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Abstract

Polarization observables in neutron-deuteron scattering are calculated to next-to-next-to-next-

to-leading order (N3LO) in pionless effective field theory (EFT 6π). At N3LO the two-body P -wave

contact interactions are found to be important contributions to the neutron vector analyzing power,

Ay(θ), and the deuteron vector analyzing power, iT11(θ). Extracting the two-body P -wave EFT 6π

coefficients from two-body scattering data and varying them within the expected EFT6π theoretical

errors provides results that are consistent (at the N3LO level) with Ay experimental data at low

energies. Cutoff dependence of the N3LO correction to the doublet S-wave nd scattering amplitude

suggests the need for a new three-body force at N3LO, which is likely one that mixes Wigner-

symmetric and Wigner-antisymmetric three-body channels.
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I. INTRODUCTION

The maximum of the nucleon vector analyzing power, Ay(θ), and the deuteron vector

analyzing power, iT11(θ), in neutron-deuteron (nd) and proton-deuteron (pd) scattering are

significantly under-predicted by existing three-body calculations at low energies (nucleon

lab energies below 30 MeV). This is known as the three-nucleon analyzing power problem or

as the Ay puzzle (See e.g., Refs. [1, 2]). Both phenomenological potential model calculations

(PMC) [2] and more modern potentials derived from chiral effective field theory [3] have not

resolved this discrepancy. PMC have shown that Ay is very sensitive to the values of the

two-body 3PJ phase shifts [4–6] and that the experimental neutron-proton (np) scattering

data does not give enough latitude to simultaneously fit the two-body 3PJ wave phase shifts

and Ay [7]. Refs. [8, 9] found that a three-body SD mixing term may be important for

solving the Ay puzzle.

For low energies (E < m2
π/MN) nuclear systems can be described by a theory containing

only contact interactions between nucleons and possible external currents. This theory,

known as pionless effective field theory (EFT6π) (See e.g. Ref. [10] for a review), has been

used to calculate nucleon-nucleon (NN) scattering [11, 12], deuteron electromagnetic form

factors [11], np capture [13], and neutrino-deuteron scattering in the two-body sector [14].

Progress in the three-body sector includes the calculation of nd scattering [15–17] and pd

scattering [18–20]. The first calculations of nd scattering relied on the partial resummation

technique [21], which resummed certain higher order contributions and therefore was not

strictly perturbative in the EFT6π power counting. Refs. [17, 22] introduced a technique

to calculate nd scattering amplitudes strictly perturbatively that is no more numerically

expensive than the partial resummation technique. With the strictly perturbative approach

nd scattering was calculated to next-to-next-to-leading order (N2LO) including the two-

body SD-mixing term [17]. The two-body SD-mixing term provides the first non-zero

contribution to the polarization observables in nd scattering. However, that work did not

investigate polarization observables since they are not expected to be reproduced well at

N2LO. The N2LO calculation is LO in the polarization observables since it gives the first

non-zero contribution to them.

Building on this N2LO calculation, we present in this paper results for polarization observ-

ables in nd scattering to next-to-next-to-next-to-leading order (N3LO) in EFT 6π. At N3LO
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there are new contributions from shape parameter corrections as well as the two-body P -

wave contact interactions that are found to give the dominant contribution to Ay (as already

identified in PMC). At N2LO a term that causes splitting between the neutron-neutron (nn)

and np 1S0 scattering lengths should be included. Experimentally the difference in scatter-

ing lengths is roughly 3% and therefore numerically is considered a N2LO correction in the

EFT6π power counting. This term has been included in previous two-body calculations [13],

but was not treated strictly perturbatively as it is in this work.

This paper is organized as follows. In Sec. II all necessary two-body physics for the three-

body calculation is presented. Section III discusses how the nd scattering amplitudes are

calculated and introduces the concept of P -wave auxiliary fields to calculate the three-body

contribution from the two-body P -wave contact interactions. In Sec. IV expressions for the

polarization observables in nd scattering are introduced. Polarization observable results in

EFT6π are shown in Sec. V, and finally we conclude in Sec. VI.

II. TWO-BODY SCATTERING

The two-body S-wave Lagrangian up to and including N3LO in the Z-parametrization [16,

23] is given by

LS2 = N̂ †

(
i∂0 +

~∇
2

2MN

)
N̂ (1)

+ t̂†i

∆t − c0t

(
i∂0 +

~∇
2

4MN

+
γ2
t

MN

)
− c1t

(
i∂0 +

~∇
2

4MN

+
γ2
t

MN

)2
 t̂i

+ ŝ†a

∆s + ∆(N2LO)
s δa−1 − c0s

(
i∂0 +

~∇
2

4MN

+
γ2
s

MN

)
− c1s

(
i∂0 +

~∇
2

4MN

+
γ2
s

MN

)2
 ŝa

+ yt

[
t̂†iN̂

TPiN̂ + H.c.
]

+ ys

[
ŝ†aN̂

T P̄aN̂ + H.c.
]
,

where t̂i (ŝa) is the spin-triplet iso-singlet (spin-singlet iso-triplet) auxiliary field, and Pi =

1√
8
σ2σiτ2 (P̄a = 1√

8
σ2τ2τa) projects out the spin-triplet iso-singlet (spin-singlet iso-triplet)

combination of nucleons. The subscript “2” indicates that Eq. (1) includes only two-body

terms. At LO the parameters are fit to reproduce the bound state and virtual bound state

poles in the 3S1 and 1S0 channels, respectively. The majority of NLO, N2LO, and N3LO

parameters in the Z-parametrization are then fit to ensure the poles remain unchanged
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and have the correct residues. The N3LO parameters c1t and c1s are fit to reproduce the

effective range expansion (ERE) shape corrections about the poles of the 3S1 and 1S0 channels,

respectively. Carrying out this procedure yields [16]

∆t + µ = γt, yt =

√
4π

MN

, c
(n)
0t = (−1)n(Zt − 1)n+1MN

2γt
, c1t = ρ1tM

2
N (2)

∆s + µ = γs, ys =

√
4π

MN

, c
(n)
0s = (−1)n(Zs − 1)n+1MN

2γs
, c1s = ρ1sM

2
N ,

where µ is a scale introduced via dimensional regularization with the power divergence

subtraction scheme [24, 25]. All physical observables must be µ-independent. The value

γt = 45.7025 MeV (γs = −7.890 MeV) is the deuteron bound state momentum (1S0 virtual

bound state momentum), and Zt = 1.6908 (Zs = 0.9015) the residue of the 3S1 (1S0) bound

state (virtual bound state) pole. For the shape parameter correction about the 3S1 (1S0) pole

we use ρ1t = 0.389fm3 (ρ1s = −0.48 fm3). The N2LO parameter ∆
(N2LO)
s = −2.02 MeV, and

is fit to the splitting between the virtual bound state momentum in the np and nn spin-singlet

channels. There is also a separate parameter for the splitting between the virtual bound

state momentum in the np and proton-proton (pp) spin-singlet channels in the absence of

Coulomb, but this is not relevant for the nd system and is not considered here.

