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The discovery of pulsars as heavy as 2 solar masses has led astrophysicists to rethink the core
compositions of neutron stars, ruling out many models for the nuclear equations of state (EoS).
We explore the hybrid stars that occur when hadronic matter is treated in a relativistic mean-
field approximation and quark matter is modeled by three-flavor local and non-local Nambu−Jona-
Lasinio (NJL) models with repulsive vector interactions. The NJL models typically yield equations
of state that feature a first-order transition to quark matter. Assuming that the quark-hadron
surface tension is high enough to disfavour mixed phases, and restricting to EoSs that allow starts
to reach 2 solar masses, we find that the appearance of the quark matter core either destabilizes
the star immediately (this is typical for non-local NJL models) or leads to a very short hybrid star
branch in the mass-radius relation (this is typical for local NJL models). Using the Constant-Sound-
Speed parametrization we can see that the reason for the near-absence of hybrid stars is that the
transition pressure is fairly high and the transition is strongly first-order.
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I. INTRODUCTION

The composition and properties of neutron stars, which are among the densest objects in the Universe, are not well
understood theoretically. However, measurements of the masses and radii of these stars are putting strong constraints
on the equation of state (EoS), ruling out many theoretical models proposed over the years or at least restricting
the allowed values of their free parameters. Specially the recent discovery of two neutron stars with masses ∼ 2M�,
by means of the Shapiro Delay for J1614-2230 [1] and white dwarf spectroscopy for J0348+0432 [2], imposes severe
constraints on models for the EoS of super-dense matter in the cores of neutron stars [3–7].

Inside cold neutron stars, the nuclear matter, which is subject to extreme conditions of high density but low
temperature, could undergo a phase transition, melting hadrons into quarks. Theoretical calculations have suggested
that the deconfinement transition of hadronic matter at low temperature but high density is of first order [8, 9]. For
neutron stars, this can be modeled with a hybrid EoS, which describes neutron star matter at low densities in terms of
hadrons and of deconfined quarks at high densities, assuming a sharp first-order phase transition between hadronic and
quark matter and considering a generic parametrization of the quark matter EoS with a density-independent speed of
sound, known as the “Constant-Speed-of-Sound” (CSS) parametrization [10, 11]. We use the CSS parameterization
to gain insight into the range of possible hybrid stars that is predicted by local and non-local Nambu−Jona-Lasinio
(NJL) models of quark matter combined with a relativistic mean field model of nuclear matter.

Previous analyses of hybrid stars using NJL models of the quark matter EoS have employed various types of the NJL
model, including models with vector interactions and diquark channels to allow for color superconductivity [3, 12, 13],
models with 8 quark interactions [14, 15], and non-local NJL models [4, 16–18]. Quark matter has also been treated
by other methods, such as perturbative QCD extrapolated down to the densities of interest [19], bag models [20–23],
the Field Correlator Method [24], and Dyson-Schwinger equations [25].

In this paper we describe quark matter by the widely-studied NJL model [26–29] with both local and non-local
interactions. The non-local NJL model includes a form factor in the quark-quark interactions that can be used to
simulate the effects of confinement (by generating a quark propagator without poles at real energies [30–33]) and also
functions as a natural regulator. In fact, non-locality arises naturally in the context of several successful approaches
to low-energy quark dynamics as, for example, one gluon exchange [34–36] (as in this work), the instanton liquid
model [37, 38] and the Schwinger-Dyson resummation techniques [39, 40]. Lattice QCD calculations [41] also indicate
that quark interactions should act over a certain range in momentum space. Moreover, several studies [33, 42–45] have
shown that non-local chiral quark models provide a satisfactory description of hadron properties at zero temperature
and density. In our NJL calculations we also include vector interactions and the formation of a chiral condensate, but
not diquark condensation (color superconductivity [46]).

The main questions which are being addressed in this paper are as follows. Does the range of physically plausible
parameters of the NJL quark matter EoS allow for hybrid stars, and if so how long is the hybrid star branch, and are
there observable signatures such as a disconnected third-family branch of hybrid stars as noted in Refs. [15, 47, 48]?
Does the CSS parameterization adequately capture the functional form of the NJL quark matter EoS? Can the CSS
parameterization be used to understand the mass-radius characteristics of NJL hybrid stars?

