated fragments.
In our approach, each infinitesimal element of the
frontier is considered an output channel. Therefore,
the less entangled the fragments on the frontier are,
the closer the output channels of the dynamics cal-
culation will correspond to the actual output chan-
nels of fission.

When describing fission in the (Q̂20, Q̂30) collective
space, scission is characterized by a discontinuity between
two domains containing the pre- and post-scissioned con-
figurations. As a consequence of the remark 2, the do-
main Ω should not include post-scissioned configurations.
A relevant degree of freedom to describe scission is the
Gaussian neck operator Q̂N related to the number of par-
ticles in the neck. As emphasized in the work of Younes et
al. [56], this quantity shows a pronounced gap between
pre- and post-scission configurations. Based on this ob-
servation, a possible choice for the domain Ω consists in
keeping only the configurations with QN > 1 (e.g. pre-
scissioned configurations).

Figure 2 shows the evolution of the total energy and
the heavy fragment mass number along the boundary of
such a domain. The total binding energy obtained with
D1S possesses several jumps (ξ = 11, 47, 57, 72) that may
look incompatible with the retro-propagation algorithm
described in Sec. II B 1. These singularities can actually
be explained by the proximity of the fusion valley. Let us
note M and M ′ two neighboring points on the frontier
with different HFB energies. It turns out that a HFB
calculation of the state M ′ initialized with the converged
state M leads to a post-scission configuration and vice
versa. Such rare patterns in the total binding energy
are therefore not related to possible remaining spurious
hysteresis features in the PES. The mass of the heavy
fragments is itself subject to several sharp variations as
a function of the curvilinear abscissa ξ characterizing the
frontier. This behavior is the typical trademark of vari-
ous discontinuities crossing the frontier.

To better highlight this feature, we discuss in more
details the discontinuity present at ξ ' 100 in the D1S
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Figure 2. (color online) Static properties of the system along
the frontier of the domain defined by QN > 1. The position
on the frontier is labeled by the curvilinear abscissa ξ starting
from the symmetric point (Q30 = 0). The SkM* abscissa
is shifted by 10 arbitrary units so that the main structures
match D1S. The HFB energy is expressed in MeV.

Figure 3. (color online) Gaussian neck operator values in
the vicinity of the exit of the asymmetric fission valley of
the D1S PES. Valley A corresponds to the main asymmetric
valley whereas region B corresponds to a different valley of
the full Hilbert space projected in between the post-scission
configurations and the valley A. The point P corresponds to
abscissa ξ ' 100 on the frontier defined by QN > 1.

calculation. This discontinuity matters particularly as it
is located in the midst of the asymmetric fission valley,
where most of the wave packet leaks out of the domain Ω.
Figure 3 shows the expectation value of the Q̂N operator
in this area of the potential energy surface. We observe
two distinct regions. Zone A corresponds to the main
asymmetric valley. It can be continuously connected to
the first potential well and contains configurations with
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Figure 4. (color online) Static properties of the system along a
frontier of the domain defined byQN > 4. The position on the
frontier is labeled by the curvilinear abscissa ξ starting from
the symmetric point (Q30 = 0). The SkM* abscissa is shifted
by 20 arbitrary units so that the main structures match. The
HFB energy is expressed in MeV and the multipole moments
in powers of b.

a large neck (QN > 5). On the other hand, region B
corresponds to the projection of a different valley of the
full Hilbert space lying between post-scission configura-
tions and the main asymmetric valley. Its HFB states are
characterized by thinner necks with QN ranging from 2
to 3. The connection of regions A and B at point P in
our two dimensional space induces the discontinuity in
mass present on the frontier at ξ ' 100. Note that the
spread of this intermediate valley just before scission is
a consequence of the special retro-propagation algorithm

explained in Sec. II B 1. It is not observed in the SkM*
surface, which explains why the SkM* frontier does not
possess a similar mass jump. As explained in comment
2, the propagation of the wave packet from region A to B
is not physical. In order to keep the best description of
the dynamics in a 2D representation, the region B should
therefore be excluded from the domain Ω.

