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We present ab initio predictions for ground and excited states of doubly open-shell fluorine and
neon isotopes based on chiral two- and three-nucleon interactions. We use the in-medium similarity
renormalization group, to derive mass-dependent sd valence-space Hamiltonians. The experimental
ground-state energies are reproduced through neutron number N = 14, beyond which a new targeted
normal-ordering procedure improves agreement with data and large-space multi-reference calcula-
tions. For spectroscopy, we focus on neutron-rich 23−26F and 24−26Ne isotopes near N = 14, 16
magic numbers. In all cases we find agreement with experiment and established phenomenology.
Moreover, yrast states are well described in 20Ne and 24Mg, providing a path towards an ab initio
description of deformation in the medium-mass region.

PACS numbers: 21.30.Fe, 21.60.Cs, 21.60.De, 21.10.-k

With hundreds of undiscovered nuclei to be created
and studied at rare-isotope beam facilities, the develop-
ment of an ab initio picture of exotic nuclei is a central
goal of modern nuclear theory. Three-nucleon (3N) forces
are a key input to understand and predict the struc-
ture of medium-mass nuclei, from the neutron dripline
in oxygen to the evolution of magic numbers in oxygen
and calcium [1–11]. In addition, advances in large-space
many-body methods have extended the scope of ab ini-
tio theory to open-shell calcium and nickel isotopes, and
beyond [12–14]. While ground-state properties of even-
even isotopes are captured with these methods, excited
states and/or odd-mass systems away from closed shells
are more challenging. Furthermore, doubly open-shell
nuclei may exhibit deformation, which is challenging to
capture in large-space ab initio methods built on spheri-
cal reference states [15, 16].

These difficulties can be addressed straightforwardly
within the framework of the nuclear shell model [17–
19], where an effective valence-space Hamiltonian is con-
structed for particles occupying a small singe-particle
space above some closed-shell configuration. Exact di-
agonalization then accesses all nuclei and their structure
properties in a given region and naturally captures de-
formation [20]. While the shell model approach is tra-
ditionally phenomenological, valence-space Hamiltonians
obtained with many-body perturbation theory (MBPT)
[21] including 3N forces describe separation energies and
first-excited 2+ energies in the sd shell above 16O [22, 23].
However, order-by-order convergence of is difficult to ver-
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ify, especially for T = 0 components, and a successful
description of exotic nuclei requires the use of extended
valence spaces [24–27]. All-order diagrammatic exten-
sions provide further insights [28] but exhibit dependence
on the harmonic-oscillator spacing ~ω and have not been
benchmarked with 3N forces. Recently, nonperturbative
methods have been developed [29–33], which provide a
promising path toward an ab initio description of nuclei
between semi-magic isotopic chains, but have not been
applied systematically beyond oxygen.

In this article we present ab initio predictions for
ground and excited states in doubly open-shell nuclei
using valence-space Hamiltonians derived from the in-
medium similarity renormalization group (IM-SRG). Fo-
cusing on fluorine and neon isotopes within the sd-
shell, we find that including chiral 3N forces leads to
a good agreement with experimental data and state-of-
the-art phenomenology [35]. We also introduce a novel
targeted normal-ordering procedure, which further im-
proves ground-state energies in comparison to experiment
and large-space multi-reference IM-SRG calculations per-
formed directly in the target nucleus. Finally we demon-
strate that nuclear deformation in medium-mass nuclei
emerges ab initio by studying yrast states in 20Ne and
24Mg and comparing with spherical ground states ob-
tained with multi-reference IM-SRG [6].

