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Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on
both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal
shell effects, which are strongly impacted by the presence of nuclear surface.

Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear
matter parameters, we assess different mechanisms that drive nuclear sizes.

Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of
optimization protocols, which do not include any radius information. By performing the Monte-Carlo sampling
of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter
properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,
208Pb, and 298Fl.

Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multi-
dimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i)
between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the
neutron skins and the slope of the symmetry energy L. The impact of other nuclear matter properties on nuclear
radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron
radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics.

Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties
has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation
point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains
the recent results of ab-initio calculations with two-nucleon and three-nucleon forces optimized simultaneously to
binding energies and radii of selected nuclei. Second, since the neutron skin uncertainty primarily depends on the
slope of the symmetry energy, by imposing constraints on both ρ0 and L practically determines the nuclear size,
modulo small variations due to shell effects.

PACS numbers: 21.10.Gv, 21.60.Jz, 21.65.Cd, 21.65.Mn

Introduction. – Radii of proton (or charge) and neu-
tron distributions in atomic nuclei are key observables
that can be directly related to fundamental properties of
nuclear matter and to the nature of nuclear force (see
Ref. [1] and references quoted therein). In heavy nuclei,
the excess of neutrons gives rise to a neutron skin, char-
acterized by the neutron distribution extending beyond
the proton distribution. The neutron skin has been found
to correlate with a number of observables in finite nuclei
and nuclear and neutron matter [2–23]; hence, it beau-
tifully links finite nuclei with extended nuclear matter
found, e.g., in neutron stars.

The goal of this study is to understand the relations
between proton and neutron radii, and neutron skins us-
ing nuclear density functional theory (DFT) [24], which is
a tool of choice in microscopic studies of complex nuclei.
In particular, we inspect the relations between nuclear
matter parameters characterizing effective interactions,
here represented by Skyrme energy density functionals
(EDFs) adjusted to experimental data. We vary the op-
timization strategies to achieve unbiased comparison of
proton and neutron radii. By means of the statistical
covariance technique, we quantify the intricate relation
between the proton and neutron radius, and explain the

recent results of a comparative study for 48Ca [1].

The strategy – To explore the correlations between
neutron radius, proton radius, and neutron skin, we use
the tools of linear regression based on least-squares (χ2),
which were adopted recently in the nuclear context in
Refs. [11, 25–35]. In particular, we use here analysis
of covariances (statistical correlations) between observ-
ables, error propagation, and an exploration of χ2 in the
vicinity of the best fit. Our starting point is the param-
eterization SV-min [36] optimized to the pool of ground-
state data. The corresponding set of fit-observables had
been carefully selected to include only nuclei which have
very small correlation corrections [37] and thus can be
described reliably within a standard single-reference nu-
clear DFT. Since the set of fit-observables constraining
SV-min contains also information on radii deduced from
the charge form factor data [38, 39], this makes this EDF
parametrization less useful for the present study, whose
objective is to explore correlations with charge radii. In-
deed, one should not trust correlations for an observable
which was included in the fit as the behavior of χ2 in
the direction of this observable is usually very rigid [34].
To provide sufficient leeway to explore radii, the radius
information should be excluded from the fit. Thus we
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consider here the SV-min set of fit observables, however
now excluding the data on radii. This leaves in the fit
pool only energy information, namely binding energies
of sixty semi-magic nuclei, pairing gaps from odd-even
binding energy differences for long isotopic and isotonic
chains, and a few selected spin-orbit splitting in doubly-
magic nuclei. (For details of the fit data, see Tables III
and IV of Ref. [36].) The EDF optimized to this dataset
is referred to as SV-E in the following. This parametriza-
tion and the effect of omission of radius information had
been discussed in Refs. [31, 35]. Here, we use SV-E par-
ticularly as a tool to explore radius correlations.

The Skyrme EDF is described by means of 14 param-
eters. The pairing functional contains three parameters:
proton and neutron pairing strengths and a parameter
defining the density dependence. Two parameters are
used for calibrating the isoscalar and isovector spin-orbit
force [40]. Two parameters are necessary to tune the
surface energy. Finally, there remain seven parameters
characterizing volume properties. These are fully equiva-
lent to key properties of uniform symmetric nuclear mat-
ter at equilibrium, called henceforth Nuclear Matter Pa-
rameters (NMP). Those are: the saturation density ρ0
and energy-per-nucleon E/A, of symmetric nuclear mat-
ter; incompressibility K and effective mass m∗/m charac-
terizing the isoscalar response; and symmetry energy J ,
slope of symmetry energy L, and Thomas-Reiche-Kuhn
sum rule enhancement factor κTRK characterizing the
isovector response. Those NMP will be used in the fol-
lowing to sort the results and establish correlations with
radii. Table I shows the parameters of SV-min and SV-E
together with their uncertainties.

