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During the Big Bang, 6Li was synthesized via the 2H(α, γ)6Li reaction. After almost 25 years of
the failed attempts to measure the 2H(α, γ)6Li reaction in the lab at the Big Bang energies, just
recently the LUNA collaboration presented the first successful measurements at two different Big
Bang energies [M. Anders et al., Phys. Rev. Lett. 113, 042501 (2014)]. In this paper we will
discuss how to improve the accuracy of the direct experiment. To this end the photon’s angular
distribution is calculated in the potential model. It contains contributions from electric dipole and
quadrupole transitions and their interference, which dramatically changes the photon’s angular dis-
tribution. The calculated distributions at different Big Bang energies have a single peak at ∼ 50◦.
These calculations provide the best kinematic conditions to measure the 2H(α, γ)6Li reaction. The
expressions for the total cross section and astrophysical factor are also derived by integrating the
differential cross section over the photon’s solid angle. The LUNA data are in excellent agreement
with our calculations using a potential approach combined with a well established asymptotic nor-
malization coefficient for 6Li → α+ d. Comparisons of the available experimental data for the S24

astrophysical factor and different calculations are presented. The Big Bang lithium isotopic ratio
6Li/7Li = (1.5±0.3)×10−5 following from the LUNA data and the present analysis are discussed in
the context of the disagreement between the observational data and the standard Big Bang model,
which constitutes the second Lithium problem.
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I. INTRODUCTION

The primordial nuclei were formed during the first 20 minutes after the Big Bang. Among them the lithium isotopes,
7Li and a much smaller amount of 6Li, were synthesized. Later on, cosmic rays, novae and pulsations of AGB stars
were the main generators of the 7Li isotope, and 6Li was formed mainly by cosmic rays. In 1982, two important papers
[1, 2] for the first time noted that metal-poor (−2.4 ≤ [Fe/H] ≤ −1.4), warm (5700 ≤ Teff ≤ 6250 K) dwarf stars
demonstrated remarkably constant 7Li abundance (Spite plateau), which does not depend on metallicity and effective
temperature. It was quite a surprising observation because depletion of lithium over such a broad temperature range
should be significant. Because it was impossible to explain the existence of the Spite plateau over a wide range of
temperatures, it was suggested that no depletion of 7Li took place in the observed dwarf warm stars and that the
constant abundance of 7Li is the primordial one. However, this interpretation of the Spite plateau was periodically
challenged. For example, in [3, 4] the meltdown of the Spite plateau was discovered in some low metallicity stars.

Explanation of the lithium abundance in low metallicity stars in the halo of our Galaxy where the lithium abun-
dance demonstrates independence on metallicity, forming the Spite plateau, became one of the hot topics in modern
cosmology/nuclear astrophysics. Note that the observations of the primordial lithium are restricted to white dwarfs
because the loosely bound 7Li nuclei are easily destroyed by the 7Li(p, α)4He reaction when the temperature exceeds
2.6× 106 K. For this reason, red giants cannot be used to determine the lithium primordial abundance.

In the standard Big Bang nucleosynthesis model, 7Li is formed right after the Big Bang, together with 1H, 2H, 3He
and 4He. The primordial reactions start from the deuteron formation p + n→ d+γ. The deuteron’s yield depends on
the primordial baryon/photon ratio ηB . Because the deuterons are seeds, which are necessary to synthesize heavier
elements, the abundance of heavier elements, and lithium in particular, also depends on ηB . 2H and 7Li are two
primordial nuclei which is most sensitive to ηB .

The abundance of the primordial 7Li within the framework of the standard Big Bang scenario, calculated using the
extended reaction network and nine years of WMAP results [5], is 7Li/H = 5.13×10−10. It is 7Li/H = (4.56−5.34)×
10−10 [6] based on the Planck results [7] plus the information about the lensing potential and ground-based high
resolution experiments. The latter is considered to be the most up-to-date estimation of the 7Li isotope abundance
within the standard Bing Bang scenario. This abundance remains significantly higher than more recent observations
in metal poor halo stars [4]: 7Li/H = 1.58+0.35

−0.28 × 10−10. The shortage of the observed 7Li compared to the standard
Big Bang predictions represents the so-called first Lithium puzzle.

