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P. Constantin,39 M. Csanád,18 T. Csörgő,72 T. Dahms,65 S. Dairaku,35, 58 I. Danchev,69 K. Das,21 A. Datta,4310

G. David,7 A. Denisov,24 A. Deshpande,59, 65 E.J. Desmond,7 O. Dietzsch,62 A. Dion,65 M. Donadelli,6211

O. Drapier,36 A. Drees,65 K.A. Drees,6 J.M. Durham,39, 65 A. Durum,24 D. Dutta,4 S. Edwards,2112

Y.V. Efremenko,54 F. Ellinghaus,13 T. Engelmore,14 A. Enokizono,38 H. En’yo,58, 59 S. Esumi,68 B. Fadem,4613

D.E. Fields,51 M. Finger,9 M. Finger, Jr.,9 F. Fleuret,36 S.L. Fokin,34 Z. Fraenkel,71, ∗ J.E. Frantz,53, 65 A. Franz,714

A.D. Frawley,21 K. Fujiwara,58 Y. Fukao,58 T. Fusayasu,48 I. Garishvili,66 A. Glenn,13 H. Gong,65 M. Gonin,3615

Y. Goto,58, 59 R. Granier de Cassagnac,36 N. Grau,2, 14 S.V. Greene,69 M. Grosse Perdekamp,25, 59 Y. Gu,6416

T. Gunji,12 H.-Å. Gustafsson,41, ∗ J.S. Haggerty,7 K.I. Hahn,19 H. Hamagaki,12 J. Hamblen,66 R. Han,5617

J. Hanks,14 E.P. Hartouni,38 E. Haslum,41 R. Hayano,12 X. He,22 M. Heffner,38 T.K. Hemmick,65 T. Hester,818

J.C. Hill,28 M. Hohlmann,20 W. Holzmann,14 K. Homma,23 B. Hong,33 T. Horaguchi,23 D. Hornback,6619

S. Huang,69 T. Ichihara,58, 59 R. Ichimiya,58 J. Ide,46 Y. Ikeda,68 K. Imai,29, 35, 58 M. Inaba,68 D. Isenhower,120

M. Ishihara,58 T. Isobe,12, 58 M. Issah,69 A. Isupov,30 D. Ivanischev,57 B.V. Jacak,65 J. Jia,7, 64 J. Jin,1421

B.M. Johnson,7 K.S. Joo,47 D. Jouan,55 D.S. Jumper,1 F. Kajihara,12 S. Kametani,58 N. Kamihara,59 J. Kamin,6522

J.H. Kang,73 J. Kapustinsky,39 K. Karatsu,35, 58 D. Kawall,43, 59 M. Kawashima,58,60 A.V. Kazantsev,3423

T. Kempel,28 A. Khanzadeev,57 K.M. Kijima,23 B.I. Kim,33 D.H. Kim,47 D.J. Kim,31 E. Kim,63 E.-J. Kim,1024

S.H. Kim,73 Y.-J. Kim,25 E. Kinney,13 K. Kiriluk,13 Á. Kiss,18 E. Kistenev,7 L. Kochenda,57 B. Komkov,5725
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L.A. Linden Levy,13 T. Lǐska,15 A. Litvinenko,30 H. Liu,39, 52 M.X. Liu,39 B. Love,69 R. Luechtenborg,45 D. Lynch,729

C.F. Maguire,69 Y.I. Makdisi,6 A. Malakhov,30 M.D. Malik,51 V.I. Manko,34 E. Mannel,14 Y. Mao,56, 5830

H. Masui,68 F. Matathias,14 M. McCumber,65 P.L. McGaughey,39 N. Means,65 B. Meredith,25 Y. Miake,6831
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Measurements of the anisotropic flow coefficients v2{Ψ2}, v3{Ψ3}, v4{Ψ4}, and v4{Ψ2} for iden-134

tified particles (π±, K±, and p + p̄) at midrapidity, obtained relative to the event planes Ψm at135

forward rapidities in Au+Au collisions at
√
s
NN

= 200 GeV, are presented as a function of collision136

centrality and particle transverse momenta pT . The vn coefficients show characteristic patterns137