In particular, previous analysis of hybrid stars using the CSS parameterization of possible quark matter EoSs has
shown that it is easiest to achieve masses of 2M� and above if the quark matter is stiff, with a high speed of sound
c2QM & 0.4 [24]. If the hadron-quark transition is at low pressure then a long hybrid branch can exist in the mass-radius
plane; if the transition is at high pressure then the hybrid branch, if it exists, tends to be very small. In this paper
we will see that the NJL models studied here are of the “high transition pressure” type.

The paper is organized as follows. In section II we describe briefly the models for the hadron and quark phases of
the hybrid stars. In section III we review the CSS parametrization proposed in [11] and check to what degree it can
accurately characterize our NJL EoSs. In section IV we discuss the hybrid stars resulting from our NJL models, and
in section V we give our conclusions.

II. DENSE MATTER IN THE CORES OF HYBRID STARS

A. The outer core

We model the matter in the outer core of a hybrid star using a non-linear relativistic mean field theory [49–53],
where baryons (neutrons, protons, hyperons and delta states) interact via the exchange of scalar, vector and isovector
mesons (σ, ω and ρ mesons, respectively). Replacing all baryon currents in the field equations with their respective
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ground-state expectation values, we arrive at a system of mean-field equations at zero temperature given by

m2
σσ = −dU

dσ
+
∑
B

2JB + 1

2π2
gσB

∫ kB

0

p2dp
mB − gσBσ

[p2 + (mB − gσBσ)2]1/2
,

m2
ωω0 =

∑
B

gωBnB ,

m2
ρρ03 =

∑
B

gρBI3BnB , (1)

where I3B and JB are the 3-components of isospin and spin, respectively, and kB is the Fermi momentum of a baryon
of type B. The baryon-meson coupling constants gσB = xσBgσ, gωB = xωBgω, and gρB = xρBgρ are expressed in
terms of the scalar, vector, and isovector coupling constants gσ, gω, and gρ of the hadronic model parametrizations
(GM1 and NL3) studied in this paper [4, 54, 55]. Following Ref. [56] we take xσB = 0.7 and xωB = xρB = 1. The
quantity U in Eq. (1) denotes the non-linear σ-meson potential, representing the self-interactions of the scalar σ field.
It can be written as

U = [b1mN + b2 (gσσ)] (gσσ)3, (2)

with b1,2 denoting constants determined by the properties of hadronic matter. The quantity mN is the nucleon mass.
Solving Eq. (1) together with the charge neutrality condition and baryonic number conservation, we obtain the total
pressure and the energy density of the hadronic matter in the outer core of the hybrid star (for details, see Refs.
[56, 57]).

B. The inner core

To describe the matter in the inner core of the hybrid star we use a local and non-local extension of the NJL model.
The non-local NJL extension includes non-local interactions and has several advantages over the local NJL model (for
details see [4] and references therein).

1. The non-local NJL model

For this model, the mean-field thermodynamic potential at zero temperature is given by [4]:

ΩNL(Mf , 0, µf ) = −Nc
π3

∑
f=u,d,s

∫ ∞
0

dp0

∫ ∞
0

dp p2 ln

{[
ω̂2
f +M2

f (ω2
f )
] 1

ω2
f +m2

f

}

−Nc
π2

∑
f=u,d,s

∫ √µ2
f−m

2
f

0

dp p2 [(µf − Ef )θ(µf −mf )] (3)

−1

2

 ∑
f=u,d,s

(σ̄f S̄f +
GS
2

S̄2
f ) +

H

2
S̄u S̄d S̄s

− ∑
f=u,d,s

$2
f

4GV
,

where Nc = 3 (as we are considering three quark colors), Ef =
√
p2 +m2

f , and ω2
f = ( p0 + i µf )2 + p2. The

constituent quark masses, Mf , are treated as momentum-dependent quantities and are given by

Mf (ω2
f ) = mf + σ̄fg(ω2

f ) , (4)

where g(ω2
f ) denotes a form factor which we take to be Gaussian, g(ω2

f ) = exp
(
−ω2

f/Λ
2
)

.