Figure 2 shows that other areas along the frontier are
affected by similar spurious discontinuities. To tackle this
issue, the brute force strategy consists in locating each
discontinuity and removing one by one the regions where
spurious crossings may happen. An alternative to this
tedious method is to choose a sufficiently high thresh-
old for the expectation value of the Q̂N operator so that
the most impacting discontinuities are not included in Ω.
Figure 4 shows the static properties of both SkM* and
D1S configurations along the frontier defined by QN > 4.
Both frontiers follow a similar trajectory in our two di-
mensional space resulting in close values of Q̂20 and Q̂30

as a function of the curvilinear abscissa ξ. In addition,
higher order multipole moments also display a similar
behavior for the two EDF. As we can see in figure 3,
the threshold QN = 4 is sufficient to remove the region
B from the main asymmetric valley. Hence, the mass
discontinuity previously present at ξ ' 100 is avoided.
Other mass jumps still remain at lower asymmetry (e.g.
ξ = 70, 58, 45). Albeit persistent, the related discontinu-
ities are in areas of the PES where the outgoing flux rep-
resents only a few percents of the outgoing wave packet.
Consequently, their impact on the resulting fission yields
is marginal in the context of our current applications. In
conclusion, the criteria QN > 4 provides an operating
definition of the domain Ω which avoids the main issues
related to the discontinuities in our 2D collective space.
Although more advanced criteria may be explored in fu-
ture work, dynamical calculations presented in this paper
rely on this threshold for QN .

C. Numerical convergence of the dynamics

The implementation of the TDGCM+GOA equation
in FELIX depends on four parameters that control the
numerical precision of the wave-packet propagation:

• The “dynamic” mesh spacing parameter h: The
static mesh discussed in Sec. III A may not be op-
timal to represent the collective wave function. As
time evolves, the collective wave function is for in-
stance subject to strong variations in the first po-
tential well. Describing accurately these fluctua-
tions often requires a finer mesh than the one used
to describe the smooth variations of the potential.
To address this issue, we perform the time evolution
on a different grid from the static PES. The typical
procedure used to build this auxiliary grid is de-
scribed in [50]. It starts from a regular grid entirely
defined by the parameter h through: ∆q20 = h fm2,
∆q30 = 3h fm3. After a Delaunay triangulation
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this initial mesh is h-refined in two areas, namely
the inner and outer potential wells and their sad-
dle points as well as a band lying along the frontier
line. Subsequent p-refinement over the whole do-
main provides a locally refined mesh composed of
quadratic Lagrange elements.

• The time step δt: This parameter characterizes the
time discretization of the evolution equation (4).

• A tolerance for the matrix inversions εinv: At each
time step, a linear system is solved iteratively. This
parameter corresponds to the maximal residual tol-
erated by the inversion method.

• A parameter εinit controlling the numerical preci-
sion of the initial state: The determination of the
initial state is based on the search for quasi-bound
states, which requires diagonalizing the auxiliary
Hamiltonian Ĥ ′ of Eq.(16). The parameter εinit

characterizes the numerical precision when deter-
mining the eigenvectors of Ĥ ′.

Table II. Convergence of fission yields in the whole mass range
AH ∈ [120, 160] as a function of the time step δt (left part)
and the grid size parameter h (right part). For each parame-
ter, the error is defined as ε = Sup{(Y (A)−Yr(A))/Yr(A)|A ∈
[120, 160]}, where Yr(A) corresponds to the most refined cal-
culation (e.g. h = 300 in the case of the mesh space param-
eter). Time is expressed in zepto-seconds (1 zs = 10−21 s).
Values marked in boldface correspond to the choice (32).