During the Big Bang a very small amount of 6Li was synthesized via the 2H(α, γ)6Li reaction. Later, 6Li was mostly
formed by cosmic rays. The primordial 6Li is assumed to be present in the gas from which the stars were formed.
Unlike most of the other elements, when 6Li is synthesized inside the stars by hydrostatic nucleosynthesis, it is quickly
destroyed. But in the atmosphere of the halo metal-poor warm dwarfs, the primordial 6Li can survive for 13 billion
years not being affected by cosmic rays, although its survival can be questioned. 7Li is used to help determine the
primordial Big Bang 6Li abundance. First, the presence of 6Li constrains the destruction of 7Li, because 6Li is more
easily destroyed than 7Li. Besides, if 6Li was formed before the formation of the stars, then the same is true for 7Li.

Stellar 7Li abundance is usually determined from the resonance line at 670.8 nm but in exceptional cases also from
the weaker line at 610.4 nm. The isotope 6Li can be detected through the isotopic shift in the Li I 670.8 nm line.
The distortion of the line profile is very small and therefore requires very high quality spectra. Ref. [8] reported for
the first time the detection of a high abundance of 6Li in very metal-poor stars. The authors concluded that the
observed 6Li was formed during Big-Bang nucleosynthesis. The detection of 6Li was based on the fact noted above,
that the presence of 6Li in the stellar atmosphere causes an asymmetry in the Li 670.8 nm line. The average 6Li/7Li
isotopic ratio in the nine stars, in which 6Li was detected, was 6Li/7Li ∼ 5×10−2 [8]. Such a high isotopic ratio of the
primordial lithium isotopes in the metal-poor stars contradicts the Big-Bang based model predictions 6Li/7Li ∼ 10−5

[6] and cannot be explained by the galactic cosmic rays. This disagreement between the observations and Big Bang
predictions of the lithium isotopic ratio constitutes the second Lithium problem.

Later it was pointed out in [9] that the line asymmetry caused by convection in the photospheres of metal-poor
stars is practically indistinguishable from the asymmetry produced by a weak 6Li distortion of a symmetric 7Li line.
Hence, the 6Li abundance obtained in [8] could be significantly overestimated, and the result obtained in [8] can be
considered only as an upper limit of the lithium isotopic ratio. In Ref. [10] the lithium isotopic ratio was reanalyzed
within the framework of the 3D, non-local thermodynamic equilibrium (NLTE) model. The authors came to the
conclusion that “’the observational support for a significant and non-standard 6Li production source in the early
universe is substantially weakened by our findings” [10], which opens a way to a hope that the primordial abundance
of 6Li calculated in the standard Big Bang nucleosynthesis can be eventually reconciled with observational data.

The yields of the observed and predicted primordial 7Li are established quite well [6]. If the observed 6Li is primordial
(a Big Bang product) then its abundance is determined by the 2H(α, γ)6Li reaction. The first successful attempt
to measure the 2H(α, γ)6Li reaction was reported in [11] where residual 6Li nuclei were detected. The astrophysical
factor was measured in the vicinity of the first resonance 6Li(3+) at the relative α−d energy E = 0.712 MeV and at
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higher energies. But no data were obtained at Big Bang energies, 30 . E . 400 keV. In [12] the astrophysical S24(E)
factor was also measured only at the resonance energy, using in-beam spectroscopy.

In Ref. [13] for the first time, an attempt was made to measure the astrophysical factor at the Big Bang energies,
using the Coulomb breakup of 6Li at 26 MeV/A energy on a 208Pb target. However, only an upper limit was
established. The failure of this indirect attempt to measure the S24(E) astrophysical factor could be anticipated
because the E1 transition, which usually dominates, is suppressed in the case under consideration: the effective
charge for the dipole transition is very small owing to practically the same charge/mass ratio for α-particle and
deuteron. Because the Coulomb dissociation cross section is dominated by the E2 transition, the obtained data may
be considered only as an upper limit. After that, another unsuccessful attempt to measure the S24(E) factor ended
with an upper limit S24(53 keV) < 2.0 × 10−7 MeVb and a pessimistic conclusion that it would be impossible to
measure directly S24(E) at Big Bang energies [14].