The inclusion of vector interactions shifts the quark chemical potential by

µf → µ̂f = µf − g(ω2
f )$f , (5)

where $f represents the vector mean fields related to the vector current interaction. The inclusion of the form factor
in Eq. (5) is a particular feature of the non-local model, which renders the shifted chemical potential momentum
dependent. The squared four momenta, ω2

f , in the dressed part of the thermodynamic potential are modified as

ω2
f → ω̂2

f = ( p0 + i µ̂f )2 + p2 . (6)
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Note that in order to avoid a recursive problem, as discussed in Refs. [58–60], the quark chemical potential shift
does not affect the non-local form factor g(ω2

f ). In this work we use the parameters listed in Table I for the non-local
NJL model.

As was proven in Ref. [61], within the stationary phase approximation, the mean-field values of the auxiliary fields,
S̄f , are related to the mean-field values of the scalar fields σ̄f . They are given by

S̄f = − 16Nc

∫ ∞
0

dp0

∫ ∞
0

dp
p2

(2π)3
g(ω2

f )
Mf (ω2

f )

ω̂2 +M2
f (ω2

f )
. (7)

The mean field values of σ̄f and $f are obtained via minimizing the thermodynamic potential with respect to
variations in these quantities, that is,

∂ΩNL

∂σ̄f
= 0 ,

∂ΩNL

∂$f
= 0 . (8)

The relevant mean-field flavor fields are σ̄u, σ̄d and σ̄s.

Parameters Set I Set II Set III

m̄[MeV] 5.0 5.5 6.2

ms [MeV] 119.3 127.8 140.7

Λ [MeV] 843.0 780.6 706.0

GSΛ2 13.34 14.48 15.04

HΛ5 −273.75 −267.24 −337.71

Table I. Sets of parameters used for the non-local NJL model calculations presented in this paper.

2. The local NJL model

For the local SU(3) NJL model, we use the scheme and parameters of Refs. [4, 62] (and references therein). At the
mean-field level, the thermodynamic potential at zero temperature reads

ΩL(Mf , µ) = GS
∑

f=u,d,s

〈
ψ̄fψf

〉2
+ 4H

〈
ψ̄uψu

〉 〈
ψ̄dψd

〉 〈
ψ̄sψs

〉
− 2Nc

∑
f=u,d,s

∫
Λ

d3p

(2π)
3 Ef

− Nc
3π2

∑
f=u,d,s

∫ pFf

0

dp
p4

Ef
−GV

∑
f

ρ2
f , (9)

where Nc = 3, Ef =
√
p2 +M2

f , and pFf
=
√
µ2
f −M2

f . The constituent quark masses Mf are given by

Mf = mf − 2GS
〈
ψ̄fψf

〉
− 2H

〈
ψ̄jψj

〉 〈
ψ̄kψk

〉
, (10)

with f, j, k = u, d, s indicating cyclic permutations. The vector interaction shifts the quark chemical potential accord-
ing to

µf → µf − 2GV ρf , (11)

where ρf is the quark number density of the quark field of flavor f in the mean field approximation, that is,

ρf =
Nc
3π

[(µf − 2GV ρf )2 −M2
f ]3/2 . (12)

The mean field values are determined from the solution of the gap equations, obtained by minimizing the thermody-
namic potential with respect to the quark condensates

〈
ψ̄fψf

〉
,

∂ΩL

∂
〈
ψ̄fψf

〉 = 0 , f = u, d, s . (13)
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Parameters Set IV Set V

m̄ [MeV] 5.5 5.5

ms [MeV] 135.7 140.7

Λ [MeV] 631.4 602.3

GSΛ2 3.67 3.67

HΛ5 −9.29 −12.3

Table II. Sets of parameters used for the local NJL model calculations presented in this paper.

C. The hadron-quark phase transition

Several theoretical works [15, 19–21, 48, 63–65] have suggested that there might be a first-order phase transition
between hadronic and quark matter at low temperatures. The density at which such a phase transition occurs is not
known, but it is expected to occur at several times nuclear saturation density. In a neutron star, such a transition
can lead to two possible structures, depending on the surface tension between hadronic and quark matter [66–71].