δt (zs) ε (%) h (fm units) ε (%)
4.10−3 9.1 848 38
2.10−3 6.7 600 10
1.10−3 1.9 424 2
5.10−4 0 300 0

All the results presented in this paper are obtained
with the following set of parameters, unless specified oth-
erwise:

h = 424 (fm units), δt = 10−3 (zs, 1 zs = 10−21 s),
εinv = 10−15, εinit = 10−13

(32)
The tolerance εinv and εinit are chosen so that the errors
related to the linear system inversions and the diagonal-
ization are several orders of magnitude below any other
source of numerical error. The cumulative effect of inver-
sion errors can be quantified by the evolution of the norm
of the collective wave function in calculations without any
absorption condition. For our choice of εinv, we obtain a
relative error on the norm smaller than 10−12 after 16 zs.
As for εinit, we verified that going from 1.10−12 to 1.10−14

impacts the fission yields by a maximum of 2.10−6 % only.
The convergence with respect to the space and time pa-
rameters was checked by performing series of calculations
in the vicinity of the set (32). For each parameter, we
explored a wide range of values while the other one re-
mained unchanged. As an example, we report in table II

the convergence of the D1S fission yields. From this re-
sults, we can expect a numerical relative precision of a
few percents in the whole mass region A ∈ [120, 160].
Additional discussion on the numerical precision of our
TDGCM+GOA FELIX solver can be found in [50].
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Figure 5. (color online) Evolution of the SkM* heavy mass
yields as a function of time for three possible fragmentations:
AH = 120 (symmetric valley), AH = 137 (asymmetric peak),
AH = 145 (very asymmetric wing of the distribution).

D. Fission yields obtained with SkM* and D1S

In this section, we present the pre-neutron fragment
yields for 239Pu(n,f) computed with the SkM* and D1S
EDF. The initial state consists of a Gaussian superposi-
tion of quasi-bound states with average energy at 1 MeV
above the inner barrier. The solver computes the wave
packet evolution up to a time tmax determined by the
relation

1

Ftot(tmax)

∂Ftot

∂t

∣∣∣∣
tmax

< 10−3 zs−1, (33)

where Ftot(t) is the total flux crossing the frontier. With
this criterion, the solver computes the dynamics up to 10
zs with SkM* and 16 zs with D1S. Such a difference may
typically arise from the change in potential and inertia
of the two EDF around the outer saddle point. Figure 5
shows that after a transient regime of roughly 7 zs, the
SkM* fission yields stabilize. The variations of the yields
in the last zepto-second of simulation are of the order
of 9.2% in the symmetric valley (AH = 120) and 0.3%
in the asymmetric peak (AH ' 137) as well as in the
very asymmetric wings of the distribution (AH ' 145).
The D1S time evolution shows a similar behavior with
a transient regime of 10 zs followed by a plateau of the
yields.

Within this lapse of time, 10% (SkM*) and 18% (D1S)
of the total wave packet norm crosses the frontier. As
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expected, the wave packet follows essentially the asym-
metric fission valley. In the case of D1S, the endpoint of
this valley, located in the region Q30 ∈ [25, 50] b3/2 (i.e
ξ ∈ [85, 112]), accounts for 90% of the outgoing flux. The
SkM* case gives similar results with 91% of the outgoing
flux in the same Q30 range (which corresponds this time
to ξ ∈ [65, 92]).
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Figure 6. (color online) Pre-neutron mass yields for
239Pu(n,f). The SkM* and D1S calculations are compared
with two experimental datasets [57, 58]. The data from
Nishio et al. are plotted with their statistical uncertainties.

In figure 6, we compare the mass yields predictions
versus two experimental data sets. The asymmetric na-
ture of the 240Pu fission is well described by the TDGCM
approach with both EDF. We show the main character-
istics of the asymmetric peaks in table III. The centroids
of the peaks agree within 2 mass units between theory
and experiment. The SkM* EDF favors slightly more
asymmetric configurations whereas we observe the oppo-
site for D1S. Note that the shift of the D1S peak toward
symmetry is consistent with earlier work by Younes and
Gogny relying on a different collective space and a totally
different numerical implementation both of the DFT and
TDGCM+GOA solver [34]; see also [33] for details of the
TDGCM+GOA solver used then. The widths of the pre-
dicted mass yields match the experiment within roughly
1 mass unit. Part of this agreement comes from the fact
that both calculations and experimental data are convo-
lutions of a raw data set with a smoothing function: The
Schillebeeckx et al. [57] data comes from a 2E measure-
ment with a mass resolution of typically 4-5 mass units
(FWHM) [59]. A measurement of both energy and veloc-
ity of the two fragments as the one performed by Nishio
et al. [58] is also expected to provide a mass resolution
significantly larger than one mass unit. These experi-
mental characteristics partly motivated our choice of a
σ = 4 Gaussian smoothing function, together with the
arguments presented in Sec. II C 4.