In the IM-SRG, we start from an A-body Hamilto-
nian that is normal ordered with respect to a finite-A
reference, e.g., a Hartree-Fock ground state, and apply
a continuous unitary transformation U(s) to drive the
Hamiltonian to band- or block-diagonal form. In prac-
tice, this is accomplished by solving the flow equation

dH(s)

ds
= [η(s), H(s)] , (1)

where U(s) is defined implicitly through the anti-
Hermitian generator η(s) ≡ [dU(s)/ds]U†(s). With a
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FIG. 1. Ground-state energies of fluorine and neon isotopes from the A-dependent IM-SRG valence-space Hamiltonian with
λSRG = 1.88 fm−1 and ~ω = 24 MeV compared with the 2012 Atomic Mass Evaluation (AME2012) [34] and the phenomenologi-
cal USDB interaction [35]. Blue circles indicate results obtained with the new targeted normal ordering (Targeted NO) scheme,
yellow triangles self-consistent Green’s function (SCGF) [4], and green diamonds indicate ground-state energies calculated with
the multi reference (MR-IM-SRG).

suitable choice of η(s), the off-diagonal part of the Hamil-
tonian, Hod(s), is driven to zero as s→∞. The freedom
in defining Hod(s) allows us to tailor the decoupling to
the problem of interest, e.g., the core [5, 36] or the core
and a valence-space Hamiltonian [29, 30]. Within the IM-
SRG(2) approximation, Eq. (1) is truncated to normal-
ordered two-body operators. In the present work, we use
a version of White’s generator which is less susceptible
to the effects of small energy denominators than the one
we used in earlier work [29, 30]. Denoting generic energy
denominators by ∆, η = 1/2 tan−1(2Hod/∆) [37]. We
also apply the newly developed Magnus formulation [38]
to decouple valence-space Hamiltonians, where the uni-
tary transformation U(s) is explicitly calculated, making
the calculation of general effective operators for observ-
ables such as radii or electroweak transitions tractable.
Results calculated within both frameworks agree at the
10 keV level for both core and valence-space decoupling.

To implement the IM-SRG, we start from the ΛNN =
500 MeV chiral N3LO NN interaction of Refs. [39, 40] and
evolve with the free-space SRG [41, 42] to low-momentum
resolution scales, λSRG = 1.88−2.11 fm−1. The NN+3N-
induced (NN+3N-ind) Hamiltonians includes 3N forces
induced by the evolution and correspond to the origi-
nal NN interaction, up to neglected induced four- and
higher-body forces [42, 43]. The NN+3N-full Hamiltoni-
ans include an initial local Λ3N = 400 MeV chiral N2LO
3N interaction [44], consistently evolved to λSRG. This
value of Λ3N minimizes the effects of induced 4N inter-
actions in the region of oxygen [30, 45, 46]. Calculations
in oxygen isotopes with Λ3N = 500 MeV displayed a pro-
nounced sensitivity to λSRG [30], making it difficult to
disentangle uncertainties originating from neglected in-
duced forces and the initial Hamiltonian. To obtain the
final input Hamiltonian, we add the A-dependent intrin-
sic kinetic energy. Here, we choose A to be the mass
of the target nucleus, for which we wish to approximate

an exact no-core diagonalization. An A-independent pre-
scription introduces an error that grows with the number
of valence nucleons [47].

We then solve the Hartree-Fock equations to obtain
the core reference state. We normal order the Hamil-
tonian with respect to the Hartree-Fock reference state
and discard residual three-body forces [48]. The normal-
ordered 0-, 1-, and 2-body parts are taken as initial val-
ues in the IM-SRG decoupling within a single-particle
basis e = 2n + l ≤ emax = 14, with an additional cut
e1 + e2 + e3 ≤ E3max = 14 for 3N forces [46].

The IM-SRG is used to decouple the core and valence
space from excitations, and the core energy, valence-space
single-particle energies, and two-body matrix elements
are taken from the evolved s→∞ Hamiltonian [29, 30].
We work within the standard sd shell consisting of the
proton and neutron d5/2, d3/2, and s1/2 orbits above the
16O core. We diagonalize the A-dependent valence-space
Hamiltonian to obtain ground-state energies and natural-
parity spectra using the NushellX and Oslo shell model
codes [49, 50]. Since it is well known that the NN+3N-
full initial Hamiltonian used in these calculations pro-
duces systematic overbinding and too-small radii in cal-
cium [12–14], we limit our discussion to isotopic chains
in the lower sd shell, in particular fluorine and neon,
which serve to test proton-proton, neutron-neutron, and
proton-neutron valence-space matrix elements. With in-
creasing valence particle number, ab initio valence-space
Hamiltonians must also systematically account for 3N
forces within the valence space, an issue we address when
discussing our targeted normal ordering approach.