If the surface tension between hadronic and quark matter is bigger than a critical value, which is estimated to be
between around 5 to 40 MeV/fm2 [66, 68], then there is a sharp interface (Maxwell construction) between neutral
hadronic matter and neutral quark matter. If the surface tension is below the critical value then there is a mixed
phase (Gibbs construction), with charge-separated domains of quark and hadronic matter occurring over a finite range
of pressures. In this work we will assume that the surface tension of the interface is high enough to ensure that the
transition occurs at a sharp interface. This is a possible scenario, given the uncertainties in the value of the surface
tension [66, 69, 72]. For a discussion of generic equations of state that continuously interpolate between the phases
to model mixing or percolation, see Refs. [7, 73, 74].

EoS GV /GS ptrans/εtrans ∆ε/εtrans c
2
QM Mmax [M�] RM [km] ∆M [M�] (CSS) ∆M [M�] (NJL)

GM1

Set I
0.00 No Phase Transition

0.05 0.25 0.78 0.13 2.10 13.36 5.1× 10−6 < 10−5

0.09 0.27 0.83 0.26 2.17 13.19 1.4× 10−6 < 10−5

Set II
0.00 0.24 1.21 0.22 2.08 13.39 0 0

0.05 0.28 1.09 0.27 2.18 13.18 0 0

0.09 0.31 0.96 0.29 2.25 12.97 < 10−6 < 10−5

Set III
0.00 0.24 1.35 0.26 2.09 13.38 0 0

0.05 0.29 1.12 0.32 2.21 13.10 0 0

0.09 0.33 0.87 0.46 2.29 12.78 1.1× 10−6 < 10−5

NL3

Set I
0.00

No Phase Transition0.05

0.09

Set II
0.00 No Phase Transition

0.05 0.27 1.46 0.17 2.37 14.59 0 0

0.09 0.29 1.39 0.25 2.46 14.49 0 0

Set III
0.00 0.24 1.87 0.23 2.27 14.66 0 0

0.05 0.28 1.65 0.29 2.42 14.54 0 0

0.09 0.32 1.42 0.36 2.54 14.40 0 0

Table III. Properties of the compact stars arising from quark matter obeying the non-local NJL EoS. We show results for two
hadronic EoSs, GM1 and NL3, and for various NJL parameter values (sets I, II, III, see Table I), and vector couplings GV .
For each case we show the three CSS parameters that characterize the quark matter EoS (see Sec. III), along with the mass
and radius of the heaviest star, and the mass range ∆M of the hybrid branch, obtained from the CSS parameters and from
the original non-local NJL EoS.
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EoS GV /GS ptrans/εtrans ∆ε/εtrans c
2
QM Mmax [M�] RM [km] ∆M [M�] (CSS) ∆M [M�] (NJL)

GM1

Set IV
0.00 0.20 0.39 0.33 1.93 13.44 5× 10−2 1.1× 10−2

0.15 0.27 0.48 0.20 2.16 13.21 3× 10−3 1.4× 10−3

0.30 0.32 0.66 0.23 2.27 12.90 2.5× 10−4 2.2× 10−4

Set V
0.00 0.25 0.60 0.22 2.10 13.35 7.6× 10−4 4.9× 10−4

0.15 0.30 0.85 0.19 2.23 13.04 1.7× 10−6 < 10−5

0.30 0.34 0.84 0.27 2.30 12.75 1.9× 10−6 < 10−5

NL3

Set IV
0.00 0.17 0.64 0.31 1.84 14.79 2.8× 10−4 5.3× 10−4

0.15 0.22 0.57 0.35 2.15 14.70 1.8× 10−3 2.6× 10−3

0.30 0.27 0.59 0.24 2.39 14.57 8.4× 10−4 1.1× 10−3

Set V
0.00 0.22 0.84 0.33 2.15 14.72 0 0

0.15 0.27 0.84 0.21 2.39 14.58 2.8× 10−6 < 10−5

0.30 0.31 0.99 0.21 2.52 14.42 0 0

Table IV. Properties of the compact stars arising from quark matter obeying the local NJL EoS. We show results for two
hadronic EoSs, GM1 and NL3, and for various NJL parameter values (sets IV, V see Table II), and vector couplings GV . For
each case we show the three CSS parameters that characterize the quark matter EoS (see Sec. III), along with the mass and
radius of the heaviest star, and the mass range ∆M of the hybrid branch, obtained from the CSS parameters and from the
original local NJL EoS.