Table III. Characteristics of the fission pre-neutron mass
yields for 239Pu(n,f). The notation AH,p accounts for the
position of the heavy peak and the full width at half height
is denoted ΣA.

AH,p Y (AH,p) (%) ΣA Y (AH,p)/Y (120)
SkM* 139 7.1 25 36.8
D1S 135 6.3 24 87.4
Schillebeeckx 137 6.1 26 105.9
Nishio 136 6.6 25 72.9

Finally, our results show strong variations of the peak-
to-valley ratio as a function of the EDF. However, a de-
tailed comparison of this peak-to-valley ratio seems pre-
mature, since at least three features may impact our re-
sults for the symmetric valley. First of all, this mass
region has been shown to be highly sensitive to the par-
ity of the initial state [33]. In our calculations, we have
made no effort to match such parity with information
on the neutron entrance channel. Secondly, the presence
of persistent discontinuities in the symmetric part of the
collective landscape may impact the yields around mass
AH = 120. Finally, the low probability of symmetric
fragmentations induces large experimental uncertainties
of the corresponding fission yields.
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Figure 7. (color online) Charge yields for 239Pu(n,f). The
calculation obtained with a SkM* functional (plain line) is
compared to the European evaluation JEFF-3.1 (dashed line).

Figure 7 compares the charge yields obtained in the
same calculations with the results from the European
JEFF-3.1 evaluation. Overall, we observe the same
trends as for the mass yields: The SkM* force favors more
asymmetric configurations whereas we observe the oppo-
site for D1S. Note that our model cannot account for odd-
even staggering effects. This would require either projec-
tion of particle number for the fragment and/or the use
of collective variables corresponding to different charge
channels in analogy to what is done in macroscopic-
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microscopic methods [60]. Without the use of such
fragment-specific constraint, the potential energy surface
does not contain enough information to describe odd-
even features of fragment distributions.

E. Sensitivity Analysis

While the agreement between theory and experiment
reported in figure 6 seems very promising, one should be
clear that our model depends on several input “parame-
ters” that may have an influence on our predictions. In
this section, we provide a first estimate of the related
uncertainties.

1. Sensitivity to the initial state

We performed TDGCM+GOA calculations starting
from the two different initial states described in II C 1.
The figure 8 shows the fission yields obtained with both
D1S and SkM* interactions for these different scenarios.
The ’Q̂20 boosted’ state concentrates most of the kinetic
energy of the system in the degree of freedom associated
with the elongation. It results in an increase of the peak
to valley ratio by a factor of 6.7 compared to the ’wave
packet’ initial state. Typically, the change in initial state
also induces a 20% variation of the yields at the peak
whereas no pronounced mass shift is observed.
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Figure 8. (color online) Pre-neutron mass yields for 239Pu(n,f)
obtained from the two different initial states described in
Sec. II C 1. Calculations were performed with both SkM* and
D1S potential energy surfaces. Only the heavy mass region is
represented.

Our results indicate that a phenomenological model of
the initial state of the compound nucleus can quantita-
tively reproduce the main features of the fission product
distributions as long as the average energy and average
deformation of the initial wave packet are realistic. At
this point, one may choose between two options. In the

short term, one may decide to retain such a phenomeno-
logical description of the initial state, and use various
statistical methods to determine the “best” guess for the
initial state and quantify the related uncertainties. This
could be achieved by comparing the mass distributions
with experimental data for a few actinide nuclei. In the
short term, this simple approach would be very useful for
applications where a precision higher than 20% on the
overall distributions is needed, as it would enable uncer-
tainty propagation methods. In the long term, however,
one should try to avoid such phenomenology (which de-
feats the purpose of developing a microscopic approach)
and model directly the initial state by using a proper
theory of the entrance channel.