The second attempt to use the indirect Coulomb dissociation technique was made in [15], where the breakup of 6Li
ions at 150 MeV/A on a 208Pb target was measured. However, in this case, the breakup was dominated by nuclear
breakup, which overwhelmed the Coulomb breakup. Hence, no information about S24(E) was extracted from the
analysis of the breakup data. Further, in Ref. [15] the astrophysical factor was calculated using a two-body potential
model (see below). Finally, after almost 25 years of failed attempts to measure the 2H(α, γ)6Li reaction at the Big
Bang energies, just recently the LUNA collaboration presented the first successful measurements at two different Big
Bang energies [16]. Definitely it is a remarkable achievement in the studies of Big Bang nucleosynthesis.

In this work we discuss the astrophysical 2H(α, γ)6Li reaction within the framework of the potential approach and
impact on experimental measurements. For the first time, we present the angular distribution of the photons emitted
in this direct radiative capture. Although the photon differential cross section is being derived for the 2H(α, γ)6Li
process, it can be applied for any direct electric radiative capture reaction. The calculated angular distributions
provide the best kinematics to be used in the measurement of the emitted photons, which differ from the one used
in the LUNA experiment. Optimal kinematics will allow one to decrease significantly the uncertainty of direct
measurements of the 2H(α, γ)6Li process compared to the uncertainties in the LUNA experiment. By integrating
the differential cross section over the photon solid angle, the total cross section and astrophysical factor of the direct
radiative capture are derived. The calculations of the photon’s angular distribution and astrophysical S24(E) factor
are done in the potential model using the well determined asymptotic normalization coefficient for the virtual decay
6Li→ α+ d. The primordial 6Li abundance is presented.

II. PHOTON DIFFERENTIAL CROSS SECTIONS, TOTAL CROSS SECTIONS AND
ASTROPHYSICAL S-FACTORS

A. Photon angular distribution in direct radiative capture

In this section the expression for the angular distribution of the photons emitted in the α(d, γ)6Li direct radiative
capture is derived and further simplified in the subsequent section. This result can help to improve future experiments
on this reaction by decreasing their uncertainties. Often photon angular distributions are not discussed in the papers
dealing with measurements of the astrophysical factors. That is why we believe it is timely to do it. Besides
by integrating the photon differential cross section over the photon’s solid angle the total cross section and the
astrophysical factor can be derived.

We consider the photon angular distribution taking into account the spin-orbit interaction in the initial state.
Hence, the initial scattering wave function depends on the initial α − d relative orbital angular momentum li, the
channel spin s and the total angular momentum in the initial channel Ji. In the case under consideration s = Jd,
where Jd = 1 is the spin of the deuteron. The differential cross section of the emitted photons with momentum kγ and
helicity λ = ±1 in the electromagnetic transition from the initial continuum state li, s, Ji to the final state lf , s, Jf
in the center-of-mass of 6Li is given by

dσλ
dΩ
∼ k2γ

∣∣∣∣−1

c

∫
dr
〈
ϕ6Li(ζα, ζd; rαd)

∣∣Ĵ(r)
∣∣Ψ(+)

k (ζα, ζd; rαd)
〉
·A∗λkγ (r)

∣∣∣∣2 . (1)

Here, Aλkγ (r) is the vector-potential of the photon with helicity λ and momentum kγ at coordinate r. The initial
wave function is

Ψ
(+)
k (ζα, ζd; rαd) = ϕα (ζα)ϕd(ζd)ψ

(+)(k, rαd), (2)

ϕ(ζi) is the bound-state wave function of nucleus i with the set of the internal coordinates ζi, which includes spin-
isospin variables. ψ(+)(k, rαd) is the α − d scattering wave function in the initial state, rαd is the radius-vector
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connecting the centers of mass of the α-particle and the deuteron, k is the initial α − d relative momentum related
to the initial relative kinetic energy as E = k2/(2µα d), where µα d is the α− d reduced mass. The momentum of the
emitted photon is kγ = (E+ε)/~ and expressed in fm−1, ε is the binding energy for the virtual decay 6Li→ α+d. The
antisymmetrization between the nucleons of the α-particle and the deuteron is neglected. Note that all the kinematic
factors defining the photon differential cross section including the spin-dependent factors will be recovered later.