III. THE CSS PARAMETRIZATION

The CSS parameterization assumes that there is a sharp interface between nuclear matter and quark matter, and
that the speed of sound in quark matter is pressure-independent for pressures ranging from the first-order transition
pressure up to the maximum central pressure of a neutron star. The main features of the quark matter EoS can then
be captured by three parameters (see Fig. 1): the pressure ptrans at the transition, the discontinuity in energy density
∆ε at the transition, and the speed of sound cQM in the high-density phase. For a given nuclear matter EoS εNM(p),
the CSS parameterization of the EoS takes the form

ε(p) =

{
εNM(p) , p < ptrans

εNM(ptrans) + ∆ε+ c−2
QM(p− ptrans) , p > ptrans

. (14)

The values of the CSS parameters (ptrans/εtrans, ∆ε/εtrans, c
2
QM) for the EoSs described in Sec. II are given in Tables

III (non-local NJL) and IV (local NJL).
The discontinuity in the energy density ∆ε is a measure of how strongly the first-order phase transition is, and

determines the presence or absence of a connected hybrid star branch. When the central pressure rises just above ptrans

one would expect a very small core of quark matter to appear. However, it can be shown [75–77] that, independent
of the speed of sound in quark matter,

∆ε > ∆εcrit ⇒ no connected branch,

∆ε < ∆εcrit ⇒ connected branch,

where
∆εcrit

εtrans
=

1

2
+

3

2

ptrans

εtrans
.

(15)

In other words, if the energy density jump at the transition is bigger than ∆εcrit then the quark matter core, no
matter how small, destabilizes the star, and the mass-radius relationship contains no branch of hybrid stars connected
to the hadronic branch. It must be emphasized strongly that this conclusion is independent of the speed of sound
in quark matter, and that the criterion (15) is valid independent of how pressure-independent the speed of sound in
quark matter is. It is only for predictions of the presence or absence of disconnected branches or for properties of
stable hybrid stars (mass, radius) that the CSS parameterization relies on the assumption of a pressure-independent
speed of sound.

In Figs. 3 and 4 we plot c2QM as a function of the pressure for all the quark matter EoSs considered in Sec. II. We

also show where the hadron to quark phase transitions occur, as dots (for the NL3 hadronic EoS) and triangles (for
the GM1 hadronic EoS). NL3 is a stiffer EoS, and it undergoes the phase transition at lower ptrans.

In the local NJL models (Fig. 4) the speed of sound is only mildly sensitive to the NJL model parameters such
as ms (which increases from Set IV to Set V) and the vector coupling constant GV . Moreover, above the hadron to
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Figure 1. (Color online) EoS, ε(p), for dense matter without vector interaction, showing the energy density discontinuity
∆ε between hadronic matter (NL3) and quark matter. For quark matter modeled by non-local NJL SET III, panel (a), the
discontinuity is greater than ∆εcrit (15), so there is no stable connected hybrid branch. In contrast, the local NJL SET IV,
panel (b), has a smaller discontinuity ∆ε < ∆εcrit which leads to a connected but very short hybrid branch (see Table IV).

ε
trans

∆
ε

ε

trans

tr
a
n
s

p

Connected

Absent
Disconnected

Both

Figure 2. (Color online) Schematic phase diagram of the possible topologies of M(R) [11]. The thick straight (red) line (Eq. (15))
separates EoSs with a connected hybrid branch (regions B and C below the line) from those without a connected hybrid branch
(regions A and D above the line). The dashed black lines delimit the regions (B and D) where disconnected hybrid branches
occur. The insets show M(R) in each region, with a thin dashed (red) line indicating unstable hybrid stars and a thin solid
(red) line indicating stable hybrid stars.

quark phase transition the speed of sound shows only a moderate dependence on pressure, tending to stay within the
range c2QM ∼ 0.2 to 0.3. We therefore expect that the local NJL models will be reasonably accurately characterized
by the CSS parameterization.