consistent with hydrodynamical expansion of the matter produced in the collisions. For each har-138

monic n, a modified valence quark number Nq scaling (plotting vn{Ψm}/(Nq)
n/2 versus KET /Nq) is139

observed to yield a single curve for all the measured particle species for a broad range of transverse140

kinetic energies KET . A simultaneous blast-wave model fit to the observed vn{Ψm}(pT ) coefficients141

and published particle spectra identifies radial flow anisotropies ρn{Ψm} and spatial eccentricities142

sn{Ψm} at freeze-out. These are generally smaller than the initial-state participant-plane (PP) geo-143

metric eccentricities εn{ΨPP

m }, as also observed in the final eccentricity from quantum interferometry144

measurements with respect to the event plane.145

PACS numbers: 25.75.Dw146
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Introduction. The quark-gluon plasma (QGP) is a novel phase of nuclear matter at high temperature and energy147

density, whose existence is predicted by quantum chromodynamics [1]. A wide variety of experimental observations148

at the Relativistic Heavy Ion Collider (RHIC) [2–5] provide strong evidence for the formation of a QGP in ultra-149

relativistic heavy ion collisions, particularly (1) the magnitude of the observed suppression of high-pT (pT & 4 GeV/c)150

particles, relative to the scaled yield from p+p collisions; and (2) the large azimuthal anisotropy or anisotropic flow151

of the low-pT (pT . 3–4 GeV/c) bulk of hadrons in the final state. The flow of low-pT particles has been attributed152

to anisotropic expansion of the QGP [6–8], and consequently the measured strength of anisotropic flow should be153

sensitive to the transport properties of the QGP and the mechanism for its space-time evolution.154

The magnitude of anisotropic flow can be quantified by the Fourier coefficients vn{Ψm} = 〈cos(n(φ −Ψm))〉 of the155

azimuthal distribution of produced particles [9–12], where n and m are the order of the harmonics, φ is the azimuthal156

angle of the particles, and Ψm is the azimuthal angle of the mth order event plane. In early studies with symmetric157

systems, vn{Ψm} was presumed to be zero for odd n owing to the assumption that initial-state energy densities were158

smooth and symmetric across the transverse plane. The recent observations of sizable vn{Ψn} values for odd n [13–17]159

confirms the important role of fluctuations in the initial-state collision geometry [18].160

Model-dependent analyses of higher-order harmonics for inclusive hadrons measured in Au+Au and Pb+Pb colli-161

sions at RHIC and the Large Hadron Collider have indicated that such measurements can provide simultaneous con-162

straints for initial-state fluctuation models and the ratio of shear viscosity to entropy density of the QGP [8, 13, 19, 20].163

The new data on higher-order vn{Ψm} for identified particles presented here provides additional information about the164

initial conditions and hydrodynamic properties. Here, we show that our vn{Ψm} measurements for different particle165

species provide (1) further tests for the constituent quark number scaling and quark coalescence models [21–23] by166

extending our previously observed scaling for v2{Ψ2} [24, 25] to higher harmonics [26]; and (2) freeze-out parameters167

for hydrodynamic expansion with anisotropic blast-wave (BW) model fits [27–30].168

Data taking and particle identification. The results presented here for Au+Au collisions at
√
s
NN

= 200 GeV169

are obtained with the PHENIX experiment from an analysis of 4.14 × 109 minimum-bias events taken during the170

2007 running period. Collision centrality is determined with the beam-beam counters [31]. Charged hadrons are171

reconstructed in a pseudorapidity (η) range of |η| < 0.35 using the drift-chamber and pad-chamber subsystems [32],172

which achieve the momentum resolution δp/p ≈ 1.3%⊕ 1.2%× p (GeV/c) [33]. The ring imaging Čerenkov counter173

is employed to veto conversion electrons. Time-of-flight detectors in both the east (TOFE, ∆ϕ = π/4 rad) and west174

(TOFW, ∆ϕ = 0.342 rad) arms are used for π±,K±, and p+ p̄ identification after the conversion electron veto [33].175

The timing resolution of TOFE (TOFW) is 133 (84 ± 1) ps. For pT < 3 GeV/c both TOFE and TOFW detectors176

were used. For pT > 3 GeV/c particle identification utilizes the TOFW in conjunction with the Aerogel Čerenkov177