At N2LO there is a contribution from two-body SD-mixing given by the Lagrangian

LSD2 = ySD t̂
†
i

[
N̂T

(
(
→
∂ −

←
∂ )i(

→
∂ −

←
∂ )j − 1

3
δij(

→
∂ −

←
∂ )2

)
PjN̂

]
+ H.c.. (3)

The parameter ySD is fit to the asymptotic D/S ratio of the deuteron wavefunction yield-

ing [11, 17]

ySD = −
√

4π

MN

3ηsd
√

2

8γ2
t

, (4)

where ηsd = .02543± .00007 is the asymptotic D/S mixing ratio of the deuteron wavefunc-

tion [26].

Two-body P -wave contact interactions first occur at N3LO. The 3PJ terms are given by

the 3PJ Lagrangian [27],

L
3PJ
2 =

(
C

(3P0)
2 δxyδwz + C

(3P1)
2 [δxwδyz − δxzδyw] + C

(3P2)
2

[
2δxwδyz + 2δxzδyw −

4

3
δxyδwz

])
(5)

× 1

4
(N̂ tO(1,P )

xyA N̂)†(N̂TO(1,P )
wzA N̂)
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where

O(1,P )
ijA =

←
∇i P

P
jA − P P

jA

→
∇i (6)

and the projector is defined as P P
iA = 1√

8
σ2σiτ2τA. Note that the projector P P

iA differs from

the projector in Ref. [27] because we consider NN scattering not just np scattering. At

N3LO the two-body 1P1 contact interaction also appears

L1P1
2 = C

(1P1)
2

1

4
(N̂ tO(0,P )

x N̂)†(N̂TO(0,P )
x N̂), (7)

but it does not contribute to the polarization observables in our calculation at this order.

The operator O(0,P )
i is defined by

O(0,P )
i =

←
∇i P

P − P P
→
∇i, (8)

where the projector is P P = 1√
8
σ2τ2. Fitting the coefficients to the np Nijmegen phase

shifts [26] yields the values

C
3P0 = 6.27 fm4, C

3P1 = −5.75 fm4, C
3P2 = .522 fm4, and C

1P1 = −19.8 fm4. (9)

These C
3PJ values are in good agreement with those found in Ref. [27]. We take them as

the central value of an experimental fit, but there is a substantial theoretical EFT6π error

associated with that fit; these coefficients are N3LO for nd scattering but are LO in two-body

P -wave scattering.

At LO the power counting mandates that an infinite number of diagrams be summed,

yielding the LO dibaryon propagators [16, 17]

iD{t,s}(p0, ~p) =
i

γ{t,s} −
√

~p2

4
−MNp0 − iε

. (10)

The LO deuteron wavefunction renormalization is the residue about the 3S1 bound state

pole, which gives

ZLO =
2γt
MN

. (11)

The form of higher order dibaryon propagators and wavefunction renormalization constants

can be found in Refs. [16, 17]. For this work the form of these higher order corrections will not

be explicitly needed. Rather, the higher order corrections will naturally be included in the

integral equations, and diagrams with corrections attached to external dibaryon propagators

will give higher order deuteron wavefunction renormalization contributions in the on-shell

limit.
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III. THREE-BODY SCATTERING

The NnLO correction to the nd scattering amplitude using the methods introduced in

Ref. [22] is given by the integral equation represented in Fig. 1. Because this integral

equation is not yet projected in spin or partial waves it includes both doublet and quartet

channel contributions. The single line represents a nucleon, the double line a spin-triplet

dibaryon, and the double dashed line a spin-singlet dibaryon. A thick solid line denotes a

sum over both spin-triplet and spin-singlet dibaryons. The oval with a “0” inside is the

LO nd scattering amplitude, the oval with the n inside is the nth order correction to the

nd scattering amplitude, the circle with the n inside is a NnLO correction to the dibaryon

propagator, and the rectangle with the n inside is a NnLO “three-body” correction.1 .

Perturbative corrections to the dibaryon propagators in the Z-parametrization [16] are

given in Fig. 2. The NLO contributions c
(0)
0t and c

(0)
0s are from range corrections, and the

N2LO terms c
(1)
0t and c

(1)
0s are from higher order corrections to c

(0)
0t and c

(0)
0s , respectively. The

N2LO correction, ∆
(N2LO)
s , arises from the splitting between the 1S0 scattering length for

nn and np scattering2. At N3LO there are corrections c
(2)
0t and c

(2)
0s to the effective range

corrections and also shape parameter corrections c1t and c1s .

The “three-body” contributions to the integral equation are given by the diagrams in

Fig. 3. LO diagrams are given by nucleon exchange and the LO three-body force in the

doublet S-wave channel. The NLO contribution comes from a NLO correction to the LO

three-body force in the doublet S-wave channel. At N2LO there is a contribution from the

two-body SD-mixing term, a N2LO correction to the LO three-body force, and a new energy

dependent three-body force in the the doublet S-wave channel. Finally, at N3LO there are

contributions from the C
3PJ and C

1P1 two-body P -wave contact interactions as well as N3LO

corrections to the LO three-body force and the energy dependent N2LO three-body force.

Up to N3LO all three-body forces occur in the doublet S-wave channel.

Projecting the nth order amplitude for nd scattering in Fig. 1 into a partial wave basis

1 The term “three-body” refers to corrections that involve all three-nucleons; this includes three-body forces.

2 In the ERE there is no N2LO correction to the dibaryon propagator from c
(1)
0t and c

(1)
0s in this formalism.

However, there is still a correction from the splitting term ∆
(N2LO)
s in the ERE.
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FIG. 1. Single lines represent nucleons, double lines spin-triplet dibaryons, and double dashed

lines spin-singlet dibaryons. Thick solid lines denote a sum over both spin-triplet and spin-singlet

dibaryons. The LO nd scattering amplitude is the oval with a “0” inside and the oval with the n

inside is the NnLO correction to the nd scattering amplitude. The circle with the n inside is the

NnLO correction to dibaryon propagators (see Fig. 2), and the rectangle with the n inside is the

nth order “three-body” correction (see Fig. 3).

yields the set of integral equations in cluster configuration (c.c.) [16] space

tJn;L′S′,LS(k, p, E) = KJ
n;L′S′,LS(k, p, E)vp +

n∑
i=1

tJn−i;L′S′,LS(k, p, E) ◦Ri(p, E) (12)

+
∑
L′′,S′′

n−1∑
i=0

KJ
n−i;L′S′,L′′S′′(q, p, E) D

(
E − q2

2MN

, ~q

)
⊗ tJi;L′′S′′,LS(k, q, E)

+
∑
L′′,S′′

KJ
0;L′S′,L′′S′′(q, p, E) D

(
E − q2

2MN

, ~q

)
⊗ tJn;L′′S′′,LS(k, q, E),
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c
(0)
0t , c

(0)
0s

=

c
(1)
0t , c

(1)
0s ∆(N2LO)

s

= +1 2

+=

c
(2)
0t , c

(2)
0s

3
c1t, c1s

FIG. 2. (Color Online) Higher order corrections to dibaryon propagators (used in the diagrams of

Fig. 1). The NLO (n=1) corrections are range corrections from c
(0)
0t and c

(0)
0s . At N2LO (n=2) the

dibaryons receive further range corrections c
(1)
0t and c

(1)
0s in the Z-parametrization, as well as the

∆(N2LO) correction from splitting between the nn and np spin-singlet scattering lengths. The N3LO

(n=3) corrections are from higher order range corrections c
(2)
0t and c

(2)
0s in the Z-parametrization,

and shape parameter corrections c1t and c1s.

