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Background: Models describing nuclear fragmentation and fragmentation-fission deliver important input for
planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually bench-
marked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic
nuclei as stepping stones are a promising tool to reach the most neutron-rich nuclei, creating a need for models
to describe also these reactions.



Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic
region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation
especially for unstable isotopes.

Method: We have measured projectile fragments from 1%28C and !%15B isotopes colliding with a carbon

target. These measurements were all performed within one experiment, which gives rise to a very consistent
dataset. We compare our data to model calculations.

Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic '**2*8C

and 1B isotopes impinging on a carbon target. Comparing model calculations to the data, we find that EPAX
is not able to describe the data satisfactorily. Using ABRABLAOQ7 on the other hand, we find that the average
excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease
ABRABLAO7 describes the data surprisingly well.

Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data have
allowed for a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most
striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless,

this parameter, which has been related to final-state interactions, requires further study.

PACS numbers: 25.75-q, 25.60.Dz, 24.10-1

I. INTRODUCTION

Since the advent of radioactive ion beam facilities
it is possible to study more exotic isotopes, which
has led to new discoveries, like halo-nuclei and the
changing of magic numbers with isospin. For a recent
overview see e.g. References [1, 2]. Reaction cross
sections involving exotic nuclei allow us to extract nearly
model-independent observables, in contrast to other
reaction processes such as nucleon transfer which is
strongly dependent on the reaction mechanism adopted
for the experimental analysis. Indeed, reaction cross
sections have led to a number of interesting discoveries
such as the above mentioned halo-nuclei [3].

Models  describing  nuclear  fragmentation and
fragmentation-fission deliver important input to
yield predictions, useful for planning of experiments
and future accelerator facilities [4]. Recently, two-step
fragmentation reactions have been discussed for future
facilities [5] and are already used [6] to reach especially
neutron-rich nuclei.

There exist several models for the prediction of reac-
tion cross sections, examples are models following the
abrasion-ablation, the intra-nuclear cascade approach
and empirical parametrizations. As the models are
usually benchmarked with stable nuclei — while exotic
nuclei can exhibit different behaviour — their ability to
predict fragmentation cross sections for exotic nuclei is
unclear. We investigate whether fragmentation models
are able to describe reaction cross sections of light exotic
nuclei, which exhibit such a rich variety of properties.
We have systematically measured one-proton-x-neutron
(Ipxn) removal cross sections for 0 < x < 5 for a
large range of carbon and boron isotopes impinging on
carbon targets at relativistic energies. We compare our
measured 1pxn removal cross sections to calculations
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FIG. 1. Schematic view of the LAND/R3B set-up seen from
above. The most important detectors for this work are POS,
ROLU, PSP, SST, GFI, TFW, and XB. POS provides energy-
loss (AE) and time-of-flight (ToF) measurements. ROLU is
an active veto detector on the incoming beam. PSP and SST
are used for AE measurements, the main purpose of the SST
is to determine incoming and outgoing directions of the beam.
The GFI provide tracking of the beam behind the magnet
ALADIN, and the TFW provides ToF, AE and position in-
formation. The XB is a calorimeter for protons and ~’s, and
are here solely used for trigger purposes. For a more detailed
description of the set-up see text. This schematic is not to
scale.

of an abrasion-ablation model (ABRABLAO7 [7]). We
also compare to the widely used EPAX code [8] though
it is limited to A > 40, since it has been used earlier
for lighter nuclei. Leistenschneider et al. [9] performed
a similar study for the less exotic 72O isotopes,
comparing both models to their data. The comparison
was unsatisfactory, but subsequently both models have
been improved.

II. EXPERIMENT

The experiment was conducted using the LAND/R?B
set-up at the GSI Helmholtz Centre for Heavy Ion Re-
search in Germany, and was designed as an overview ex-
periment covering isotopes with Z=3 to Z=9 between the
extremes of isospin.