We use the long wavelength approximation, which is valid for kγ Rαd << 1. Here Rα d is the effective α−d distance
determined so that distances r ∼ Rα d give the dominant contribution to the amplitude of the direct radiative capture.
The long electromagnetic wavelength of the emitted radiation allows us to approximate the charge current density by
the current density of the point-like α-particle and deuteron neglecting their internal structure:

Ĵ(r) =
Zd e

2md

[
δ(r− rd) p̂d + p̂d δ(r− rd)

]
+
Zα e

2mα

[
δ(r− rα) p̂α + p̂α δ(r− rα)

]
, (3)

where p̂i = −i ~ ∂/∂ri is the momentum operator, rd = −(mα/mαd) rαd and rα = (md/mαd) rαd are the coordinates
of the centers of mass of the deuteron and alpha-particle, respectively, mi and Zi are the mass and atomic number of
nucleus i and mij = mi+mj . We neglect here the spin contribution to the current density because below we consider
only the electric transitions which are largely due to the charge current.

Now the overlap function of the bound-state wave functions of 6Li, α-particle and deuteron can be introduced:

Ilf s Jf (rαd) =
〈
ϕα(ζα)ϕd(ζd)

∣∣ϕ6Li(ζα, ζd; rαd)
〉

=
∑

mlf m
′′
s

〈
lf mlf sm

′′
s |Jf Mf

〉
Ylfmlf (r̂αd)χsm′′s Ilf s Jf (rαd), (4)

where Ilf s Jf (rαd) is the radial overlap function,
〈
lf mlf sm

′′
s |Jf Mf

〉
is the Clebsch-Gordan coefficient, lf is the

α − d relative orbital angular momentum in the bound state, Jf = 1 is the spin of the ground state of 6Li; χsm′′s is
the spin wave function describing the state with the channel spin s and its projection m′′s , r̂ = r/r is the unit vector.
The integration in the matrix element

〈
ϕα(ζα)ϕd(ζd)

∣∣ϕ6Li(ζα, ζd; rαd)
〉

is taken over all the internal coordinates ζα
and ζd making the overlap function depending only on the radius-vector rαd.

In the peripheral region the radial overlap function is given by

IlfsJf (rαd)
rαd>r0≈ ClfsJf W−η, lf+1/2(2κ rαd)/rαd, (5)

where ClfsJf is the asymptotic normalization coefficient (ANC) for the virtual decay 6Li→ α+d expressed in fm−1/2,
W−ηf , lf+1/2(2κ rαd) is the Whittaker function determining the radial shape of the overlap function beyond of the

α − d nuclear interaction region, ηf = (Zα Zd e
2/~ c)(µαd c/~)(1/κ) is the Coulomb α − d bound-state parameter,

κ =
√

2µαd c2 ε/~ c is the α−d bound-state wave number expressed in fm−1. The radial overlap function is expressed

in fm−3/2. r0 is the channel radius, which is selected so that at rαd > r0 the nuclear interaction between the deuteron
and α-particle is negligible.

The matrix element in (1) now can be rewritten as

1

c

∫
dr
〈
ϕ6Li(ζα, ζd; rαd)

∣∣Ĵ(r)
∣∣Ψ(+)(ζα, ζd; rαd)

〉
·A∗λkγ (r)

=
1

c

∫
dr
〈
Ilf s Jf (rαd)

∣∣Ĵ(r)
∣∣ψ(+)(k, rαd)

〉
·A∗λkγ (r). (6)

To simplify further this matrix element we need to use the multipole expansion of the vector potential [17, 18] :

Aλkγ (r) =
1

2π

√
~ c
kγ

eλkγ e
ikγ ·r =

1

2
√

2π kγ

∑
LM

√
2L+ 1DL

M λ(ϕ, θ, 0)

×
(
AekγLM (r) + λAmkγLM (r)

)
. (7)

Here, eλkγ is the unit polarization vector of the plane wave, which is orthogonal to the photon momentum kγ ,
AekγLM (r) and AmkγLM (r) are the eletric and magnetic multipoles, correspondingly. In the system z‖kγ the helicity

of the circularly polarized photon λ = ±1. DL
M λ(ϕ, θ, 0) is the Wigner D-function, L is the multipolarity of the

transition. In Eq. (7) only the electric multipoles Ae kγ LM (r) will be taken into account because for the reaction
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under consideration the contribution of the magnetic multipoles Amkγ LM (r) is negligible [19]. Following Ref. [17],
Ae kγ LM (r) can be rewritten as