The non-local NJL model (Fig. 3), in contrast, shows great sensitivity to the NJL model parameters. As ms and
GV increase we see that c2QM varies more strongly with pressure. For higher values of ms and GV the non-local
NJL model EoSs are outside the family of EoSs that can be accurately characterized by the CSS parameterization.
However, as noted above, the criterion (15) for the presence of connected hybrid branches is independent of the speed
of sound; the density dependence of c2QM will only affect the CSS prediction of the presence of disconnected hybrid
star branches.
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Figure 3. (Color online) Squared speed of sound for the non-local NJL quark matter model as a function of pressure. NL3 to
quark matter transitions are marked by dots; GM1 → quark matter is marked by triangles. Solid lines show the behaviour
without vector interactions, while dashed and dotted lines represent the results for a finite vector interaction coupling constant.
Left, central and right panels correspond to the non-local NJL model with parameter set I, panel (a), set II, panel (b), and set
III, panel (c).
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Figure 4. (Color online) Squared speed of sound for the local NJL quark matter model as function of pressure. The symbols
and line styles are similar to those in Fig. 3. Left and right panels correspond to the local NJL model with parameter set IV,
panel (a), and set IV, panel (b). Note that the local NJL model shows a more density-independent speed of sound, and thus
is more accurately characterized by the CSS parameterization than in the non-local case.

IV. MASS-RADIUS RELATIONS

The CSS parameterization allows us to conveniently survey the mass-radius relation ships for a large class of possible
quark matter equations of state. We will first discuss how the form of the mass-radius relationship is determined by
the CSS parameters, then we will see where in the CSS parameter space the NJL quark matters EoSs are to be found.

The general dependence of the mass-radius relationship on the CSS parameters is shown schematically in Fig. 2.
We have fixed c2QM and we vary ptrans/εtrans and ∆ε/εtrans. There are four regions in the space of possible quark
matter EoSs corresponding to four topologies of the mass-radius curve for compact stars: the hybrid branch may
be connected to the nuclear branch (C), or disconnected (D), or both connected and disconnected branches may be
present (B), or neither (A) [11]. The mass-radius curve in each region is depicted in inset graphs, in which the thick
green line is the hadronic branch, the thin solid red lines the stable hybrid stars, and the thin dashed red lines the
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unstable hybrid stars. The thick straight (red) line in Fig. 2 is the critical line given by Eq. (15), above which there
is no connected hybrid branch. We emphasize that this critical line is independent of the speed of sound in the quark
matter, and depends only on ∆ε/εtrans and εtrans/ptrans.

Figure 5. (Color online) Diagram showing (black symbols) where different quark matter parameterizations, for the local and
nonlocal models, combined with GM1 nuclear matter, fall in the CSS parameter space. Each panel is for a different range of
c2QM. EoSs below the straight solid (red) line (regions B and C) yield a connected hybrid branch. EoSs within the shaded gray
area are excluded because their heaviest star is below 2M�. The hatched area at densities ntrans < n0 is excluded because
uniform nuclear matter is not stable in that region. See Tables III and IV.

We see in Tables III and IV that each NJL model of the quark matter EoS corresponds to a set of CSS parameters,
i.e. to a value of c2QM and a point in the accompanying (ptrans/εtrans,∆ε/εtrans) plane. In Figs. 5 and 6, we use
black symbols to plot the CSS parameter values corresponding to the NJL models listed in Tables III and IV. In
Fig. 5 the NJL models for quark matter are combined with nuclear matter described by the GM1 EoS. In Fig. 6
the nuclear matter is described by the NL3 EoS. To capture the variation in c2QM, each figure has 4 panels, each one

devoted to a small range of values of c2QM. For example, in the panel (a) of Fig. 5 we show the NJL models that

have c2QM ≈ 0.2. One of them (the triangle-point corresponding to GM1+Set I) is in the “A” region, meaning that
it gives no hybrid stars because its phase transition is so strongly first-order. The others are all in the “C” region,
meaning that their mass-radius relation includes a connected branch of hybrid stars. However the connected branch
is short, covering a range of no more than 0.05M�. (For other nuclear and quark models the hybrid branches are
even shorter, covering a range of order of 10−3M� or less.) It would be difficult to detect such a short hybrid branch
in mass-radius observations.