The radioactive beams were produced from an “°Ar pri-



mary beam at 490 AMeV'! impinging on a 4 g/cm? Be
target. To separate and select the secondary beams the
FRS fragment separator [10] was used. With 5 differ-
ent separator settings, beams with (centred) A/Z ratios
ranging from 1.66 to 3 were selected and guided to the
experimental set-up. The secondary beams had kinetic
energies in the range from 390 AMeV to 430 AMeV. Re-
action targets of C (0.56 g cm~2 and 0.93 g cm™—2) as
well as an empty target frame were used in this work.
The LAND/R3B set-up, shown in Fig. 1, is designed
for complete kinematics measurements on an event-by-
event basis. At relativistic beam energies, the set-up
benefits from kinematic forward-focusing of the reac-
tion products, resulting in almost full acceptance in the
centre-of-mass frame. The incoming ions are character-
ized by their magnetic rigidity (defined by the FRS),
by their ToF (Time-of-Flight) between the FRS and the
set-up measured by plastic scintillator detectors (POS),
and by energy-loss measurements (AF) in a silicon PIN
diode (PSP) upstream from the reaction target. Lo-
cated directly in front of and behind the reaction tar-
get are pairs of double-sided-silicon-strip detectors, SST1
through SST4, (100 pm pitch) determining the angle and
charge of incoming and outgoing ions.

Light reaction products emitted at lab-angles > 7.5° are
detected in the segmented Nal array Crystal Ball (XB)
[11] surrounding the target. By means of a dual read-out
in the forward direction [12] (up to 63° from the beam
direction) the array is capable of detecting both photons
and protons emitted at large angles, though with limited
angular precision (= 77 msr solid angle per segment).
Charged fragments are bent by the dipole magnet AL-
ADIN and subsequently detected in fibre detectors (GFI)
[13] for position determination in the bending plane. Af-
ter a total flight-path of around 10 m behind the target,
the fragments are detected in TFW, a plastic ToF wall
providing time, energy-loss and coarse position informa-
tion.

Beam-like protons emitted at small angles (< 7.5°) also
traverse the magnet and are detected by two drift cham-
bers (PDC) and a ToF wall (DTF). Neutrons (emitted at
angles < 7.5°) are detected in forward direction, about
12 m downstream from the target in the neutron detec-
tor LAND [14]. The data presented in this work do
not require reconstruction of neutrons and light reac-
tion products. Though the set-up also allows detailed
spectroscopic analysis, this is not within the scope of
this work. Cross section measurements require signifi-
cantly less statistics, and therefore allow for an overview
of all ions in the experiment (we restrict ourselves here
to boron and carbon).

1 Here, and in all further uses of the unit AMeV, we neglect the
binding energy.

IIT. ANALYSIS

The incoming beam is selected? by fitting the charge
versus mass-to-charge-ratio distribution (see Fig. 2(a))
with 2-dimensional (2D) Gaussian distributions. Only
ions inside the 20 selection around the mean value, ex-
tracted from the fit, are taken into account in the anal-
ysis. To further reduce misidentifications arising from
pile-up, a second additional charge identification using
AE measurements from POS and the SST detector just
upstream from the target is employed, following the same
pattern; fitting of 2D Gaussian distributions and select-
ing ions inside 20 from the mean.

The charge of the outgoing ion is identified by using AE
measurements in the SST detector directly downstream
from the target (SST3) and the ToF detector at the end of
the set-up (TFW), thus ensuring that no charge-changing
reactions take place while the fragment travels through
the set-up behind the target, see Fig. 2(b). The same
technique of 2D-Gaussian distribution fits, but now with
a 30 selection is used.

The mass of the outgoing fragment is calculated using
the map of the magnetic field of ALADIN, the direction
of the ion after the target, the direction after the magnet
and the time of flight through the set-up using x? min-
imization of a Runge-Kutta propagation® [15] of the ion
through the set-up. An example of the resulting mass
distribution for a 1pxn removal reaction is presented in
Fig. 2(c). We employ a fit of a sum of Gaussian distribu-
tions (where the number of distributions in the sum cor-
responds to the number of different isotopes produced) to
these mass distributions, and extract the number of out-
going ions of a certain isotope using the fit-parameters.
Isotopes with cross sections below ~2 mb do not have
sufficient statistics, thus no cross sections are reported.
Due to acceptance limits, no cross sections for neutron-
loss channels with more than five neutrons (AN > 5)
could be extracted.

The cross sections are normalized using the unreacted
beam, which is identified and reconstructed in the same
way as the reacted beam. Together with the AN < 5
condition, ensuring that the fragment is inside the ac-
ceptance of our set-up, this renders efficiency corrections
for beam-detectors unnecessary.