Ae kγ LM (r) = −2 iL

√
~ c
kγ

[
∇r ×

(
jL(kγ r)Y

L
LM (r̂)

)]
= 2 iL−1

√
~ c kγ

[√ L+ 1

2L+ 1
jL−1(kγ r)Y

L−1
LM (r̂)−

√
L

2L+ 1
jL+1(kγ r)Y

L+1
LM (r̂)

]
, (8)

where YL̃
LM (r̂) is the vector spherical harmonics [17, 18] and jL(kγ r) is the spherical Bessel function.

Now the matrix element (6) can be reduced to

1

c

∫
dr
〈
Ilf s Jf (rαd)

∣∣Ĵ(r)
∣∣ψ(+)(k, rαd)

〉
·A∗λkγ (r)

=

√
~

2π c kγ

∑
LM

i−L+1
√

2L+ 1
(
DL
M λ(ϕ, θ, 0)

)∗ ∫
dr
〈
Ilf s Jf (rαd)

∣∣Ĵ(r)
∣∣ψ(+)(k, rαd)

〉
×
[√ L+ 1

2L+ 1
jL−1(kγ r) (YL−1

LM (r̂))∗ −
√

L

2L+ 1
jL+1(kγ r) (YL+1

LM (r̂))∗
]

≈

√
~

2π c kγ

∑
LM

i−L+1 kL−1γ

(2L− 1)!!

√
L+ 1

(
DL
M λ(ϕ, θ, 0)

)∗ ∫
dr
〈
Ilf s Jf (rαd)

∣∣Ĵ(r)
∣∣ψ(+)(k, rαd)

〉
× rL−1

(
YL−1
LM (r̂)

)∗
. (9)

In the long wavelength approximation kγ r << 1, jL(kγ r) ≈ (kγ r)
L/(2L + 1)!!. Hence, the lowest partial waves

dominate and the term containing jL+1(kγ r) ≈ (kγ r)
L+1/(2L + 3)!! is small compared to the term containing

jL−1(kγ r) ≈ (kγ r)
L−1/(2L− 1)!! and can be neglected.

Taking into account that [20]

∇r[r
L YLM (r̂)] =

√
L(2L+ 1) rL−1 YL−1

LM (r̂), (10)

Equation (9) can be reduced to

1

c

∫
dr
〈
Ilf s Jf (rαd)

∣∣Ĵ(r)
∣∣ψ(+)(k, rαd)

〉
A∗λkγ (r)

≈

√
~

2π c kγ

∑
LM

i−L+1 kL−1γ

(2L+ 1)!!

√
(L+ 1)(2L+ 1)

L
(DL

M λ(ϕ, θ, 0))∗∫
dr
〈
Ilf s Jf (rαd)

∣∣Ĵ(r)
∣∣ψ(+)(k, rαd)

〉
∇r[r

L
(
YLM (r̂)

)∗
]. (11)

Integrating by parts and using the static current conservation

∇rĴ(r) = i kγ c ρ̂(r), (12)

where

ρ̂(r) = Zd e δ(r− rd) + Zα e δ(r− rα) (13)

is the charge density operator, one gets

1

c

∫
dr
〈
Ilf s Jf (rαd)

∣∣Ĵ(r)
∣∣ψ(+)(k, rαd)

〉
A∗λkγ (r)

≈ 1

2π

√
~ c

2 kγ

∑
LM

i−L kLγ
(2L− 1)!!

√
L+ 1

L

(
DL
M λ(ϕ, θ, 0)

)∗
×
〈
Ilf s Jf (rαd)

∣∣(Q̂(e)
LM (rαd)

)∗∣∣ψ(+)(k, rαd)
〉
. (14)
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Here,

Q̂
(e)
LM (rαd) =

√
4π

2L+ 1

∫
dr ρ̂(r) rL YLM (r̂), (15)

is the electric static 2L moment operator.
Thus the initial matrix element (6) containing A∗λkγ

(r) after the multipole expansion and series of transformations

is reduced to the matrix element, which is expressed in terms of the electric charge density operator. This is possible
due to Siegert’s theorem [21].