We first consider ground-state energies in fluorine
and neon isotopes, which have been explored with self-
consistent Green’s function calculations for particular
isotopes [4, 52] and valence-space Hamiltonians from
MBPT [1, 23]. IM-SRG results through N = 20 are
shown in Fig. 1, compared with experiment and phe-
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FIG. 2. Excited-state spectra for 19,23,25,26F from IM-SRG Hamiltonians based on NN+3N-ind and NN+3N-full Hamiltonians
for Λ3N = 400 MeV with ~ω = 20 MeV (dotted) and ~ω = 24 MeV (solid), compared with experiment [51] and results from the
phenomenological USDB interaction [35].

nomenological USDB predictions [35]. Since core prop-
erties are calculated consistently in our IM-SRG frame-
work, we quote absolute ground-state energies in all cal-
culations, but normalize USDB results to the experimen-
tal ground state of 16O. We first observe that NN+3N-ind
Hamiltonians exhibit incorrect trends throughout both
isotopic chains, reminiscent of the incorrect dripline pre-
dictions in oxygen isotopes [1, 2, 30]. With NN+3N-full
Hamiltonians, the agreement is improved, including the
flattening of energies in the neutron-rich region. We note
a very minor ~ω dependence of ground-state energies for
~ω= 20−24 MeV, not shown in Fig. 1. The largest de-
viations are 600 keV in 29F and 1.3 MeV in 30Ne, a 0.5%
effect, indicating good convergence with respect to the
model space truncation.

It is apparent, however, that near N = 14, NN+3N-full
results become overbound with respect to experiment,
similar to oxygen isotopes [30]. We also plot in Fig. 1
multi-reference IM-SRG calculations of ground-state en-
ergies in even neon isotopes based on the same initial
Hamiltonian, which display an improved agreement with
experiment outside of 20,22Ne. One obvious difference
between the valence-space and multi-reference formula-
tions is that the latter is carried out in the target nu-
cleus. In the valence-space calculations, the Hamiltonian
is instead normal ordered with respect to the 16O core,
which neglects 3N forces between valence nucleons. This
approximation works well for few valence nucleons, but
residual 3N effects scale as Av/Ac [53] for normal Fermi
systems, and therefore cannot be neglected as the num-
ber of valence nucleons increases [25, 54].

To mitigate this effect, we introduce a targeted nor-
mal ordering approach in which the normal ordering is
first performed with respect to the nearest closed shell
rather than the 16O core. We then apply the IM-SRG to
decouple the 16O core and sd valence space. Finally, we
re-normal order with respect to 16O to perform a full sd-
shell diagonalization. The results of this procedure are

shown in both figures, which provides 12 MeV additional
repulsion at N = 20 and improves agreement with exper-
iment. More importantly, there are only modest differ-
ences between the shell model results and large-space self-
consistent Green’s function and multi-reference IM-SRG
calculations in fluorine and neon, respectively. Further-
more the impact on spectra is generally minor for both
isotopic chains.

For spectroscopy in the fluorine and neon isotopes, we
highlight the N = 14, 16 region towards the experimen-
tal limits, in addition to one example at stability, though
for completeness, we show spectra for all F, Ne, Na, and
Mg isotopes within the sd shell as supplementary ma-
terial [55]. The only ab initio predictions in fluorine
are large-scale coupled-cluster calculations in 26F using
a phenomenological 3N force [56] and 22,24F using opti-
mized chiral interactions at order N2LO [57]. In both
cases, spectra are reasonable, but the density and order-
ing of states can deviate from experiment [1, 57]. IM-
SRG calculations in 24F succeeded in predicting prop-
erties of newly measured states [58]. There are no ab
initio predictions for spectra in neon except for the first
excited 2+ energies in even isotopes from MBPT shell
model based on 3N forces [23]. Finally, we denote the ~ω
dependence of spectra with shaded bands in NN+3N-full
results. While often at the 100 keV level or less, in a few
cases it approaches 400 keV.