where

D(E,~q) =

 Dt(E,~q) 0

0 Ds(E,~q)

 (13)

is a matrix of LO dibaryon propagators in c.c. space, and the first subscript in all terms

appearing in the integral equations refers to the order of a term (n = 0 is LO, n = 1 is NLO,

etc.). tJn,L′S′,LS(k, p, E) and vp are vectors in c.c. space defined by

tJn,L′S′,LS(k, p, E) =

 tJ ;Nt→Nt
n;L′S′,LS(k, p, E)

tJ ;Nt→Ns
n;L′S′,LS(k, p, E)

 , vp =

 1

0

 , (14)

where tJ ;Nt→Nt
n;L′S′,LS(k, p, E) is the amplitude for nd scattering, tJ ;Nt→Ns

n;L′S′,LS(k, p, E) the amplitude

for a neutron and deuteron going to a nucleon and spin-singlet dibaryon, and vp projects out

diagrams in c.c. space corresponding to a spin-triplet dibaryon in the final state. The value

L (S) refers to the initial orbital (total spin) angular momentum, L′ (S ′) to the final orbital

(total spin) angular momentum, and J to the total angular momentum (orbital plus total

spin angular momentum). All integral equations are calculated half off-shell in the center

of mass (c.m.) frame, with p being the outgoing off-shell momentum and k the incoming

on-shell momentum such that the total energy of the nd system is given by E = 3
4
k2

MN
− γ2t

MN
.

For this calculation all partial waves up to L = 4 are included. All three-body integrals are

regulated using a sharp cutoff, which in the “⊗” notation is defined by

A(q)⊗B(q) =
1

2π2

∫ Λ

0

dq q2A(q)B(q). (15)
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HLO

= +0
HNLO

=1

+

HN3LO, HN3LO
2C(2S+1PJ)

= +3

ySD HN2LO, HN2LO
2

= +2

FIG. 3. (Color Online) “three-body” contributions to integral equations (used in the diagrams of

Fig. 1). The LO terms are nucleon exchange plus in the doublet S-wave channel the LO three-body

force (dark square) . The NLO term is a NLO correction to the LO three-body force. At N2LO

there are contributions from the two-body SD-mixing term (coupling indicated by pale square),

the N2LO correction to the LO three-body force, HN2LO, and a new energy dependent three-body

force, HN2LO
2 . The N3LO contributions are from the two-body P -wave contact interactions (green

circle), the N3LO correction to the LO three-body force, and the N3LO correction to the N2LO

energy dependent three-body force.

The “◦” notation defines the Schur product (element wise matrix multiplication) of c.c. space

vectors. For this set of integral equations the LO kernel in c.c. space is given by

KJ
0;L′S′,LS(q, p, E) = (16)

δLL′δSS′



−2π
qp
QL

(
q2+p2−MNE−iε

qp

) 1 −3

−3 1

− πHLOδL0

 1 −1

−1 1

 , S = 1/2

−4π
qp
QL

(
q2+p2−MNE−iε

qp

) 1 0

0 0

 , S = 3/2

,

where at this order there is no mixing between different partial waves or splitting of different

J-values. The LO three-body force, HLO, is fit to the doublet S-wave nd scattering length,

and = .65 fm. For details of how the fit is performed see Ref. [22]. The functions QL(a) are
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related to Legendre functions of the second kind and are defined as3

QL(a) =
1

2

∫ 1

−1

dx
PL(x)

x+ a
, (17)

with PL(x) being the standard Legendre polynomials. Note that R0(p, E) does not exist.

At NLO the only contribution to the kernel comes from the NLO correction to the three-

body force, yielding

KJ
1;L′S′,LS(q, p, E) = −πHNLOδL0δLL′δSS′δS1/2

 1 −1

−1 1

 , (18)

where HNLO is the NLO correction to the LO three-body force, which is again fit to the

doublet S-wave nd scattering length [22]. The dibaryons also receive a correction at NLO,

which is given by the c.c. space vector

R1(p, E) =

 (Zt−1)
2γt

(
γt +

√
3
4
p2 −MNE − iε

)
(Zs−1)

2γs

(
γs +

√
3
4
p2 −MNE − iε

)
 . (19)

The N2LO kernel receives contributions from the two-body SD-mixing term, the N2LO

correction to the LO three-body force, HN2LO, and a new energy dependent three-body force,

HN2LO
2 . In c.c. space these contributions give

[
KJ

2;L′S′,LS(q, p, E)
]
zx

=
y ySDMN

2

(
Z

(1)
SD(J, L′, S ′, L, S, x, z)

1

kp

[
4p2QL(a) + k2QL′(a)

]
(20)

+ Z
(1)
SD(J, L, S, L′, S ′, z, x)

1

kp

[
p2QL(a) + 4k2QL′(a)

]
+
∑
L′′

[
Z

(2)
SD(J, L′, S ′, L, S, x, z, L′′) + Z

(2)
SD(J, L, S, L′, S ′, z, x, L′′)

]
QL′′(a)

)
− π(HN2LO +

4

3
(MNE + γ2

t )H
(N2LO)
2 )δL0δLL′δSS′δS1/2(−1)x+z

where the subscripts “x” and “z” refer to the matrix element in c.c. space. The value x = 1

(z = 1) corresponds to an initial (final) spin-triplet dibaryon state and x = 0 (z = 0) to

an initial (final) spin-singlet dibaryon state. Functions Z
(1)
SD(· · · ) and Z

(2)
SD(· · · ) are defined

3 The definition of QL(a) used here differs from the conventional definition by a phase factor of (−1)L.
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with 3nj-symbols, yielding

Z
(1)
SD(J, L′, S ′, L, S, x, z) = 2

√
x̂ẑ(̂1− z)ŜŜ ′L̂

√
10

3
(−1)

1/2+x+z+L+S+S′−J

 z 1
2

1
2

1 S ′ 1
2

 (21)

×

 2 1 x

1
2
S S ′


 S ′ 2 S

L J L′

C0,0,0
L,2,L′ ,

and

Z
(2)
SD(J, L′, S ′, L, S, x, z, L′′) =

∑
L′′

8

√
x̂ẑ(̂1− z)ŜŜ ′L̂L̂′′(−1)z+L

′′+L

 1 1
2

1
2

z S ′ 1
2

 (22)

×




1
2

x S

1 L′′ L

S ′ L′ J

+

 1
2

1 S ′

L′ J L′′


 L x L′′

1
2
J S

+
1

3
(−1)1+L′′+L 1

ŜL̂
δLL′δSS′

C0,0,0
L,1,L′′C

0,0,0
L′′,1,L′ ,

where the hat is defined as x̂ = 2x+ 1. At N2LO there is also a correction to the dibaryon

propagators from c
(1)
0t , c

(1)
0s , and ∆

(N2LO)
s . In c.c. space this is

R2(p, E) = −

 (Zt−1)2

2γt

(
γt +

√
3
4
p2 −MNE − iε

)
(Zs−1)2

2γs

(
γs +

√
3
4
p2 −MNE − iε

)
− 2

3
∆

(N2LO)
s Ds

(
E − p2

2MN
, p
)
 . (23)

The factor of 2/3 in front of ∆
(N2LO)
s comes from the isospin projection. ∆

(N2LO)
s is only

associated with the nn spin-singlet dibaryon propagator, which contributes 2/3 to the total

isospin invariant nucleon spin-singlet dibaryon amplitude (tJ ;Nt→Ns
n;L′S′,LS(k, p, E)) .