Two different trigger patterns* are used in this analy-
sis. For selection of the unreacted beam, the “fragment-
trigger” which requires valid ToF signals and no veto of
the incoming beam (c.f. Fig. 1 ROLU). For the reacted

2 In order to assure reproducibility: for calibration and unpack-
ing the land02 software package with the following git-tags was
used: ronja-r3bm-5-2015 (land02) and ronja-6-2015 (calibration
parameters).

3 In order to assure reproducibility: LAND/R’B tracker software
was used with the git-tag ronja-r3bm-5-2015.

4 A trigger pattern is a certain combination of detectors firing, it
is used for selecting which events are recorded.
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FIG. 2. (Colour online) Ilustration of the reaction identifi-
cation (ID). (a) shows the incoming ID with charge versus
mass-to-charge ratio. The ellipses indicate the 20 selection
of different isotopes. The dashed ellipse represents the selec-
tion used for the data in the plots (b) and (c). (b) presents
the charge identification after the reaction target, using AE
measurements at the end of the set-up versus in the first de-
tector behind the reaction target. The ellipses indicate the
3o selection of the unreacted beam (solid) and 1pxn reaction
(dotted). (c) shows the reconstructed mass from the lpxn
removal and the fit to the spectrum. For details see text.
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FIG. 3. Excerpt from the nuclear chart, illustrating the iso-
topes selected from the incoming secondary beams (white,
thick frame). All carbon and boron isotopes with sufficient
statistics were used.

beam a “XB-reaction-trigger” was used, requiring in ad-
dition to the same conditions as the fragment-trigger,
also the detection of an energy signal in the calorime-
ter surrounding the target (XB). The calorimeter detects
~v-rays and light particles at angles > 7.5° with respect
to the beam axis. An energy signal in the XB indicates
therefore that a reaction took place. The trigger effi-
ciency of the XB-reaction-trigger is experimentally de-
termined to be (85.3 + 2.5)% of the trigger efficiency of
the fragment-trigger.

The reaction probability of the carbon and boron iso-
topes in the carbon targets is (0.9 + 0.2)% and (0.8 +
0.2)% for the thinner and (1.5 + 0.3)% and (1.3 4+ 0.3)%
for the thicker target, respectively. The probability of
multiple reactions in the target is thus insignificant.

IV. RESULTS

We have extracted one-proton-x-neutron-removal
(1Ipxn) cross sections for 0 < x < 5 for beams of car-
bon isotopes of mass 10 and 12 through 18, and boron
isotopes of mass 10 through 15 on a C target. The loca-
tion of these isotopes on the nuclear chart is illustrated
in Fig. 3.

Several isotopes were present in more than one frag-
ment separator setting, and had therefore slightly dif-
ferent kinetic energies (390 AMeV to 430 AMeV). The
cross sections at the slightly different energies did, as
expected [16], not show any energy dependence in this
interval and were averaged with respect to their statis-
tical weights. The averaged cross sections are provided
in Table I and shown in Fig. 4, which presents the pro-
duction cross section versus AA (difference in number
of nucleons between mother and daughter nuclei) for in-
coming carbon and boron isotopes. For the latter we
observe a strong trend in the production cross section of
10Be. It is the largest of all measured 1pxn cross sections



Ain Zin Aowt o error | Ain Zin Aoww 0o error
[mb] [mb] [mb] [mb]
18 6 17 102 1.4 15 5 14 4.0 1.0
18 6 15 399 3.2 15 5 12 31.7 25
18 6 14 16.2 1.8 15 5 11 29.1 2.7
18 6 13 74.7 53 15 5 10 655 5.5
18 6 12 30.9 3.0 15 5 9 10.8 1.7
17 6 15 279 1.8 14 5 12 21.3 1.2
17 6 14 14.1 1.2 14 5 11 206 1.2
17 6 13 725 3.7 14 5 10 62.8 2.9
17 6 12 409 2.6 14 5 9 132 1.0
17 6 11 40.2 2.5
16 6 15 205 0.4 13 5 12 89 0.3
16 6 14 11.9 0.3 13 5 11 19.8 0.5
16 6 13 653 1.0 13 5 10 584 1.1
16 6 12 43.0 0.7 13 5 9 176 0.5
16 6 11 53.7 0.9
16 6 10 4.1 0.2
15 6 14 273 1.2 12 5 11 6.8 0.3
15 6 13 409 1.6 12 5 10 593 1.6
15 6 12 473 1.8 12 5 9 20.6 0.7
15 6 11 67.7 2.6 12 5 3.5 0.2
15 6 10 104 0.7
14 6 13 51.1 1.4 11 5 10 37.0 1.3
14 6 12 346 1.1 11 5 9 199 0.8
14 6 11 84.8 2.2 11 5 7 3.0 0.3
14 6 10 16.7 0.7
13 6 12 555 1.3 10 5 9 133 1.6
13 6 11 762 1.8 10 5 7 10.6 1.6
13 6 10 26.8 0.9
12 6 11 854 3.1
12 6 10 48.8 2.2
10 6 8 133 3.0