TABLE I. The parameters of SV-min and SV-E together with
the correlated uncertainties. The NMP are shown in the up-
per block. The others are given for the form of the coupling
constants as in [35]. We provide six significant figures for each
parameter although some of them would be sufficiently well
defined with less digits. Note that the required precision of a
parameter is much higher than the corresponding correlated
uncertainty.

SV-min SV-E

ρ0 (MeV) 0.161085 ± 0.0011 0.154181 ± 0.0076
E/A (MeV) −15.9099 ± 0.04 −15.8120 ± 0.17
K (MeV) 221.752 ± 8.1 273.733 ± 31.3
m∗/m 0.951806 ± 0.067 1.07038 ± 0.103
J (MeV) 30.6570 ± 1.9 27.2333 ± 2.4
L (MeV) 44.8138 ± 25.7 2.92329 ± 62.9
κTRK 0.076522 ± 0.1919 0.192 ± 0.349

C∆ρ
0 (MeV fm5) 107.657 ± 6.6 85.39992 ± 10.7

C∆ρ
1 (MeV fm5) −141.506 ± 162 −80.90533 ± 391

C∇J
0 (MeV fm4) −101.582 ± 5.5 −96.3170 ± 11.7

C∇J
1 (MeV fm4) −22.9681 ± 16.2 −21.5881 ± 18.2

Vpair,p (MeV fm3) 601.160 ± 190 613.231 ± 209
Vpair,n (MeV fm3) 567.190 ± 154 568.739 ± 173
ρ0,pair (fm−3) 0.211591 ± 0.052 0.202513 ± 0.046

For the following analysis, we employ three strategies.

First, we employ the standard covariance analysis ex-
plained, e.g., in Refs. [29, 41]. Here, we compute the
covariance matrix for SV-E and use it to deduce the co-
variances (correlations) between the observables of in-
terest. Second, we explore explicitly the hyper-surface
of “reasonable parametrizations” in the vicinity of the
SV-E parameter set. Recall that, around the minimum
of χ2 parametrizations are distributed with probability
W (p) ∝ exp [χ2(p)] where p stands for the (fourteen)
free parameters of the model and p0 is the SV-E pa-
rameter set. We sample this distribution in a Monte-
Carlo fashion by representing it by an ensemble of 2000
parametrizations. Thereby, we confine the search to the
space of p with W (p) > 1/2 to avoid excessive amount
of unsuccessful hits in the large parameter space. The
close vicinity of p0 suffices for the present purposes as
it contains all crucial trends and correlations. (For more
discussion of such strategy, see Ref. [30].) Finally, we
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FIG. 1. (Color online) Covariance matrices for a selection
of observables and NMP computed with SV-min [36] (below
the diagonal) and SV-E [31, 35] (above the diagonal). Nuclear
observables (in 208Pb) are: charge surface thickness σch; root-
mean-square (rms) charge radius rch; rms neutron radius rn;
neutron skin rskin; electric dipole polarizability αD; and giant
resonance energies EGMR, EGDR, and EGQR. The NMP cor-
responding to the symmetric nuclear matter include: incom-
pressibility K, symmetry energy J , symmetry energy slope
L, isoscalar effective mass m∗/m; TRK sum-rule enhance-
ment κTRK; and density ρ0 and energy E/A at the saturation
point. The correlations with the charge form factor data σch

and rch are not shown for SV-min as these quantities we in-
cluded in the correspondins set of fit-observables.

employ the rules of error propagation in the context of
χ2 fits. We use this to explore the sensitivity of the radii
to NMP by constraining the fit by selected NMP (while
using always exactly the same pool of fit observables)
and studying resulting changes in the uncertainties of the
predicted radii. The chosen NMP is always fixed at the
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SV-E value. This means that the optimal parameters p0

remain the same. What changes are allowed variations
in p which, in turn, impact the extrapolation uncertain-
ties. We shall see a strong correlation if one NMP reduces
significantly the uncertainty of an observable.