Counter (ACC). The two detectors have a common azimuthal acceptance of ∆ϕ = 0.171 rad. With these detectors,178

a p+ p̄ purity of greater than 97% was achieved for pT < 4 GeV/c; and purity for π± and K± greater than 98% for179

pT < 3 GeV/c and 90% for 3 < pT < 4 GeV/c were also achieved, as detailed in [33]. The purity and efficiency of180

particle identification (PID) are independent of the relative azimuthal angle between particles and the event plane181

φ−Ψm.182

Experimental technique. Measurements of the flow coefficients v2{Ψ2}, v3{Ψ3}, v4{Ψ4}, and v4{Ψ2} as a function183

of centrality and pT for π±, K±, and p + p̄ (i.e. with charge signs combined) are obtained with both the event184

plane (EP) and the long-range two-particle correlation (2PC) methods. In the EP method, a measured event plane185

direction Ψobs
m is determined for every event and for each order m, using the south and north reaction-plane detectors186

(RXN), covering ∆ϕ = 2π and 1 < |η| < 2.8 [34]. Each is made of plastic scintillator paddles with lead converter in187

front and with optical fibers guided to photo multiplier tubes. Each RXN detector is segmented into 12 sections in188

ϕ and two rings in η. The Ψobs
m are determined via a sum over the azimuthal angle φi of each RXN element in both189

the arms with its charge wi deposited by particles for that event, as tan(mΨobs
m ) =

∑

i wi sin (mφi)/
∑

i wi cos (mφi).190

The flow magnitudes vn{Ψm} =
〈

cosn(φ−Ψobs
m )

〉

/Res{n,Ψm} are then measured with respect to each harmonic191

event plane, where φ is the azimuthal angle of the hadron and Res{n,Ψm} =
〈

cosn(Ψm −Ψobs
m )

〉

is the event plane192

resolution, which is estimated for each centrality by the standard sub-event method as described in [10, 35, 36]. The193

best resolution of each harmonic is measured to be Res{2,Ψ2} ∼ 0.75 and Res{4,Ψ2} ∼ 0.5 (Res{3,Ψ3} ∼ 0.3 and194

Res{4,Ψ4} ∼ 0.15) in 20%–30% (0%–10%) central collisions.195

The 2PC method pairs the hadrons (HAD) with deposited charges in the RXN segments. The distribution of the196

relative azimuthal angles of particle hits in separate η ranges A and B, ∆φ ≡ φA−φB, reflects the product of the vn’s197

via dN/d∆φ ∝ 1+
∑

n=1 2v
A
n v

B
n cos(n∆φ) [10, 37, 38]. We analyze the ∆φ correlations using the mixed-event technique198

for two pair combinations; (A,B)=(HAD,RXN) and (A,B)=(RXN-N,RXN-S). These correlations then fix the event-199

averaged products
〈

vHAD
n vRXN

n

〉

and
〈

vRXN
n vRXN

n

〉

, and allow us to obtain vHAD
n =

〈

vHAD
n vRXN

n

〉

/
√

〈vRXN
n vRXN

n 〉.200

Note that flow harmonics extracted with the 2PC method are not measured with respect to event planes. Thus, from201

this point forward we refer to flow harmonics in the 2PC methods as vn{2PC}. We use vn in cases when the discussion202

is generically about either method. In both of the analysis methods used, the results for wider centrality ranges are203

obtained by averaging across several smaller ranges, weighted by the multiplicity of the selected particle [39].204
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FIG. 1. (Color online) Fourier coefficients for charge-combined π±, K±, and p+ p̄ at midrapidity for 0%–50% central Au+Au
collisions at

√
s
NN

= 200 GeV. Different pT bins were used for the EP and 2PC methods. The green bands indicate the

pT -correlated systematic uncertainties of the π± results from the EP method. The shaded boxes around the data points are
pT -uncorrelated systematic uncertainties, which are smaller than the symbols in many cases.