TABLE 1. Summary of the extracted 1pxn removal cross sec-
tions. The error provided represents the statistical uncer-
tainty. The systematic uncertainty due to uncertainties in
the target thickness and trigger efficiency is estimated to 5%

for all isotopes for which the 1pxn removal leaves a Be-
isotope with mass 10 or larger. For the carbon isotopes
the trend is not as clear. Carbon isotopes lighter than
mass 16 show clearly the largest 1pxn cross section for
1B, while those heavier than mass 15 have the largest
cross section for semi-magic '>B. The transition point is
16C, featuring large production cross sections for both
1B and ¥B. A separate case is '°C which is proton-rich
and for which only the 1pln reaction populates a bound
nucleus (5B).
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FIG. 4. (Colour online) 1pxn removal cross sections plotted
versus the change in nucleon number, for carbon and boron.
The shaded area represents the statistical error bar. For boron
there is a strong trend that the cross section for populating the
long-lived '°Be is largest for all incoming isotopes. For carbon
isotopes the cross section to produce the heaviest available
stable isotope, ''B is largest, except for very neutron-rich
isotopes, where instead the cross section to the semi-magic
13B becomes largest, with the transition point located at 16C.

V. MODEL CALCULATIONS

The model we use to understand the physics connected
to our data is ABRABLAOQ7 [7], which is a standard code
for the description of fragmentation and fragmentation-
fission reactions of heavy nuclei. It describes these re-
actions quite successfully (see e.g. Ref. [17]). Fragmen-
tation is described by the model as a two-step process
— abrasion and ablation, the former determining how
many nucleons are removed in the collision, and the lat-
ter which and how many light particles are evaporated
owing to the excitation energy induced by the collision.
Both parts use the Monte-Carlo approach.

The abrasion part uses Karol’s approximation [18] to ex-
tract the total interaction cross section. The number of
removed nucleons is calculated from the geometrical over-
lap of the colliding nuclei — based on the impact param-
eter, while the neutron-proton ratio of the pre-fragment



is calculated from the hyper-geometrical distribution [7].
The excitation energy of the daughter nucleus is deter-
mined from the single-particle energies of the removed
nucleons, which is on average 13.5 MeV per abraded nu-
cleon [7]. It was found [19] that the excitation energy has
to be multiplied by a factor of two in order to reproduce
experimental data, which is motivated by the final state
interactions of participants and spectators.

The ablation part, described in detail in Ref. [20], bases
the particle emission on the statistical model and the
Weisskopf-Ewing formalism [21]. Level densities are cal-
culated using the Fermi-gas approach [22], modulated
by nuclear structure effects (e.g. collective enhance-
ment), which at low excitation energies is replaced by
the constant-temperature model [23].

Calculations were performed running 106 collisions per
incoming ion, rendering the statistical uncertainty of the
calculated cross sections of 3 mb (the smallest experi-
mental data point) to be below 2%.