In each panel in Figs. 5 and 6 there is a grey shaded region covering the equations of state that are ruled out
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Figure 6. (Color online) Diagram showing (black symbols) where different quark matter parameterizations, for the local and
nonlocal models, combined with GM1 nuclear matter, fall in the CSS parameter space. Each panel is for a different range of
c2QM. EoSs below the straight solid (red) line (regions B and C) yield a connected hybrid branch. EoSs within the shaded gray
area are excluded because their heaviest star is below 2M�. The hatched area at densities ntrans < n0 is excluded because
uniform nuclear matter is not stable in that region. See Tables III and IV.

because they give a maximum compact star mass below 2M�. The paler shading is for the lowest value of c2QM that

is associated with the panel, and the darker shading is for the highest value of c2QM.

The “D” region (where disconnected hybrid star branches exist) and the “B” region (where both connected and
disconnected hybrid star branches exist) are inside the grey shaded region, meaning that for the GM1 nuclear matter
EoS and for quark matter with c2QM ≈ 0.2 all CSS-compatible quark matter EoSs that would give disconnected hybrid
branches are ruled out because their heaviest star is too light.

The remaining panels of Fig. 6 show similar plots for the NJL EoSs with higher sound speed values: c2QM ≈ 0.25, 0.3,

and finally one for the GM1+Set III EoS which has c2QM = 0.46. We see that as c2QM grows the B+D region

(where disconnected hybrid branches exist) also grows, but always remains within the grey region, excluded by the
Mmax > 2M� constraint.

Most of the non-local NJL EoSs lack hybrid branches because the energy density jump at the transition is so
large that the quark matter core immediately destabilizes the star. Even for the quark EoSs that are in the C
region below the red line, the hybrid branch is very short. This is because those EoSs have high transition pressure
(ptrans/εtrans & 0.2) so any star with central pressure high enough to develop a quark matter core is already close to
the central pressure at which the hadronic star would become unstable even without a quark matter core, so when
the core appears it easily “pushes the star over the edge” into instability.
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To evaluate the sensitivity of our results to other parameters in the NJL model, we looked at two alternate parameter
sets to see if they yielded longer hybrid branches.

Firstly, to probe the effects of flavor mixing we set the ’tHooft coupling constant H in the IV parametrization to
zero. This corresponds to a local NJL model without flavor mixing. To reproduce the vacuum constituent quark
masses, we set GSΛ2 = 4.638 and ms = 112.0 MeV [29]. Since increasing GV tends to result in smaller quark cores,
we set GV = 0. Even so, we found that setting H to zero further disfavors hybrid branches. For GM1 hadronic matter
the resultant connected hybrid branches were even shorter (∆M ∼ 4 × 10−4M�) than in the case with H 6= 0. For
NL3 hadronic matter there was no stable hybrid branch, where there had been a very short one when H 6= 0. We
conclude that the ’tHooft flavor mixing term favors the appearance of a hybrid stable branch.

Secondly, to analyze how sensitive the results are to changes in the strange quark mass we considered another
parametrization for the local NJL model without vector coupling, [78] with Λ = 750 MeV, G2

S = 3.67, HΛ5 = −8.54,
mu = md = 3.6 MeV and ms = 87 MeV. With both GM1 and NL3 nuclear matter we found no hybrid branch. This
could be attributed to the combination of two contributions: the lower strange quark mass increases the fraction of
strange quarks at lower densities [29] and a weaker flavor mixing favors a faster increasing of strangness fraction with
rising density. The combination of these two contributions softens the quark matter EoS and helps to destabilize
hybrid stars. However, a color superconducting phase in the core could help to stabilize the star [64].