The N3LO kernel contains a correction to the LO three-body force, HN3LO, and a correc-

tion to the N2LO energy dependent three-body force, HN3LO
2 , which gives

KJ
3;L′S′,LS(q, p, E) = −π

(
HN3LO +

4

3
(MNE + γ2

t )H
N3LO
2

)
δL0δLL′δSS′δS1/2

 1 −1

−1 1

 . (24)

Griesshammer [28] argues that at N3LO there is a new divergence that mixes the Wigner-

symmetric and Wigner-antisymmetric channels of the doublet S-wave, but that the need for

a new counter-term is suppressed due to the Pauli principle and should occur two orders

higher. However, Birse [29] suggests that the Pauli principle is automatically included in

the asymptotic analysis and therefore the need for a new counter-term will be at N3LO. We

find that fitting HN3LO to the doublet S-wave nd scattering length and H
(N3LO)
2 to the triton
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binding energy yields a N3LO correction to the doublet S-wave nd scattering amplitude

that is not properly renormalized. This supports the claim made by Birse that a new three-

body force that mixes Wigner-antisymmetric and Wigner-symmetric channels in the doublet

S-wave will be necessary at N3LO. This will be addressed in future work.

An important additional contribution at N3LO comes from the two-body P -wave contact

interactions. These will be dealt with using a slightly different method. There are also

corrections to the dibaryon propagators at this order coming from c
(2)
0t and c

(2)
0s , and the

shape parameter corrections c1t and c1s, which yield

R3(p, E) =


(
γt +

√
3
4
p2 −MNE − iε

) [
(Zt−1)3

2γt
+ ρt1

(
3
4
p2 −MNE − γ2

t

)]
(
γs +

√
3
4
p2 −MNE − iε

) [
(Zs−1)3

2γs
+ ρs1

(
3
4
p2 −MNE − γ2

s

)]
 . (25)

The numerical solution of the integral equations is carried out by means of the Hetherington-

Schick method [30–32], which solves the equations along a contour in the complex plane.

Using the solution along the contour in the integral equations, the scattering amplitude

along the real axis can be solved. By rotating into the complex plane the fixed singularity

of the deuteron pole is avoided as well as the branch cut singularities that occur above

the deuteron breakup energy. The methods in Refs. [17, 22] allow the Hetherington-Schick

method to be used to calculate diagrams with the full off-shell LO scattering amplitude

without calculating the full off-shell scattering amplitude. In order to calculate to large cut-

offs and obtain sufficient numerical accuracy most mesh points are clustered for momenta

with magnitude less than Λ 6π. For momenta with magnitude greater than Λ 6π far fewer mesh

points are used since the amplitude is decaying as a power law [28]. In this way, calculations

to large cutoffs can be obtained using a reasonable number of mesh points, with an accuracy

of less than 1%. It is important to show convergence to large cutoffs because observables

in this EFT should be independent of the cutoff. Any deviations to the result as the cutoff

becomes large indicates missing physics (such as a neglected counterterm).

P-wave auxiliary field

The contribution to the N3LO kernel from the two-body P -wave contact interaction is

shown in the last box in Fig. 3. This diagram is one-loop and can be solved analytically and

projected out in an angular momentum basis. However, the resulting forms for all partial

waves are cumbersome in numerical calculations. In order to circumvent this it is convenient

12



to introduce a P -wave auxiliary field via the Lagrangian

LP2 = −P̂3P0
0A
†∆(3P0)P̂3P0

0A − P̂
3P1
iA
†∆(3P1)P̂3P1

iA − P̂
3P2
iA
†∆(3P2)P̂3P2

iA − P̂
1P1
i
†∆(1P1)P̂1P1

i (26)

+
1

2

2∑
J=0

y
3PJ

[
Ci,j,k

1,1,J

(
P̂

3PJ
kA

)†
N̂T iO(1,P )

jiA N̂ + H.c.

]
+

1

2
y

1P1

[(
P̂1P1
i

)†
N̂T iO(0,P )

i N̂ + H.c.

]
.

This approach is equivalent to using the two-body P -wave contact interactions in Eqs. (5)

and (7). The N3LO contribution from the two-body P -wave contact terms is given by the

coupled integral equations in Fig. 4. The “P” amplitude is defined in the boxed region of

Fig. 4, where the double line with a zig-zag represents a P -wave dibaryon propagator. The

P -wave dibaryon propagator is simply given by a constant, since the scattering volumes in

the two-body P -waves are of natural size and are therefore perturbative and do not require

resumming. The constant term can be factored out of all numerical expressions and then

reintroduced at then end to obtain the final expression.

P 00

3P 3P3P P

P 3P3P 3P

FIG. 4. Unboxed diagrams are the integral equations for the N3LO contribution to the nd scattering

amplitude from the two-body P -wave contact interactions. The double lines with a zig-zag in

the middle are the P -wave dibaryon propagator, given by i/∆
2R+1PJ . The boxed diagrams are

the integral equation for the “P” amplitude used in the unboxed integral equations above. The

notation “3P” in the oval indicates that this is a N3LO correction but one that only involves the

two-body P -wave contributions.

The “P” amplitude is given by

t
J(2R+1Pz)
L′S′,LS (k, p, E) =

[
K
J(2R+1Pz)
L′S′,LS (k, p, E)

]
1

+ K
J(2R+1Pz)
L′S′,LS (q, p, E)⊗ tJ0;LS,LS(k, q, E), (27)

where R=0 or 1, the quantity z = 0, 1, 2 (z = 0) for the 3PJ (1P1) two-body P -wave contact

interaction channels, and the kernel function K
J(2R+1Pz)
L′S′,LS (k, p, E) is a vector in c.c. space. For

13



the inhomogeneous term only one element of the kernel in c.c. space is taken since only

states with an initial spin-triplet dibaryon are needed. The kernel function for Eq. (27) is

the tree level diagram in the box in Fig. 4. Projected onto a partial wave basis this yields

[
K

3Pz(k, p, E)
]
x

= −MN y y
3Pz

4kp
Z3Pz (J, L′, S ′, L, S, x, z) (2k QL′(a) + pQL(a)) (28)

for the 3PJ coefficients, and

[
K

1P1(k, p, E)
]
x

= −MN y y
1P1

4kp
Z1P1 (J, L′, S ′, L, S, x) (2k QL′(a) + pQL(a)) (29)

for the 1P1 coefficient. Functions Z3Pz(· · · ) and Z1P1(· · · ) are defined by

Z3Pz (J, L′, S ′, L, S, x, z) = 12(−1)
3/2+S+S′+L−J

√
x̂ ̂(1− x)ẑŜŜ ′L̂

 x 1/2 1/2

1 S 1/2

 (30)

×

 1/2 1 S

1 S ′ z


 S 1 S ′

L′ J L


 1− x 1/2 1/2

1 1/2 1/2

C0,0,0
L,1,L′

and

Z1P1 (J, L′, S ′, L, S, x) = (−1)
3/2+L−J

√
x̂ ̂(1− x)Ŝ ′L̂

 S 1 S ′

L′ J L

 δS,1/2C
0,0,0
L,1,L′ . (31)

As before, x = 1 corresponds to an initial state spin-triplet dibaryon propagator and x = 0

corresponds to an initial state spin-singlet dibaryon propagator. The advantage of these

kernel functions in the P -wave auxiliary field method is that they only contain Legendre

functions of the second kind, which are already calculated to solve the LO nd scattering

amplitude. Therefore, no additional work has to be done to calculate the values of these

functions along the mesh points of our integral equations. In the more conventional approach

new functions involving arctan(· · · ) and log(· · · ) have to be calculated for each partial wave,

and the higher the partial wave the more complicated the functional forms become. The

P -wave auxiliary field method is a far more transparent and numerically efficient means by

which to calculate corrections from two-body P -wave contact terms to nd scattering. Using

the “P” amplitude the N3LO correction to the nd scattering amplitude from the two-body

14



P -wave contact interactions in Fig. 4 is given by the coupled integral equations

tJ3P;L′S′,LS(k, p, E) = (32)

1∑
R=0

R+1∑
z=|R−1|

∑
L′′,S′′

(−1)z

∆(2R+1Pz)

[
K
J(2R+1Pz)
L′′S′′,L′S′(p, q, E)

]T
⊗ tJ(2R+1Pz)

L′′S′′,LS (k, q, E)

+ KJ
0;L′S′,LS(q, p, E)⊗ tJ3P;LS,LS(k, q, E).