In Fig. 2 we show the calculated spectra of 19,23,25,26F.
We first observe that in all cases, NN+3N-ind forces
give too-compressed spectra with an incorrect ordering
of levels, even in the stable 19F. With initial 3N forces,
the spectra are clearly improved. The spectrum of 19F
agrees very well with experiment, even giving the cor-
rect 7/2+−13/2+ ordering not reproduced by USDB. For
the neutron-rich isotopes, experimental data are fewer.
Nonetheless the spacing of the mostly unidentified lev-
els in 23F are reproduced, and spin-parity assignments
agree with USDB below 4 MeV. In 25F neither IM-SRG



4

3N-ind 3N-full  Expt. USDB

0

1

2

3

4

5

6

E
n
er

g
y
 (

M
eV

)

2
+

1
+

2
+

4
+

1
+

2
+

2
+

2
+

2
+

0
+

0
+

0
+

0
+

2
+

2
+

2
+

4
+

3
+

4
+

4
+

4
+

2
+

3
+

4
+

2
+

3
+

1
+(4)

+

1
+

4
+2
+

2
+

3
+

22
Ne

3N-ind 3N-full  Expt. USDB

0

1

2

3

4

5 0
+

3
+

2
+

4
+

0
+

2
+

2
+

2
+

2
+

0
+

0
+

0
+

0
+

4
+

2
+

2
+4
+

0
+ 3

+

0
+

4
+

2
+

3
+2
+

24
Ne

3N-ind 3N-full  Expt. USDB

0

1

2

3

4

5/2
+

9/2
+

5/2
+

5/2
+

9/2
+

7/2
+

5/2
+

5/2
+

3/2
+

5/2
+

3/2
+

3/2
+3/2

+

1/2
+

1/2
+

1/2
+

(1/2
+
)

7/2
+

3/2
+

7/2
+

1/2
+

3/2
+

(5/2
+
)

(3/2
+
)

25
Ne

3N-ind 3N-full  Expt. USDB

0

1

2

3

4

5
0

+0
+

2
+

4
+0

+

2
+

2
+

2
+

2
+

0
+

0
+

0
+

0
+

4
+

2
+

2
+

4
+

2
+

26
Ne

FIG. 3. Excited-state spectra of 19,24,25,26Ne, as in Fig. 2.

nor USDB fully predict the experimental spectrum and,
despite similar spacings, do not agree on the ordering of
states. Finally in 26F only the lowest excited states are
known and are well reproduced by IM-SRG. The ordering
of higher-lying excited states agrees well with USDB, but
the increased energy is likely due to a lack of continuum
effects, which are implicitly included in the phenomenol-
ogy. Additional experimental spin/parity assignments
are needed to conclusively test our predictions.

In Fig. 3 we show calculations for the stable 22Ne and
exotic 24−26Ne nuclei. Experimental data are limited,
but in all cases, spectra without initial 3N forces are
too compressed with respect to experiment, particularly
25Ne. With initial 3N forces, the spectra are improved
throughout the chain. For example in 25,26Ne the or-
dering of states is in complete agreement with USDB,
strongly suggesting the unidentified excited state in 26Ne
as a 4+, but more experimental data are needed.

While predictions for individual nuclei in the lower
sd shell can be seen in the supplementary material [55],
it may be difficult to conclude definitively on the qual-
ity of these predictions with respect to experiment and
USDB. Therefore we have calculated the root-mean-
squared deviation from 144 experimental levels in the sd-
shell Z = 8 − 12 isotopes. For the shell model IM-SRG
(USDB) interactions, we find values of 513(244) keV in
oxygen, 446(200) keV in fluorine, 388(268) keV in neon,
572(155) keV in sodium, and 791(106) keV in magnesium.
While the experimental agreement for fluorine and neon
is an improvement over the description of oxygen iso-
topes in Ref. [30], the decreased accuracy for magnesium
in particular is likely due to a combination of neglected
3N forces between valence-space nucleons and a deterio-
ration of the NN+3N-full Hamiltonians.