The systematic uncertainties in the vn measurements were estimated for: (1) η acceptance variation of the RXNs,205

in the EP and 2PC methods; this is correlated among vn(pT ) for each hadron species with the same fractional vn206

amount in the entire pT range, except for v4{Ψ4} where it tends to decrease as pT increases; (2) detector acceptance207

effects of TOFE and TOFW, including occupancy; these are correlated among vn(pT ) for each hadron species with208

the same vn constant in the entire pT range; (3) hadron track/hit matching cut; and (4) particle identification purity.209

The systematic uncertainties (1) and (2) are pT -correlated, while (3) and (4) are pT -uncorrelated. These uncertainties210

are similar between the EP and 2PC methods. Table I summarizes typical systematic uncertainties on the different211

vn{Ψm} measures in the EP method for π± at pT = 2 GeV/c.212

TABLE I. Systematic uncertainties on the measured vn{Ψm} by EP method for π± at pT = 2 GeV/c in 0%–10% (30%–50%)
central collisions. Uncertainties of type (2) are absolute in vn{Ψm} value with the multiplication factor 10−3; the others are
relative fractions of vn{Ψm} expressed in percent.

Type Source v2 {Ψ2} v3 {Ψ3} v4 {Ψ4} v4 {Ψ2}
(1) RXN η[%] 4.3(3.0) 4.7(12.5) 16(31) 34(7.0)

(2) Acceptance[10−3] 5.0(1.0) 0.5(2.0) 0.7(2.5) 0.1(0.2)

(3) Matching[%] 1.4(0.3) 0.7(1.0) 2.6(2.8) 7.7(1.7)

(4) PID[%] 0.3(0.1) 0.3(0.3) 0.8(1.0) 2.7(0.4)

Results for 0%–50% centrality bin. Figures 1(a)–(c) show a comparison of v2(pT ), v3(pT ), and v4(pT ) for π
±, K±,213

and p + p̄ for the EP (solid points) and 2PC (open points) methods in a 0%–50% centrality sample; they indicate214

very good agreement between the two methods. Shown in Fig. 1(d) is v4{Ψ2}, i.e., the fourth harmonic coefficient215

with respect to the second-order harmonic event plane. It can be seen that v4{Ψ2} is smaller than v4{Ψ4} but still216

sizable, indicating significant correlations between Ψ2 and Ψ4 [40], which can be ascertained through the trigonometric217

identity v4{Ψ2}/v4{Ψ4} = 〈cos 4(Ψ2 −Ψ4)〉 [41]. There are two trends common to all n in Fig. 1: (1) in the low-218

pT region the anisotropy appears largest for the lightest hadron and smallest for the heaviest hadron and (2) in219

the intermediate-pT (3 . pT . 4 GeV/c) region this mass dependence partly reverses, such that the anisotropy is220

greater for the baryons (Nq = 3) than for the mesons (Nq = 2) at the same pT . These trends remain significant221
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FIG. 2. (Color online) Fourier coefficients for charge-combined π±, K±, and p+ p̄ at midrapidity in Au+Au collisions at
√
s
NN

= 200 GeV. Coefficients are determined using the event plane method. The curves illustrate the fits from the BW model.
Systematic uncertainties are shown as in Fig. 1.

after taking into account the pT -correlated systematic uncertainties. These patterns have been observed previously222

in v2{Ψ2} measurements for identified particles in Au+Au collisions at RHIC [29, 33], and are also seen here to hold223

for the higher moments v3{Ψ3}, v4{Ψ4}, and v4{Ψ2}. The mass dependence in the low-pT range is a generic feature224

of hydrodynamical models, reflecting the mass ordering from the common velocity field (i.e. radial flow), and the225

dependence on valence quark number in the intermediate-pT region has been associated with the development of flow226

in the partonic phase [24].227

Results for finer centrality bins. The vn{Ψm} of π±, K±, and p + p̄ measured with the event plane method are228

shown in Fig. 2 for the centrality selections 0%–10% and 30%–50%. The same mass dependence of vn{Ψm} is seen229

in the low-pT region for all harmonics and centralities. The evolution of baryon-meson splitting at intermediate-pT230

is also observed for all centralities in v2{Ψ2} and v3{Ψ3} but could not be confirmed for v4{Ψ4} in the most central231