The term 1/∆(2R+1Pz) is the P -wave dibaryon propagator, and can be removed from the

integral equations by an appropriate renormalization. In the inhomogeneous term we have

used time reversal symmetry to write the kernel for a P -wave dibaryon going to an S-wave

dibaryon in terms of the kernel for an S-wave dibaryon going to a P -wave dibaryon. The

factor of (−1)z is due to time reversal symmetry and comes from the fact that under time

reversal

Ci,j,k
1,1,z

T−→ C−i,−j,−k1,1,z = (−1)zCi,j,k
1,1,z. (33)

Finally, the coefficients y
2S+1PJ and ∆(2S+1PJ ) must be fit to np scattering data. This can

be done by performing Gaussian integration on the P -wave auxiliary fields in Eq. (26) and

matching to the coefficients in Eqs. (5) and (7), or by performing a matching calculation

using the Lagrangians of Eqs. (26), (5), and (7). In order to match these coefficients the

identities ∑
k

Ci,j,0
1,1,0C

m,l,0
1,1,0 →

1

3
δijδml, (34)

∑
k

Ci,j,k
1,1,1C

m,l,−k
1,1,1 (−1)k → 1

2
(δilδjm − δimδjl), (35)

and ∑
k

Ci,j,k
1,1,2C

m,l,−k
1,1,2 (−1)k → 1

2
(δilδjm + δimδjl −

2

3
δijδml) (36)

are used, where the indices on the left are spherical (i, j, l,m = −1, 0, 1) and those on the

right Cartesian (i, j, l,m = 1, 2, 3). Matching coefficients yields

C
3P0 =

1

3

(y
3P0)2

∆(3P0)
, C

3P1 = −1

2

(y
3P1)2

∆(3P1)
, C

3P2 =
1

4

(y
3P2)2

∆(3P2)
, C

1P1 =
(y

1P1)2

∆(1P1)
. (37)

Then using Eq. (9) the ratio of coefficients y
2S+1PJ and ∆(2S+1PJ ) can be fit to np scattering

data. A factor of (y
2S+1PJ )2/∆(2S+1PJ ) can be removed from the N3LO correction to the

nd scattering amplitude by appropriate renormalization of the amplitude. The calculated
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amplitude is then renormalized by this factor so that we can consider different values of

(y
2S+1PJ )2/∆(2S+1PJ ) without needing to recalculate the scattering amplitude.

Using the P -wave auxiliary field method is equivalent to starting with the one loop

diagram for the two-body P -wave contact interaction diagram in Fig. 3 and projecting

it in partial waves before carrying out the loop integration. The resulting angular loop

integration is trivial, leading to an integral over the magnitude of the loop momentum of

an integrand of products of Legendre functions of the second kind. We find that using the

P -wave auxiliary field allows us to treat this N3LO part of the correction in direct parallel

with earlier corrections; note that the boxed diagrams in Fig. 4 mimic those found in the

S-wave case. The P -wave auxiliary field method effectively trades performing a one loop

diagram analytically for a tree level diagram that is then used to numerically reproduce the

contributions from the one loop diagram.

IV. OBSERVABLES

In the on-shell limit the scattering amplitudes become the transition matrix M defined

in the partial wave basis by

MJ
L′S′,LS(k) = ZLOt

J ;Nt→Nt
L′S′,LS (k, k, E). (38)

In order to calculate polarization observables the transition matrix in the spin-basis is

needed. This is related to the transition matrix in the partial wave basis via

Mm′
1,m

′
2;m1,m2

=
√

4π
∑
J

∑
L,L′

∑
S,S′

∑
mS ,m

′
S

∑
m′

L

√
L̂Cm1,m2,mS

1,1/2,S C
m′

1,m
′
2,m

′
S

1,1/2,S′ (39)

× C0,mS ,M
L,S,J C

m′
L,m

′
S ,M

L′,S′,J Y
m′

L

L′ (θ, φ)MJ
L′S′,LS(k),

where m1 (m′1) is the initial (final) deuteron spin component in the z-direction and m2 (m′2)

the initial (final) neutron spin component in the z-direction. The unpolarized cross section

is given by summing over all final spins and averaging over all initial spins of the square of

the transition matrix, yielding

dσ̄

dΩ
(θ) =

1

6

(
MN

3π

)2 ∑
m1,m2

∑
m′

1,m
′
2

∣∣Mm′
1,m

′
2;m1,m2

∣∣2 , (40)

where the bar over σ denotes that it is unpolarized.
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Polarizing the initial neutron leads to three different polarization observables denoted

Ay, Ax, and Az. These correspond to polarizing the neutron along each of the respective

axes. In the Madison conventions [33] the z-direction is defined by the momentum of the

incoming beam, k̂i, and the y-direction by k̂i× k̂f , where ~ki (~kf ) is the incoming (outgoing)

momentum of the neutron. The polarization observables Ax and Az are parity-violating

observables and Az has been considered elsewhere in EFT6π [34]. The cross section due to a

transversely polarized neutron beam is given by

dσ

dΩ
(θ, φ) =

dσ̄

dΩ
(θ) (1− Ay(θ) sin(φ)) , (41)

where φ is the azimuthal angle, k̂i defines the z-direction, and the direction of polarization

defines the x-axis. An analyzing power Ay(θ, φ) can be derived from the transition matrix

in the spin-basis using density matrix techniques [35, 36], which yield

Ay(θ, φ) =

∑
m1

∑
m′

1,m
′
2

2 Im
[
Mm′

1,m
′
2;m1,1/2M

∗
m′

1,m
′
2;m1,−1/2

]
∑
m1,m2

∑
m′

1,m
′
2

∣∣Mm′
1,m

′
2;m1,m2

∣∣2 . (42)

The resulting form will contain a sin(φ) that can be factored out to give the expression for

Ay(θ) in Eq. (41).

Polarizing the initial deuteron gives four polarization observables iT11, T20, T21, and T22.