Finally we turn to deformation, which can be treated
ab initio in light nuclei with Green’s Function Monte
Carlo [59], with the standard or symplectic no-core shell
model [60–62], and with lattice EFT [63], or within an
EFT framework for heavy nuclei [64, 65]. Deforma-
tion is challenging for ab initio methods to capture in
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FIG. 4. Yrast states for deformed 20Ne and 24Mg compared to
experimental data and phenomenological USDB predictions.

medium-mass nuclei, where spherical symmetry is typi-
cally assumed, and extensions to the computationally de-
manding m-scheme are required for a proper treatment.
Within the present framework, deformation can emerge
naturally from valence-space configuration mixing, and
here we investigate the extent to which this is realized.
One key signature of deformation is the presence of a
rotational spectrum. 20Ne and 24Mg provide classic ex-
amples of rotational spectra in the lower sd shell, and
these spectra are well reproduced in all calculations, as
shown in Fig. 4, though somewhat improved with the
inclusion of 3N forces. Further evidence of deformation
may be deduced from Fig. 1, where we note a signifi-
cant discrepancy in the 20,22Ne ground-state energies ob-
tained with the shell model and multi-reference calcula-
tions. This may be understood by considering that the
multi-reference IM-SRG, which is built on intrinsically
spherical reference states, cannot produce a deformed
ground state. We might expect that instead it selects
the lowest-energy state with spherical intrinsic structure,
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and indeed, we find that the energy of the first excited 0+

state from the valence space calculation aligns remark-
ably well with the multi-reference result in Fig. 1.

In conclusion, we have presented ab initio calculations
for doubly open-shell nuclei from A-dependent IM-SRG
valence-space Hamiltonians. With initial 3N forces, ex-
cited states are in agreement with experiment, and with
a new targeted normal ordering procedure, ground-state
energies are improved with respect to experiment and
large-space multi-reference IM-SRG calculations. A sys-
tematic application of targeted normal ordering, which
better accounts for effects of 3N forces between valence
space particles, will allow ab initio calculations through-
out the sd shell. Comparison with multi-reference IM-
SRG indicates that the valence-space IM-SRG calcula-
tions produce deformed ground states in 20,22Ne and pre-
dict rotational yrast states in deformed 20Ne and 24Mg,
illustrating that deformation can be captured in this ab
initio framework. To further explore deformation in the
sd shell, the Magnus formulation allows straightforward
evaluation of relevant effective valence-space operators
such as quadrupole moments and E2 transitions, and ul-
timately extensions to other operators will allow ab initio
predictions for important electroweak processes such as

neutrinoless double-beta decay [66–68].
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P. Navrátil, I. Stetcu, and J. P. Vary, Phys. Rev. C
78, 044302 (2008).

[33] E. Dikmen, A. F. Lisetski, B. R. Barrett, P. Maris, A. M.
Shirokov, and J. P. Vary, Phys. Rev. C 91, 064301
(2015).



6

[34] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev,
M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys.
C 36, 1603 (2012).

[35] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315
(2006).

[36] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys.
Rev. Lett. 106, 222502 (2011).

[37] S. R. White, J. Chem. Phys 117, 7472 (2002).
[38] T. D. Morris, N. Parzuchowski, and S. K. Bogner, Phys.

Rev. C 92, 034331 (2015).
[39] D. R. Entem and R. Machleidt, Phys. Rev. C 68,

041001(R) (2003).
[40] R. Machleidt and D. R. Entem, Phys. Rept. 503, 1

(2011).
[41] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys.

Rev. C 75, 061001(R) (2007).
[42] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog.

Part. Nucl. Phys. 65, 94 (2010).
[43] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys.

Rev. Lett. 103, 082501 (2009).
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