2. Comparison with the ATDHFB formalism

As recalled in section II B 2, the GCM approach to
computing the collective inertia tensor is known to be
deficient unless collective variables associated with the
collective momentum are explicitly taken into account.
As a result, fission studies often rely on the ATDHFB
prescription for the collective inertia [2, 7, 30–32]. Let
us briefly recall that this semi-classical formalism is ex-
tensively presented in [47, 61, 62]. It leads to a clas-
sical Hamiltonian in terms of the collective coordinates
and related moments. Using the Pauli quantization [1]
procedure yields a local Schrödinger-like equation with
a collective Hamiltonian which is formally identical to
Eq. (5). The differences with the GCM approach are in
the definition of the components V , B, γ of the Hamil-
tonian. As discussed extensively in the literature (see for
instance [6] and references therein), the construction of
the full ATDHFB inertia tensor involves time-odd states
of the system and the values are about 1.5 larger than
the GCM inertia. In addition, the Pauli quantization
does not produce zero point corrections in the potential
part, so that the collective potential is simply given by

V (q) = 〈Φq|Ĥ|Φq〉. (34)

Finally, the metric appearing in the collective
Schrödinger equation is simply the determinant of
ATHDF inertia mass tensor instead of being related to
the metric tensor G, which is itself a function of the
overlap between generator states,

γ(q) = det (MATDHFB(q)) . (35)

To gain some insight on the dependence of the fis-
sion fragment yields on the collective inertia, we solved
the quantized ATDHFB equations for both the D1S and
SkM* effective interactions. The initial states are again
defined as wave packets of quasi-bound states. Due to the
difference in inertia, the ATDHFB spectrum of the quasi-
bound states is compressed compared to GCM. As a con-
sequence, the energy window [BI ;BI + 2 MeV], which is
crucial to define our initial collective wave packet, con-
tains a different set of states. For example, with the D1S
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interaction the ATDHFB initial wave packet is mainly
built out of the 15 states numbered from 20 to 28 in the
spectrum, while in the GCM case only 6 states from the
11th to the 15th are available in the same energy window.
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Figure 9. (color online) Pre-neutron mass yields for 239Pu(n,f)
obtained in the strict TDGCM and quantized ATDHFB for-
malisms. Calculations were performed with both SkM* and
D1S potential energy surfaces using the same prescription for
the initial state. Only the heavy mass region is represented.

Figure 9 shows the mass yields of the heavy fragments
for the two prescriptions for the inertia tensor. Both
SkM* and D1S results are sensitive to this change in in-
ertia. However, the deviation between the TDGCM and
ATDHFB calculations has a different pattern for the two
EDF. In the D1S case, going from the TDGCM to the
ATDHFB formalism induces a 3 mass units shift of the
peak toward asymmetry and an increase of the peak yield
by 15 %. In the case of SkM*, the change in inertia causes
a 3 mass unit shift of the peak toward symmetry. These
opposite behaviors reflect the fact that the collective in-
ertia is involved in several aspects of the time-evolution.
As discussed above, it actually impacts the definition of
the initial state for the dynamics. In addition, we also
expect that changes of inertia will favor different areas
of the collective space as the system evolves in time. Fi-
nally, the inertia enters explicitly the expression of the
collective flux (cf. Eq. 27).

3. Sensitivity to the convolution width

As discussed in Sec. II C 4, the calculated fission yields
result from the convolution of the raw flux through the
frontier with a Gaussian. Although this choice is mo-
tivated by several physics considerations, such a convo-
lution remains phenomenological and our choice for the
value of the Gaussian width (σ = 4 amu) may be dis-
cussed. To estimate the influence of this parameter, we
performed a series of convolutions with different widths
ranging from 2 to 6 mass units. The figure 10 summarizes

the sensitivity of the mass yields to such a variation. We
observe strong variations of the yields reaching a factor
of 1.7 at the peak. On the other hand, the full width
at half height remains mainly constant in this range of
σ. For D1S, the small structure of the uncertainty band
near AH = 138 is dominated by the convolution with the
smallest width σ = 2. This is the trademark of the fast
variation of the fragmentations in the area ξ ∈ [95, 105]
of the frontier (see Fig. 4). These error bands give us
an indication of the gains in precision that would come
from a formalism able to describe the dynamics up to
two well-separated output channels.
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Figure 10. (color online) Sensitivity of the pre-neutron mass
yields for 239Pu(n,f) to the width of the Gaussian convolution.
Calculations are based on the strict TDGCM formalism.