and more peripheral events, or for v4{Ψ2} in the most central events owing to the lower statistical significance of the232

measurements in those bins.233

Quark-number scaling. The baryon-meson splitting in the intermediate-pT region can be taken as an indication234

that the number of constituent valence quarks Nq is an important determinant of final-state hadron flow in this235

range. Indeed, the v2{Ψ2} data for identified hadrons had previously been seen to scale such that v2{Ψ2}/Nq236

was the same for different particle species when evaluated at the same transverse kinetic energy per constituent237

quark number in the range KET /Nq . 1 GeV (KET ≡ mT −m0 and mT ≡
√

pT 2 +m2
0, where m0 is the hadron238

mass) i.e. “quark-number scaling” [24, 33]. We have found that the present data obey a generalization of this239

scaling [26], where for each harmonic order n, the values of vn{Ψm}/(Nq)
n/2 vs KET /Nq lie on a single curve for all240

the measured species within a ±15% range. Figure 3 shows the adherence of the data to this empirical scaling, which241

reflects the combination of quark-number scaling for v2{Ψ2} by quark coalescence [42] and the empirical observation242

vn{Ψn}(pT )∝(v2{Ψ2}(pT ))n/2 [15]. Any explanation of the underlying physics needs to match this scaling over this243

KET range, and neither hydrodynamics [11, 20, 43, 44], nor naive quark coalescence alone [45] predicts this scaling244

for the higher moments. It is notable that for v2{Ψ2}, there are deviations from valence-quark scaling at higher pT245

with mesons and baryons having comparable anisotropies [33]. Reconciling the different physics as a function of pT246

remains an outstanding challenge.247

Blast-wave fitting. The BW model [27–30] is a description of a fluid freeze-out state characterized by its temperature248

Tf and its φ-averaged maximal radial flow rapidity ρ0. Here we extend the BW description to incorporate azimuthal249

anisotropies in both radial rapidities ρn{Ψm} and spatial density sn{Ψm} for n = 2, 3, 4, using the empirically defined250

quantities ρ(n,m, φ, r) = ρ0(1 + 2ρn{Ψm} cos (nφ))× r/Rmax and S(n,m, φ) = 1 + 2sn{Ψm} cos (nφ). The spectra251

and anisotropies of all hadrons freezing out of the fluid can then be predicted via [28, 29]252
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FIG. 3. (Color online) Quark-number (Nq) scaling for 0%–50% central Au+Au collisions at
√
s
NN

= 200 GeV, where Nq is
the constituent valence quark number of each hadron. Systematic uncertainties are shown as in Fig. 1.

dN

pTdpT
∝

∫ Rmax

rdr

∫

dφmT I0(αt)K1(βt), (1)

vn{Ψm} =

∫ Rmax

rdr
∫

dφ cos (nφ)In(αt)K1(βt)S(n,m, φ)
∫ Rmax

rdr
∫

dφ I0(αt)K1(βt)S(n,m, φ)
,

where In and K1 are modified Bessel functions of the first and second kind, αt = (pT /Tf) sinh ρ(n,m, φ, r), and253

βt = (mT /Tf) cosh ρ(n,m, φ, r). Using single particle spectra from [46] together with the present vn{Ψm} data, BW254

parameters Tf , ρ0, ρn{Ψm}, and sn{Ψm} are extracted via simultaneous fitting of the π±, K±, and p+ p̄ data with255

a minimization of global χ2, separately for each centrality selection and each vn{Ψm}. The fit ranges used for the256

π±, K±, and p+ p̄ are 0.5 < pT < 1.1 GeV/c, 0.4 < pT < 1.3 GeV/c, and 0.6 < pT < 1.7 GeV/c, respectively. The257

BW fits to vn{Ψm}(pT )+spectra are compared to the data in Fig. 2 for 0%–10% and 30%–50% central collisions,258

together with the global χ2/ndf of the fits determined using the quadrature sum of the statistical and systematic259

uncertainties of the data. The global χ2/ndf in 10%–20% and 20%–30% central collisions is similar to that in 0%–10%260

and 30%–50% central collisions.261

The results for the BW parameters are shown in Fig. 4. The freeze-out temperatures Tf and radially averaged flow262

rapidities 〈ρ〉 =
∫

[ρ0 × r/Rmax] rdr/
∫

rdr are in good agreement for the fits at different n, as would be required for263

a model of freeze-out. Tf and 〈ρ〉 are primarily determined by the single particle spectra [47], while ρn{Ψm} and264

sn{Ψm} are determined by vn{Ψm} measurements including pT and particle mass dependences.265