Other polarization observables exist but are related by rotational symmetry or are parity-

violating or violate time-reversal symmetry. The differential scattering cross section in terms

of these polarization observables is given by [33]

dσ

dΩ
(θ, φ) =

dσ̄

dΩ
(θ)
[
1 + 2Re(it11)iT11(θ) sin(φ) + t20T20(θ) (43)

+ 2Re(t21)T21(θ) cos(φ) + 2Re(t22)T22(θ) cos(2φ)
]
,

where t11, t20, t21, and t22 are numbers giving the amount of respective polarization. Using

density matrix techniques the vector polarization iT11(θ, φ) is given by

iT11(θ, φ) = −
√

3

2

∑
m2

∑
m′

1,m
′
2

Im
[
Mm′

1,m
′
2;−1,m2

M∗
m′

1,m
′
2;0,m2

+Mm′
1,m

′
2;0,m2

M∗
m′

1,m
′
2;1,m2

]
∑
m1,m2

∑
m′

1,m
′
2

∣∣Mm′
1,m

′
2;m1,m2

∣∣2 , (44)
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where sin(φ) can be factored out to give iT11(θ). The tensor polarizations using density

matrix techniques are given by

T20(θ) =
1√
2

∑
m2

∑
m′

1,m
′
2

{∣∣Mm′
1,m

′
2;1,m2

∣∣2 − 2
∣∣Mm′

1,m
′
2;0,m2

∣∣2+
∣∣Mm′

1,m
′
2;−1,m2

∣∣2}
∑
m1,m2

∑
m′

1,m
′
2

∣∣Mm′
1,m

′
2;m1,m2

∣∣2 , (45)

T21(θ, φ) = −
√

3

2

∑
m2

∑
m′

1,m
′
2

Re
[
Mm′

1,m
′
2;0,m2

(
M∗

m′
1,m

′
2;1,m2

−M∗
m′

1,m
′
2;−1,m2

)]
∑
m1,m2

∑
m′

1,m
′
2

∣∣Mm′
1,m

′
2;m1,m2

∣∣2 , (46)

and

T22(θ, φ) =
√

3

∑
m2

∑
m′

1,m
′
2

Re
[
Mm′

1,m
′
2;1,m2

M∗
m′

1,m
′
2;−1,m2

]
∑
m1,m2

∑
m′

1,m
′
2

∣∣Mm′
1,m

′
2;m1,m2

∣∣2 , (47)

where again the φ dependence is factored out leaving only θ dependence. The polarization

observables can also be derived using the techniques in Ref. [37], which has the advantage of

writing the angular dependence in terms of Legendre polynomials, where their coefficients

are given by the scattering amplitudes. This gives analytical insight into how the shape of

polarization observables are related to the scattering amplitudes.

V. RESULTS

The EFT 6π cross-section up to N2LO at a neutron lab energy of En = 3.0 MeV is shown

in Fig. 5 and compared with data from Schwarz et al. [38]. The solid green line is the LO

prediction, the dashed blue line the NLO prediction, and the red band the N2LO prediction

with a 6% error estimate from the EFT 6π power counting. Relatively good agreement at

N2LO is observed with respect to the experimental data, and the minimum at N2LO coincides

with that of the available experimental data. Theoretical errors are not shown on the LO

and NLO results, but we see that the EFT 6π treatment converges on the data. The EFT6π

power counting predicts a naive error estimate of (Q/Λ 6π)n∼(1/3)n for the NnLO scattering

amplitudes, where Q∼γt and Λ6π∼mπ. The N3LO cross-section is not shown. The doublet

S-wave channel at N3LO is not renormalized by the three-body forces HN3LO and HN3LO
2

18



alone. Another three-body force is missing, one that likely mixes the Wigner-symmetric and

Wigner-antisymmetric channels. This issue will be addressed in future work.

The results of the EFT6π calculation for the vector analyzing power, Ay, at neutron lab

energies of En = 1.2, 1.9, and 3.0 MeV are shown in Fig. 6. At En = 3.0 MeV the solid black

line is from a PMC using the AV-18 and Urbana (UR) potential with the hyperspherical

harmonics technique [39]. The experimental data for Ay at En = 1.2 and 1.9 MeV is

from Neidel et al. [40] and at En = 3.0 MeV is from McAninch et al. [41]. The peak of

Ay is primarily determined by the minimum of the cross section. All of the polarization

observables are given as a ratio of cross sections in which the unpolarized cross-section is in

the denominator. In a strictly perturbative N3LO calculation of polarization observables the

denominator should be expanded and the unpolarized cross section need only be calculated

to NLO, because the numerator of all polarization observables starts at N2LO from the first

non-zero contribution from two-body SD-mixing. However, expanding the denominator puts

the minimum at the (experimentally) wrong place and the maximum of Ay qualitatively at

the wrong place. Therefore, for these results the perturbative cross-section up to N2LO is

kept in the denominator for polarization observables without the denominator being further

expanded.4

While the position of the peak of Ay depends primarily on the minimum of the cross

section, its magnitude depends primarily on the two-body P -wave contact interaction C
3PJ

terms. The contribution to Ay from the SD-mixing term is negligible at about three orders

of magnitude smaller than the contribution from the two-body P -wave contact interactions.

In Fig. 6 the different dashed bands correspond to different choices for the C
3PJ coefficients.

These coefficients are fit to the Nijmegen P -wave phase shifts for np scattering, yielding

the central values in Eq. 9. But we expect a substantial EFT6π theoretical error associated

with this fit because these terms are the leading EFT6π terms contributing to NN P -wave

scattering. Therefore we vary each of the three C
3PJ coefficients by 15 percent from their

central values. Representative bands are shown in Fig. 6. The most obvious conclusion is

that when appropriate theoretical errors are applied to the C
3PJ coefficients, a large range

4 The different peak position of Ay between treating the denominator strictly perturbatively or resumming

higher order contributions can be considered an estimate of the EFT6π error. Therefore a more accurate

assessment of the EFT 6π error of Ay would not only include the error in the magnitude of Ay, but also

the error in its peak position. However, the magnitude of Ay primarily depends on the two-body P -wave

contact interactions and the peak position is independent of these contact interactions. Thus choosing

the peak position of Ay to be near the experimental values, the error in the magnitude of Ay is then

separately addressed.
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FIG. 5. (Color Online) nd scattering cross-section for En = 3.0 MeV with experimental data from

Schwarz et al. [38]. The LO prediction (without theoretical errors) is the solid green line, the

dashed blue line the NLO prediction (without theoretical errors), and the solid red band the N2LO

prediction with a 6% error estimate.

of Ay’s can be accommodated. This motivates us to go to higher order in P -wave scattering

and find tighter constraints on C
3PJ values. At the same time, that means going to higher

orders for the Ay calculation.

While the bands shown in Fig. 6 are just a representative sample, we note the following

scaling: As C
3P0 increases from the central value in Eq. (9), with the other coefficients held

constant, Ay decreases substantially at all energies. Ay is most sensitive to variations of this

coefficient about its central value when the other two coefficients are held constant within

their allowed variation. Next in sensitivity are changes in C
3P1 , and then changes in C

3P2

(again with other coefficients held constant within their allowed variation). But for the

J = 1, 2 values, Ay increases as these coefficients increase. The contributions of the C
3PJ

coefficients to Ay are not independent since if the C
3PJ coefficients are all equal their total

contribution to Ay is zero.