V. CONCLUSIONS

We have studied the hybrid stars that arise from quark matter modeled by local and non-local NJL models with
vector interaction among the quarks. The reason for studying the non-local NJL model is that it is constructed to
have the closest correspondence to QCD [33–44], and has a natural cutoff in the form of the momentum dependence of
the effective quark masses. For the equation of state of hadronic matter we used the non-linear relativistic mean field
model with two different parameterizations, GM1 (softer) and NL3 (stiffer). We assumed that the surface tension at
the interface is high enough so that there is a sharp interface between the phases with no mixed phase.

The main physical conclusion is that the non-local NJL models that we studied typically give no hybrid stars, while
the local NJL models sometimes give hybrid stars, but they cover a very small range of masses and radii (this is
different from the behavior seen when the phase boundary is a mixed phase (Gibbs construction) [4, 62]). According
to Tables III and IV, the mass range is of order 10−3M� or less. One would expect a very small fraction of observed
neutron stars to be in the hybrid branch, and they would be difficult to identify via mass and radius measurements,
but it is possible that those stars, which would have very small quark matter cores, might nonetheless have distinctive
observable properties. One possibility is fast cooling if the quark matter core had a high neutrino emissivity. Another
is that the density discontinuity associated with the quark core might affect the frequency spectrum of non-radial
oscillation modes [79], leading to signatures in the gravitational wave emission.

We found that in the NJL models that we studied, the EoSs for quark matter are adequately represented by the
CSS (Constant-Speed-of-Sound) parameterization, and that the CSS parameterization helps us to understand the
characteristics of the hybrid stars predicted by the NJL model. As we see in Figs. 5 and 6, and in Fig. 2 of Ref. [24],
quark matter EoSs that are soft, with c2QM . 1/3, are severely restricted by the 2M� constraint. To meet it they
must have a high transition pressure. When the transition pressure is high, approaching the pressure at which the
hadronic star would become unstable anyway even without a transition to quark matter, the hybrid branch tends to
be very short because, unless the transition to quark matter is very weakly first-order, the appearance of the denser
core of quark matter pushes the star close to the point of instability. This explains why in this work we only find very
short connected hybrid branches and no disconnected hybrid branches. The NJL models studied here tend to have a
low speed of sound. The 2M� constraint then rules out disconnected branches (the B and D regions of Figs. 5 and
6) and requires a high transition pressure.

The fact that the hybrid branches are so short means that only a very small range of pressures above the transition
to quark matter are physically attained in hybrid stars, so, since the CSS parameterization is essentially a Taylor
expansion of ε(p) around the transition, it is a very accurate representation of the quark matter EoS over this range.

The CSS parameterization exposes the physical consequences of varying the parameters of the NJL quark matter
EoS. Tables III and IV show the mapping from the NJL parameters to the CSS parameters. We see that

• Increasing ms at fixed vector to scalar coupling ratio, which corresponds to going from Set I to III (non-local NJL)
or IV to V (local NJL), leads to an EoS with higher phase transition pressure, a larger energy density discontinuity
at the transition, and higher speed of sound in the quark matter.

• Increasing the vector to scalar coupling ratio with other parameters held fixed also increases the transition pressure,
energy density discontinuity, and speed of sound.

• The consequences for hybrid stars can be read off from Figs. 5 and 6. Increasing the strange quark mass or
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the repulsive vector interaction does not favor hybrid stars since at higher transition pressure and energy density
discontinuity it becomes more likely that a quark matter core will destabilize the star.

In the future, it would be useful to study further variations on the models considered here. This will help to shed
light on how generic our results are. For hadronic matter, it would be interesting to use the DD2-EV EoS [15] which
is a relativistic model that has been calibrated to fit known properties of nuclear matter. For quark matter, one
should study the role of the mixing (’tHooft) term. It is known that the ’tHooft interaction shifts the critical end
point location in the QCD phase diagram, affecting the nature of the hadron-quark phase transition (see for example
Refs. [78] and [80]). In addition, one could include a diquark coupling. The presence of diquark condensates lowers
the transition chemical potential, allowing a lower transition pressure, which has been seen to yield longer hybrid
branches than we found in this work [12].
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