Results – We begin by inspecting in Fig. 1 the covari-
ance matrices of SV-min and SV-E. The general pattern
seen in Fig. 1 was discussed in Refs. [31, 35]. The strong
correlations between the isovector indicators (symmetry
energy J , symmetry energy slope L, rms neutron radius
rn, neutron skin rskin = rn−rp, and electric dipole polariz-
ability αD) seen in SV-min become significantly degraded
in SV-E, with the strongest remaining correlation being
that between rskin and L. Indeed, as concluded in [31, 35]
L is the leading bulk parameter for isovector static re-
sponse. The charge radius rch in SV-E correlates very
well with the saturation point (ρ0 and E/A) but rather
poorly with other quantities, in particular with the neu-
tron radius and neutron skin [8]. On the other hand, the
neutron radius in SV-E has a reasonable correlation with
αD but it is hardly correlated with rch, ρ0, and E/A. The
lack of correlation between K and nuclear radii has been
recognized in Refs. [8, 42, 43]. Therein, one also finds a
weak correlation between ρ0 and K, which is consistent
with our results shown in Fig. 1.
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FIG. 2. (Color online) Variance ellipsoids with SV-E in
the (rch, rn)-plane for 298Fl (a) and 48Ca (b). The ar-
rows/segments indicate the direction of changing radii when
varying one NMP as indicated. Their lengths represent the
magnitude of corresponding variations. The narrow ellipsoids
mark the SV-min results. The correlation coefficient cAB be-
tween rch and rn is indicated in both cases.

In the following, we shall test the robustness of the
correlations rch ↔ ρ0 and rskin ↔ L by inspecting trends
in 48Ca, 208Pb, and also in 298Fl (Z = 114,N = 184) – a
spherical superheavy nucleus, in which the leptodermous
expansion is expected to work best [44]. By considering
a medium-mass, heavy, and superheavy nucleus, we can
assess whether finite-size (or shell) effects do not cloud
our conclusions. To illustrate the impact of NMP on
rch and rn, Fig. 2 shows the SV-E variance ellipsoids in
the (rch, rn)-plane. Consistent with results displayed in
Fig. 1, the variance ellipsoids are primarily impacted by
the variations in the directions of ρ0 and L. The impact
of other NMP is much less. Interestingly, the directions

of trends due to changes in ρ0 and L (marked by arrows)
are fairly different. That is, increasing ρ0 decreases both
rch and rn, as expected from the standard liquid-drop
(or Fermi liquid theory) relation between the saturation
density and the radius parameter (see Ref. [44] for more
discussion). On the other hand, increasing L decreases
rch and increases rn. The trend due to changes in J
generally follows that of L, albeit with a much smaller
magnitude. Due to the compensating trends, the corre-
lation rch ↔ rn is very small; namely, it is cAB=0.10 for
48Ca and it increases to cAB=0.36 for 298Fl. This illus-
trates that these two quantities are not strongly coupled
by the Skyrme EDF. Figure 2 also shows the correspond-
ing SV-min ellipsoids (narrow, blue). As expected, these
are very narrow in the direction of rch, as this quantity
has been constrained in the fit of SV-min. (It is inter-
esting to note that the rms deviation from experimental
data for rch are similar in SV-min (0.014 fm) and SV-E
(0.012 fm).) On the other hand, the uncertainty in rn is
significant.

 268  270  272  274  276  278

-0.04

 0

 0.04

 1.02  1.04  1.06  1.08  1.10 1.12

-0.04

 0

 0.04

 0.152  0.154  0.156

 0  0.1  0.2  0.3

r rm
s−

r rm
s,0

 (f
m

)

protons
neutrons

K (MeV)ρ0 (fm-3)

(a)

(d)(c)

(b)

m*/m κTRK

208Pb

FIG. 3. (Color online) Proton (red), and neutron (green) rms
radii in 208Pb with respect to the SV-E values from the en-
semble of 2000 parametrizations in the vicinity of the optimal
fit SV-E drawn versus different NMP: ρ0 (a), K (b), m∗/m
(c), and κTRK (d).

Figures 3-5 display systematic trends obtained with
the ensemble of 2000 parametrizations around SV-
E. These results fully confirm our previous findings.
Namely, ρ0, L, and J nicely correlate with rms radii and
neutron skin while K, m∗/m, and κTRK do not. The be-
havior of radii in Fig. 4 is consistent with the trends in
Fig. 2 for the variance ellipsoids. It is interesting to no-
tice that for a fixed value of ρ0, the spread of the proton
(or charge) radii is fairly narrow, while it is significantly
broader for the neutron radii. Finally, as shown in Fig. 5,
neutron skins correlate well with J but their correlation
with L is superior, especially for heavy nuclei.

The strong rch ↔ ρ0 and rskin ↔ L relations can
be quantified by studying the predicted uncertainties on
radii and skins. To this end, we carry out additional EDF
optimizations by using the same pool of fit-observables
as SV-E but constraining one or two NMP at the values
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FIG. 4. (Color online) Similar as in Fig. 3 but versus ρ0

(left) and L (right) for 298Fl (top), 208Pb (middle), and 48Ca
(bottom). To illustrate the trends, the right panels show also
averages and variances of radii taken over bins in L.
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FIG. 5. (Color online) Neutron skins from the ensemble of
2000 parametrizations in the vicinity of the optimal fit SV-
E versus J (left) and L (right) for the three nuclei under
consideration.

given by SV-E. Figure 6(e) illustrates the rch ↔ ρ0 cor-
respondence: by constraining the saturation density ρ0
the theoretical uncertainty on rch is reduced by ∼50%.
Even more striking is the result for the neutron skin
in Fig. 6(c): constraining L in the EDF optimization
practically fixes rskin. The correlation rskin ↔ L follows
from the leptodermous analysis [10], which shows that
rskin ∝ L/J .