The radial rapidity and spatial density anisotropies ρn{Ψm} and sn{Ψm} extracted from the fits are shown against266

the average initial-state spatial participant-plane (PP) anisotropy εn{ΨPP
m } =

〈

{r2 cosn(φpart −ΨPP
m )}/{r2}

〉

, where267

r and φpart are the polar coordinate positions of collision participant nucleons defined by Glauber models [18, 48],268

and ΨPP
m is the angle determined as tan (mΨPP

m ) = {r2 sinmφpart}/{r2 cosmφpart}. Here, the brackets 〈〉 and {}269

denote averages over events and participants, respectively. The amplitude of εn{ΨPP
m } is smallest for the most-central270

collisions and increases with centrality percentile.271

Eccentricity of the medium at freeze out. The ρn{Ψm} and sn{Ψm} are generally smaller than the εn{ΨPP
m }. The272

ρn{Ψm} has a positive finite value and generally follows a common increasing curve as a function of εn{ΨPP
m } for273

n = 2, 3, 4. The s2{Ψ2}, s3{Ψ3}, and s4{Ψ4} also show a common increasing trend in εn{ΨPP
m } & 0.1. We can274

interpret relative oscillations of event-plane dependent Hanbury-Brown-Twiss (HBT) radii with respect to averaged275

radii as the eccentricity of the medium at freeze-out if the direction of the radii is selected perpendicular to beam276
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FIG. 4. (Color online) BW model fit parameters extracted for each vn{Ψm}+spectra across different centrality classes. The
gray bands in (a)–(b) and shaded boxes in (c)–(d) indicate systematic uncertainties on the fitting pT range and those propagated
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and pair momentum (Rside), where these radii are less influenced by the emission duration and position-momentum277

correlations [49].278

Spatial information. Finite final eccentricities for n = 2 and n = 3 are observed by both the BW fit to vn{Ψm} and279

the event plane dependent HBT radii measurements using positive and negative pion pairs [49]. The sn{Ψm} therefore280

could reflect physical effects at the freeze-out of the medium. The finite sn{Ψm} could be interpreted as a residual281

effect of initial state anisotropy εn{ΨPP
m }, especially the contribution of initial-state fluctuations for n = 3, 4, after its282

dilution by the medium expansion. For εn{ΨPP
m } . 0.1, s3{Ψ3}, s4{Ψ4}, and s4{Ψ2} are consistent with zero within283

systematic uncertainties. Comparisons of these small sn{Ψm} to the finite ρn{Ψm} and vn{Ψm} in this εn{ΨPP
m }284

range indicate that the anisotropic expansion velocity ρn{Ψm} is a dominant source of the observed vn{Ψm} for higher285

harmonics. We expect this spatial information could provide new insights into freeze-out conditions in hydrodynamic286

calculations.287

Summary and conclusions. In summary, the anisotropy strengths v2{Ψ2}, v3{Ψ3}, v4{Ψ4}, and v4{Ψ2} for π±, K±,288

and p+ p̄ produced at midrapidity in Au+Au collisions at RHIC have been presented. The higher-order harmonics289

vn{Ψm} show particle mass splitting at low-pT and baryon-meson difference at intermediate-pT , very similar to what290

has been seen already for v2{Ψ2}. The anisotropies obey a modified quark number scaling, where vn{Ψm}/(Nq)
n/2

291

falls on a common trend against KET /Nq for each n. The data can be fit with a generalized BWmodel with empirically292

defined anisotropies in radial rapidity and spatial density at higher harmonic orders,which could provide a geometrical293

view of the hydrodynamical expansion at the end of freeze out. Future analyses combining the results in this letter294

with similar results from HBT and jet-like correlations with respect to higher-order event planes will further constrain295

the conditions and properties of the matter created at RHIC.296
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