VI. DISCUSSION

To optimize the input parameters of ABRABLAO7, we

used the mass evaluation from 2012 [24, 25] instead of the
mass evaluation from 2003 and added a few missing un-
bound nuclei. Both modifications resulted in very minor
changes of the cross sections.
In order to be able to reproduce the cross sections of the
light nuclei measured in this work, we had to decrease
the multiplication factor of the excitation energy to 0.6.
This was deduced from a systematic study of the abil-
ity of ABRABLAO7 to reproduce the experimental cross
sections depending on the excitation energy multiplica-
tion factor (frg). The study was performed by running
ABRABLAOQ7 calculations with an fpg varying between
0.2 and 2, in steps of 0.1. Using both the statistic and
known systematic uncertainty we calculated a x? for the
agreement between calculation and data for each incom-
ing isotope and frg. The result of the total x? per iso-
tope, which is the sum of the individual x2 of all incoming
isotopes divided by the amount of daughter-isotopes, is
illustrated in Fig. 5. The minimum is located at 0.6, indi-
cating that all isotopes simultaneously are best described
by an fgg of 0.6, i.e. an average excitation energy of 8.1
MeV per abraded nucleon.

The complete comparison of the calculations with the
best fit fpg (= 0.6) with the data is shown in Fig. 6.
First, one should note that our experimental data for
stable '2C agrees with data from previous stable beam
experiments [26, 27]. Data taken by Ogawa et al. [16]
disagrees somewhat with both our and the other previous
measurements.

Altogether, ABRABLAOQ7, which is designed for calcula-
tion of fragmentation and fission cross sections of heavier
nuclei, and employs several approximations based on the
properties of these, reproduces the data very well. We
still observe a few differences between model and data.

60
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FIG. 5. Plot of the x? versus the excitation energy multipli-
cation factor used in the ABRABLAOT [7] calculations. The
x? is determined as described in the text, summed for all ex-
perimentally determined cross sections measured in this work.
Lines are used to guide the eye.

Generally the prediction for 1pxn removal cross sections
for B is much better than the prediction for 1pxn removal
from C. The 1pOn channels are generally overestimated
for boron by ABRABLAQ7. For carbon no such trend is
visible.

Another widely used model is EPAX developed by K.
Stimmerer [8], which we also show for comparison (in
Fig. 6). Our data is outside the range limit of EPAX be-
ing A > 40, but EPAX has previously been used for lower
masses (e.g. Ref. [9]). This empirical formula misses de-
tails of the structure in this region of the nuclear chart,
and has therefore only limited applicability for such light
nuclei.

A best fit fgp = 0.6 for our data is quite different to
the originally published frg of 2.0 from peripheral col-
lisions of the much heavier *“Au [19]. The final-state
interactions, proposed as physics motivation for intro-
ducing the fgg, should, from naive geometry arguments,
scale with the size of the nuclei. To further understand
the influence of the excitation energy multiplication fac-
tor on the ability of ABRABLAO7 to reproduce the 1pxn
cross sections, we investigate the dependence of the fpg
on the projectile mass. To do that we use data from
Refs. [6, 26, 29-34], as summarized in Table II, and per-
form ABRABLAOQ7 calculations with fgg between 0.5
and 4 in intervals of 0.1. With the requirements of beam
energies above 100 AMeV and data available in tabu-
lated form, we used all to our knowledge published 1pxn
removal data available.

For heavier isotopes, in contrast to light isotopes, the
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FIG. 6. (Colour online) Comparison between ABRABLAQ7 [7] (red stars), EPAX [4, 28] (blue diamonds) and the experimental
data (black full squares). For '?C experimental data from three other measurements of *2C on C are shown: at 600 AMeV,
Ref. [26] (orange empty square,); at 250 AMeV, Ref. [27] (green empty circles); and at 400 AMeV, Ref. [16] (purple bold stars).

possibility of very long evaporation chains exists. These
long evaporation chains are caused by reactions in which
more excitation energy is generated in the abrasion step
which corresponds to more violent, non-peripheral colli-
sions. In order to compare similar collisions, we restrict
ourselves to a maximum of 5 removed neutrons in this
analysis, which corresponds to the same range as in our
light nuclei.

We calculate the x? (for each fzg and isotope), as above,

which is then used to determine the best frpp for each
isotope. For some isotopes no minimum could be found.
This stems from a too large mismatch of the cross sec-
tions in our area of interest. The error is estimated
by looking at which fgg, other than the best, have a
X2 smaller than the best 2 + loy2. The error of the
X2 is estimated by standard error propagation. The
largest possible difference between the fpp still having

X* < Xboor + 102 pest is determined for frpg being both



Reference Isotope

this work  '°B, '°C, 'B, 2B, 2C, 1*B, 13C,
14B, 1407 15]37 1507 160 170, 18

(6] 132g*

[26] 14N*7 160’ QONe*, 24Mg, 27A1, 2881*7

382G 40Ar 40(, 56 581

[29] 208pp,*

[30] 23877

31] 124y, 136,

[32] 136Xe

(33, 34] 92Mo”

TABLE II. Table summarizing which isotopes were used to
study the mass dependence of the frg, sorted by publica-
tion. For isotopes marked with an asterix no minimal x? and
therefore no optimal fgr could be determined.

smaller and larger than the best fgr and their average
gives the estimated uncertainty. Large errors are caused
by a mismatch between data and calculation concerning
the trend of cross section vs. removed neutrons.