The surface thickness parameters displayed in
Figs. 6(a) and (b) are hardly affected by precise knowl-
edge of ρ0, L, and J . What about the neutron radii? As

seen in Fig. 6(d), fixing ρ0 or L helps reducing theoreti-
cal uncertainty slightly, but it is simultaneous knowledge
of ρ0 and L that helps reducing the error on rn. But
this can be viewed as a secondary effect of the rch ↔ ρ0
and rskin ↔ L relations. Indeed, rn = rp + rskin; hence,
∆rn = ∆rp +∆rskin. The uncertainty of the first term is
reduced by precise information on ρ0 while the error on
the second term is reduced by our knowledge of L.
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FIG. 6. (Color online) Uncertainties in the predictions of rms
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and surface thicknesses (top) for different EDF fits. The ref-
erence EDF is SV-E. Other EDF fits use the same pool of
fit-observables as SV-E but constrain one or two NMP, as
indicated, at the SV-E values.

Figure 6 also shows results with EDFc obtained by con-
straining the symmetry energy J . As discussed earlier,
the trends due to J follow those triggered by variations
in L, but they are weaker. This is because our current
knowledge of J is much better than that of L. For in-
stance, as seen in Table I, the values of J are 31±2 MeV
in SV-min and 27±2 MeV in SV-E (a mere 6-7% error),
while the values of L in SV-min and SV-E are 45±26
MeV and 3±63 MeV, respectively (i.e., they are very un-
certain).
Conclusion – By using the statistical tools of linear

regression, we studied radii of neutron and proton distri-
butions within the Skyrme-DFT framework. The anal-
ysis was carried out for the spherical closed-shell nuclei
48Ca, 208Pb, and 298Fl, and the results turned out to
weakly depend on the system considered, i.e., shell ef-
fects. Our statistical analysis has allowed us to explore
various trends of charge and neutron radii with nuclear
matter properties. The main conclusion of our study is
that there exist, at least within the Skyrme-DFT theory,
only two strong correlations. Namely, we found one-to-
one relations between radii in finite nuclei and parameters
ρ0 and L characterizing the equation of state of uniform
nuclear matter: rch ↔ ρ0 and rskin ↔ L. For instance,
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by including charge radii in a set of fit-observables, as
done for the majority of realistic Skyrme EDFs [24], one
practically fixes the saturation density ρ0. Indeed, as
seen in Table I, by adding the charge form factor infor-
mation to the set of fit-observables of SV-E, one reduces
the theoretical uncertainty on ρ0 by a factor of 7 (from
0.0076 fm−3 in SV-E to 0.0011 fm−3 in SV-min). Recently,
a similar conclusion has been reached in ab-initio calcu-
lations based on a chiral interaction NNLOsat optimized
simultaneously to low-energy nucleon-nucleon scattering
data, as well as binding energies and radii of finite nuclei
[45]. Here, the use of data on charge radii was crucial for
reproducing the empirical saturation point of symmet-
ric nuclear matter. Interestingly, the relation rn ↔ ρ0 is
much weaker than that for rch, so by constraining the sat-
uration density alone does not help significantly reducing
the uncertainty on neutron (and mass) radii.

By inspecting various, often competing, trends in
Fig. 2 one is tempted to conclude that the rn ↔ rp re-
lation is fairly complex. Namely, various trends are pos-
sible when moving along ‘a’ trajectory in a parameter
space {p}. In this respect, we suggest the two directions
that are most important are given by the variations in ρ0
and L. Our analysis, in particular the results shown in
Fig. 6 suggest that reducing the uncertainty on L would
lead to a dramatic improvement in our knowledge of neu-
tron skins and neutron radii. This is consistent with the
findings of Ref. [18] that the slope of the symmetry en-

ergy L is the single main contributor to the statistical
uncertainty of rskin. Conversely, by using the precise in-
formation on neutron skins (when available) should allow
to improve our knowledge of L, hence the neutron matter
equation of state.

Finally, we conclude that while including experimen-
tal charge radii in the fit data gives rise to EDFs that
constrain the saturation density ρ0 rather well, the cor-
responding model uncertainties on the neutron radii due
to our poor knowledge of L are still appreciable [18]. This
explains the Skyrme-DFT results in a recent comparative
study for 48Ca [1].
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034033 (2015).
[35] P.-G. Reinhard, Phys. Scr. 91, 023002 (2015).
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