All of the Ay observables are calculated at a cutoff of Λ = 106 MeV. It is necessary to use

a large cutoff, because the three-body 4PJ , 2PJ , and 4PJ → 2PJ channels go asymptotically

like q−.545··· [28] and as a function of Λ converge slowly5. A new three-body counter-term for

5 For the 2PJ channel the leading asymptotic behavior comes from the Wigner-antisymmetric piece, which

is equivalent to the asymptotic behavior of the 4PJ channel.[28]
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FIG. 6. (Color Online) The dashed lines are EFT6π results for Ay for several sets of C
3PJ coefficients

varied by 15% around their central values. Top Left: En = 1.2 MeV, experimental data from

Neidel et al. [40]. Top Right: En = 1.9 MeV, experimental data from Neidel et al. [40]. Bottom:

En = 3.0 MeV, the solid line is a PMC calculation from Kievsky et al. using AV-18+UR [39], with

experimental data from McAninch et al. [41]. In the following, “+” stands for 15 percent above

central values given in Eq. (9); “0” is at central value; and “−” is 15 percent below central value.

The coefficient values (C
3P0 ,C

3P1 ,C
3P2) used to produce the curves shown are (from lowest EFT6π

curve to highest EFT6π curve on the plots): big dots (green)=(+,−,+); small dots (blue)=(+, 0,+);

long dash (red)=(0, 0, 0); long-dash-dot (purple) = (0, 0,+); short-dash-dot (orange) = (−, 0, 0);

double-dot (black) = (−,+,+).
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the 4PJ , 2PJ , and 4PJ → 2PJ channels will be needed at order N3.5LO [28] and is necessary

for a N4LO calculation. In addition, the channel 2S1/2 → 4D1/2 goes asymptotically like

q−.105...+i1.00624···. Despite the slow rate of convergence, varying this channel within its cutoff

variation was found to have almost no effect on the observables studied in this work at

the order we are working. However, given that a three-body force occurs in this channel at

order N3.1LO [28], a new three body force must be included in a N4LO calculation. All other

channels converge much faster and are well converged at cutoffs of a few thousand MeV.

The deuteron polarization observables are given in Fig. 7, where the solid red line is

the EFT 6π prediction (not including theoretical errors) using the central values for C
3PJ

coefficients given in Eq. (9), the long-dashed green line a PMC for nd using AV-18+UR [39],

and the dotted blue line a PMC for pd using AV-18+UR [39]. All of the data shown is for

pd scattering from Shimizu et al. [42] at a laboratory deuteron energy of Ed = 6.0 MeV.

The results for nd scattering should roughly agree with those of pd scattering at higher

energies and backward angles where Coulomb effects are less important. Rough qualitative

agreement is observed for all polarization observables. The contribution from SD-mixing

is significant for all polarization observables except iT11, where the SD-mixing contribution

is three orders of magnitude smaller than the the two-body P -wave contact interaction

contribution. In fact, iT11 changes in the same manner that Ay changes when the two-

body P -wave coefficients are varied. The contribution from the two-body P wave contact

interactions for T20 is roughly the same size as SD-mixing contributions, negligible for T21,

and about two orders of magnitude smaller than SD-mixing for T22.

VI. CONCLUSION

Using the techniques in Refs. [17, 22] polarization observables in nd scattering have been

calculated to N3LO in EFT6π. The polarization observables in EFT 6π receive non-zero contri-

butions from the two-body SD-mixing term and the two-body P -wave contact interactions,

C
3PJ . Contributions from the two-body P -wave contact interactions were calculated by

the introduction of a P -wave auxiliary field. This approach leads to great analytical and

numerical simplifications in the calculation of the two-body P -wave contact interaction con-

tributions to nd scattering amplitudes at N3LO, and will be useful for higher order EFT 6π

calculations and halo EFT calculations as well. We find that the Ay and iT11 polarization
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FIG. 7. (Color Online) The solid red line is the EFT6π prediction (without theoretical error bars) for

deuteron polarization observables in nd scattering, the dashed green-line PMC calculations using

AV18+UR for nd scattering [39] , and the dotted blue line PMC calculations using AV18+UR for

pd scattering [39]. All experimental data is for pd scattering from Shimizu et al. [42] at a laboratory

deuteron energy of Ed = 6.0 MeV.

observables are dominated by contributions from the two-body P -wave contact interactions

while SD-mixing contributions are three orders of magnitude smaller. The T20 observable

receives roughly equal contributions from SD-mixing and two-body P -wave contact interac-

tions, T21 only has contributions from SD-mixing, and T22 primarily receives contributions

from SD-mixing with contributions from the two-body P -wave contact interactions being

two orders of magnitude smaller.
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Deuteron polarization observables for nd scattering were compared with available pd

data and PMC. Rough qualitative agreement is found at larger angles where effects from

the Coulomb interaction are less important. The nucleon vector analyzing power Ay was

calculated at En = 1.2, 1.9, and 3.0 MeV and was found to vary widely given the theoretical

error associated with the two-body P -wave coefficients. However, the position of the Ay peak

is predicted well in EFT6π. Significantly, we find that we can account for all the low energy

Ay data considered here so long as we allow the extracted coefficients C
3PJ to vary within

their expected EFT6π theoretical errors. Hence there is no disagreement at the moment

between EFT6π and experiment within theoretical error. But this motivates us to pursue a

higher order calculation.

In calculating the nd scattering amplitudes the cutoff was taken to be Λ = 106 MeV.

A large cutoff was necessary to achieve convergence in the three-body N3LO 4PJ , 2PJ , and

4PJ → 2PJ channels as they behave asymptotically like q−.545··· [28], and therefore have slow

convergence. The asymptotic form of the 4PJ , 2PJ , and 4PJ → 2PJ channels will lead to the

need for a three-body force at N3.5LO [28]. Some authors would advocate that order-by-

order in the EFT 6π expansion the cutoff variation with respect to Λ should grow smaller (for

a discussion of this see Ref. [43]). In such a power counting scheme the three-body force

occurring at N3.5LO would be promoted to N3LO. Although this is a desirable property for

a power counting it is not rigorously motivated in the three-body sector6. In future work

we will calculate N4LO contributions, which include the N3.5LO three-body force terms in

the 4PJ , 2PJ , and 4PJ → 2PJ channels. Unfortunately, these three-body forces must be fit

to three-body data in the 4PJ , 2PJ , and 4PJ → 2PJ channels, which are expected to be

important for obtaining an accurate description of Ay because P -waves are the first angular

momenta that cause splitting among J values. The three-body forces can be fit to Ay at

one energy and then predictions can be made for other energies. At N4LO there will also be

a new two-body SD-mixing term, a new energy dependent three-body force in the doublet

S-wave channel, and a three-body SD-mixing term that can be fit to the asymptotic D/S-

mixing ratio of the triton wavefunction. Based on PMC it is suspected that the three-body

SD-mixing term may be an important contribution in solving the Ay puzzle [8, 9].

In this EFT 6π calculation the doublet S-wave channel was only calculated to N2LO. The

6 In the two-body sector it can be shown analytically using cutoff regularization that order-by-order the

cutoff variation gets smaller.
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doublet S-wave channel has only one J-value and therefore no splitting for different J-values

occurs. As a result the doublet S-wave only contributes up to NLO in the numerator for

all polarization observables. The denominator of all polarization observables is given by the

unpolarized nd scattering cross-section. In a strictly perturbative approach we would expand

the denominator. Since the first non-zero contribution to the numerator of polarization

observables occurs at N2LO the doublet S-wave contribution from the expanded numerator

would again only be needed to NLO for a N3LO calculation. However, we find that the peak

of Ay depends on the minimum of the cross-section that is only reproduced well at N2LO.