Figure 7 shows the best fpp versus mass number, for
both our experimental data (red dots) and the data from
literature (orange squares and blue bold crosses). Nuclei
which have a smaller separation-energy for protons than
for neutrons, which causes the particle-evaporation after
the reaction to be different, are marked differently (blue
bold crosses). The figure shows that the excitation en-
ergy multiplication factor increases with increasing mass.
Tarasov et al. [35] found, for fragmentation of %2Se at
139 AMeV, an excitation energy of 15 MeV per abraded
nucleon with a different version of the abrasion-ablation
model. This, though also central collisions are included,
is consistent with our findings. Unfortunately the region
between mass 60 and mass 130 does not contain any data,
so the transition from light to heavy masses is not very
conclusive.

Please note that the selection of the reaction channels
(restriction to 1pxn with 0 < x < 5) included in our op-
timization of the fgg, selects only peripheral reactions.
This physics selection influences the result of the best fit
fEE, thus the results presented here are not in conflict
with previous fgg = 2 results including the complete set
of daughter nuclei.

One can also observe that factors other than the mass in-
fluence the induced average excitation energy, due to the
large spread of the optimal frp values. Concerning light
nuclei, the description of the pre-fragment excitation en-
ergy in ABRABLAO7 would benefit from improvement,
since for these nuclei the influence of the nuclear struc-
ture and single-particle energies plays a bigger role. See
e.g. Ref. [36] for the importance of nuclear structure on
pre-fragment excitation energy. Performing a simple test,
decreasing the default potential depth in ABRABLAO7
[7] from 47.4 MeV to 40 MeV, we find no significant in-
fluence of that parameter on the ability of ABRABLAOQO7
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FIG. 7. (Colour online) The optimal excitation energy multi-
plication factor versus the mass number. Error-bars indicate
the estimated uncertainty, see text for details on the calcula-
tion. (Red) dots represent the present data, while (orange)
squares indicate data from Ref. [6, 26, 29-32], and (blue) bold
crosses represent data from Ref. [26, 31, 33, 34] for isotopes
that have a larger neutron separation energy than proton sep-
aration energy. A clear difference between lighter and heavier
nuclei is visible.

to reproduce our experimental data.

VII. CONCLUSIONS

We have systematically measured 1pxn removal cross
sections for 14 neutron-rich carbon and boron isotopes
in one single experiment. These new data are used for
comparison with model calculations. The EPAX model
deviates significantly from the experimental data. The
comparison of ABRABLAO7 with the new data yields
the necessity for a smaller average excitation energy in
the model calculations for these nuclei. With that, the
calculation reproduces the data surprisingly well, even
though there are some deviations. Including additional
data from literature we find that the average excitation
energy in ABRABLAOQ7 for best reproduction of experi-
mental data on 1pxn (0 < x < 5) reactions increases with
increasing mass. This should be taken into account for
future calculations of light nuclei with this model.
However, the comparison to data also demonstrates that
changing the average excitation energy per abraded nu-
cleon alone is insufficient for a full description of the ex-
perimental data. The behaviour of the induced excitation
energy is complex, and more investigations are needed. A
potential influence of the impact parameter on the frpg,



which is indicated by our results for heavy nuclei differing
from the adopted value of frr = 2, would be interesting
to investigate further. A more realistic estimate of pre-
fragment excitation energy would probably improve the
model not only with regard to light isotopes, but more
generally.

Due to its extreme relevance in helping us understand
the isotope fragmentation production mechanism, we feel
that additional theoretical improvements of the relatively
successful abrasion-ablation model are necessary. In par-
ticular one deserves a better understanding and predic-
tion of the average excitation energy per abraded nu-
cleon.
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