4. Impact of triaxiality

It is well-known that triaxiality plays a major role in
the low deformation region of the PES and especially on
the inner barrier height [26, 28, 42, 63–67]. To estimate
its effect on the dynamics, we compare the wave packet
propagation for the SkM* EDF based on two PES com-
puted with and without breaking axial symmetry. In
practice, a constraint on Q̂22 was imposed, and subse-
quently released, in the region Q20 < 300 b and Q30 < 76
b3/2, which allows the HFODD DFT solver to explore
possible triaxial configurations.

Based on this new PES, we repeated the construc-
tion of the initial state as a wave packet of quasi-bound
states with an energy 1 MeV above the first barrier. By
construction, the excitation energy of the corresponding
compound nucleus decreases from 10.3 MeV (axial) down
to 8.7 MeV when triaxiality is included. The FELIX
solver then propagates the collective wave function up to
12 zs (compared to 10 zs for the axial case). This small
increase in scission time is not surprising since the sys-
tem possesses a smaller energy whereas the outer barrier
has remained unchanged. At the end of the simulation,
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we find that the fission yields obtained are nearly iden-
tical to the axial case. The relative differences are only
11 % over the whole region of heavy mass fragments,
AH ∈ [127, 150], with small variations of the yields in
the symmetric valley at a maximum of 17 % for A = 121.
These results suggest that, while triaxiality has a strong
impact on the absolute probability to fission, it does not
seem to fundamentally change the relative population of
the output channels.

IV. CONCLUSION

We have presented a benchmark calculation of the
mass and charge distributions for low energy 239Pu(n,f)
within the framework of the TDGCM+GOA. We de-
tailed the numerical and technical issues arising in both
the static and dynamic parts of this type of calculation.
Our analysis confirms that the adiabatic approximation
provides an effective scheme to compute fission fragment
yields. The main characteristics of the fission charge and
mass distributions can be well reproduced by existing
energy functionals even in the two-dimensional collec-
tive space spanned by the quadrupole and octupole mo-
ments. In addition, we highlighted the sensitivity of our
predictions to variations of its different inputs. Over-
all, we found that the qualitative features of fission frag-
ment mass distribution are rather robust and indepen-
dent of the EDF and/or the various ingredients of the
model. This should facilitate the validation of the predic-
tive power of the method on different fissioning systems,
especially in actinide nuclei where quality data exists.

On the other hand, this study also highlights

several shortcomings of our implementation of the
DFT+TDGCM approach. In particular, the nagging
issue of discontinuities in the PES suggests that more
collective variables may need to be included in the cal-
culation, especially near scission. Note that discontinu-
ities may also be avoided by changing the definition of
the collective variables following the work by Younes and
Gogny [34]. In the long term, it seems also clear that a
better modeling of several important physics effects, such
as the description of the initial state, of collective iner-
tia, of particle number both in the fissioning system and
in the fragments, may be necessary to reach the level of
10% accuracy in predicting pre-neutron yields needed by
applications in science and technology. A more compre-
hensive description of the fission process capable among
others of quantitatively predicting the evolution of the
yields as a function of the neutron incident energy may
also require going beyond the hypothesis of adiabaticity
assumed in the present paper.
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[8] R. Rodŕıguez-Guzmán and L. M. Robledo, Phys. Rev. C

89, 054310 (2014).
[9] W. Younes and D. Gogny, Collective Dissipation from

Saddle to Scission in a Microscopic Approach, Tech. Rep.
LLNL-TR-586694 (Lawrence Livermore National Labo-
ratory (LLNL), Livermore, CA, 2012).

[10] P. Nadtochy and G. Adeev, Phys. Rev. C 72, 054608
(2005).
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and G. Hager, Int. J. Mod. Phys. E 18, 773 (2009).

[30] R. Rodrıguez-Guzmán and L. M. Robledo, Eur. Phys. J.
A 50, 142 (2014).
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