Therefore we resum certain higher order contributions into the denominator and keep the

cross-section expanded perturbatively to N2LO in the denominator. Future calculations

will include the N3LO doublet S-wave channel and calculate the N3LO cross section. This

should not significantly change the results since good agreement is already observed with

experimental data at N2LO for the cross-section. Calculation of the doublet S-wave channel

to N3LO is likely complicated by the requirement of an additional Wigner-antisymmetric to

Wigner-symmetric three-body force. Griesshammer [28] claims that a Wigner-antisymmetric

to Wigner-symmetric three-body force should occur at N5LO due to suppression from the

Pauli principle, while Birse [29] claims that it should occur at N3LO as the Pauli principle

is already included in a naive asymptotic analysis. Having fit HN3LO to the doublet S-wave

scattering length and H
(N3LO)
2 to the triton binding energy we find the doublet S-wave nd

scattering amplitude is not properly renormalized, suggesting the need for a new three-body

force as claimed by Birse. Future work will address this new three-body force in order to

have a complete N3LO calculation. Also at N3LO and higher orders the divergences that

must be renormalized become worse, leading to potential numerical issues, especially at

higher cutoffs due to numerical fine tuning.

Finally, calculating polarization observables in pd scattering is of interest due to the

larger data set available for such interactions. Such calculations are complicated due to

Coulomb interactions, but have been performed in EFT 6π in the quartet and doublet S-

wave channels in which Coulomb effects are treated “perturbatively”7 [19, 44]. Higher

partial waves will be needed but are in principle straightforward to include. The main

stumbling block to calculations in pd scattering are three-body forces in the doublet S-wave

7 In Ref. [19] Coulomb is treated nonperturbatively in the two-body sector and in the three-body sector all

one-photon exchange diagrams are resummed. In Ref. [44] Coulomb is treated strictly perturbatively in

the two and three-body sector.
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channel. It was shown in Ref. [19] that at NLO the same three-body forces could not be

used to renormalize both nd and pd scattering. This pattern likely persists to N2LO where

a new energy dependent three-body force occurs. In the nd system the three-body forces

are fit to the doublet S-wave nd scattering length and the triton binding energy. For pd

scattering fitting to the 3He biding energy is straightforward, but fitting the doublet S-wave

pd scattering length is complicated due to Coulomb effects. The 3He charge radius would

be a possible candidate to fix the remaining three-body force, but it was shown in Ref. [22]

that this is not possible due to a six-nucleon one photon contact interaction that occurs

at N2LO. Therefore an appropriate renormalization condition will need to be found for pd

scattering at N2LO in order to investigate the large pd data set for polarization observables.

Appendix A: Appendix. Partial wave projection

All of the diagrams used in these calculations need to be projected into the partial wave

basis. One approach is to construct all necessary projectors and use them to project all

diagrams onto respective partial waves [16, 45]. The advantage of this approach is that it

makes projecting out diagrams very easy. However, the downside is that a projector must

be constructed for every channel of interest and only S and P -wave projectors have been

published to date. Instead of the projector method we adopt a Racah algebra approach that,

while computationally more intensive, gives all partial waves at once. The contribution from

a generic diagram is given by [(
KjB
iA (~q, ~̀)

)βb
αa

]
yx

, (A1)

where i (j) is the initial (final) dibaryon spin polarization, A (B) the initial (final) dibaryon

isospin polarization, α (β) the initial (final) nucleon spin, and a (b) the initial (final) nucleon

isospin. The subscripts y and x pick out a component of the c.c. space matrix, with x = 1

(x = 0) corresponding to an initial spin-triplet (spin-singlet) dibaryon and y = 1 (y =

0) corresponding to a final spin-triplet (spin-singlet) dibaryon. A generic contribution is

projected onto a partial wave basis by

[
K(q, `)JL′S′,LS

]
yx

=
1

4π

∑
χ

CmL,mS ,M
L,S,J C

mL′ ,mS′ ,M
L′,S′,J Ci,α,mS

x,1/2,SC
j,α,mS′
y,1/2,S′ C

A,a,−1/2
1−x,1/2,1/2C

B,b,−1/2
1−y,1/2,1/2 (A2)

×
∫
dΩq

∫
dΩ`

[(
KjB
iA (~q, ~̀)

)βb
αa

]
yx

Y mL
L (q̂)

(
Y
mL′
L′ (ˆ̀)

)∗
,
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where the first two Clebsch-Gordan coefficients couple orbital and spin angular momentum,

the next two couple dibaryon and nucleon spin, and the final two couple nucleon and dibaryon

isospin. χ sums over all magnetic quantum numbers. In order to treat all elements of a

c.c. space matrix simultaneously we define the operators

Six =

 1 , x = 0

σi , x = 1
, T ax =

 1 , x = 0

τa , x = 1
. (A3)

Using the Wigner-Eckart theorem these operators when projected out give

〈1/2,m′2|Six|1/2,m2〉 =
√
x̂ C

m2,i,m′
2

1/2,x,1/2 , (A4)

and

〈1/2,m′2|T ax |1/2,m2〉 =
√
x̂ C

m2,a,m′
2

1/2,x,1/2 . (A5)

As an example, a contribution from the SD-mixing term is given by[(
KjB
iA (~q, ~̀)

)βb
αa

](SD)

yx

=
1

a+ q̂ · ˆ̀
[
σmS

j
y

†
TB1−y

†
]βb
αa
~qi~q−m(−1)mδ1x. (A6)

Using Eq. (A2) and the identity

4π

3
`2

∫
dΩq

∫
dΩ`

1

a+ q̂ · ˆ̀
Y
mL′
L′ (ˆ̀)∗Y mL

L (q̂)Y m1
1 (ˆ̀)Y m2

1 (ˆ̀) = (A7)

= 4π`2
∑
L′′

∑
mL′′

√
L̂

L̂′
C
m1,m2,mL′′
1,1,L′′ C

mL,mL′′ ,mL′
L,L′′,L′ C0,0,0

1,1,L′′C
0,0,0
L,L′′,L′QL(a),

the projection of this contribution in the partial wave basis becomes

p2

√
3ŷ ̂(1− y)

√
L̂

L̂′

∑
χ

CmL,mS ,M
L,S,J C

mL′ ,mS′ ,M
L′,S′,J Ci,α,mS

x,1/2,SC
j,α,mS′
y,1/2,S′ C

A,a,−1/2
1−x,1/2,1/2C

B,b,−1/2
1−y,1/2,1/2 (A8)

Cm2,−j,m̃2
1/2,y,1/2 C

m̃2,m,m′
2

1/2,1,1/2 Ca,−B,b
1/2,1−y,1/2C

i,−m,mL′′
1,1,L′′ C

mL,mL′′ ,mL′
L,L′′,L′ C0,0,0

1,1,L′′C
0,0,0
L,L′′,LQL(a)(−1)j+B+mδ1x.

The sum over magnetic quantum numbers can then be simplified via Racah algebra yielding

[
K(q, `)JL′S′,LS

](SD)

yx
= 2

√
3ŷ ̂(1− y)ŜŜ ′L̂L̂′′(−1)

1/2+x+y+L′′+L+S+S′−J (A9)

×

 y 1/2 1/2

1 S ′ 1/2


 L′′ 1 x

1/2 S S ′


 S ′ L′′ S

L J L′

C0,0,0
1,1,L′′C

0,0,0
L,L′′,L′p

2QL(a)δ1x.
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