Equation (1) for the differential cross section of the electric transition takes the form

dσλ
dΩ
∼
∣∣− 1

2π

√
~ c

2 kγ

∑
LM

i−L kL+1
γ

(2L− 1)!!

√
L+ 1

L

(
DL
M λ(ϕ, θ, 0)

)∗
×
〈
Ilf s Jf (rαd)

∣∣(Q̂(e)
LM (rαd)

)∗∣∣ψ(+)(k, rαd)
〉 ∣∣∣2. (16)

In the case under consideration the dominant contribution comes from the electric dipole (L = 1) and electric
quadrupole (L = 2) transitions. Because the sum over multipoles L is incoherent the interference of the dipole and
quadrupole amplitudes should be taken into account.

Integrating over r in Eq. (15) one gets

Q̂
(e)
LM (rαd) =

√
4π

2L+ 1
eZeff(L) r

L
αd YLM (r̂αd). (17)

eZeff(L) is the effective charge for the electric transition of the multipolarity L, where

Zeff(L) = µLαd

(
Zα
mL
α

+ (−1)L
Zd
mL
d

)
. (18)

To derive Eq. (17) we took into account that YLM (−r̂αd) = (−1)L YLM (r̂αd).
The improvement of the leading order of the long wavelength approximation leads to the replacement of rLαd in Eq.

(17) by more refined expressions [22]. For the dipole transition rαd in Eq. (17) should be replaced by

O1(rαd) =
3

y3
[
(y2 − 2) sin y + 2y cos y

]
rαd (19)

and for the quadrupole transition r2αd should be replaced by

O2(rαd) =
15

y5
[
(5 y2 − 12) sin y + (12− y2) y cos y

]
r2αd, (20)

where y = kγ rαd.
The initial scattering wave function with spin-orbit interaction is given by

ψ(+)(k, rαd) = 4π
∑
Ji

∑
li

ili ψ
(+)
li sJi

(k, rαd)
∑
mlims

〈limli sms|JiMi〉 Ylimli (r̂αd)

× χsms
∑
m′li

m′s

〈
lim

′
li sm

′
s|JiMi

〉
Y ∗lim′li

(k̂). (21)

It is assumed that the projection Mi of Ji is fixed. For z‖k Ylim′li
(k̂) =

√
(2 li + 1)/4π δm′li 0

and, hence, m′s = Mi.

Then

ψ(+)(k, rαd) =
∑
Ji

∑
li

ili
√

4π(2 li + 1)ψ
(+)
li sJi

(k, rαd)
∑
mlims

〈limli sms|JiMi〉 Ylimli (r̂αd)

× χsms 〈li 0 sMi|JiMi〉 . (22)

The asymptotic behavior of the radial scattering wave function is taken in the form

ψ
(+)
li sJi

(k, rαd) ≈
1

2 i rαd
e−i δlisJi

[
Ili(k, rαd)− e2 i δlisJi Oli(k, rαd)

]
. (23)
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Ili(k, rαd) = Gli(k, rαd)− i Fli(k, rαd) (24)

and

Oli(k, rαd) = Gli(k, rαd) + i Fli(k, rαd) (25)

are the incoming and outgoing spherical waves expressed in terms of the regular, Fli(k, rαd), and singular, Gli(k, rαd),
Coulomb solutions of the radial Schrödinger equation. δlisJi is the scattering phase shift.

Inserting Eqs (4) and (22) into the matrix element of Eq. (16) one finds that〈
Ilf s Jf (rαd)

∣∣Q̂(e)
LM (r)

∣∣ψ(+)(k, rαd)
〉

=

√
4π

2L+ 1

∑
Ji

∑
li

ili
√

4π (2 li + 1)

×
∑

mlimsmlf

〈
lf mlf sms

∣∣Jf Mf

〉
〈limli sms|JiMi〉

〈
li 0 sMi

∣∣JiMi

〉
×
〈
Ilf s Jf (rαd)Ylfmlf (r̂αd)

∣∣eZeff(L) rLαd Y ∗LM (r̂αd)
∣∣Ylimli (r̂αd)ψ(+)

li s Ji
(k, rαd)

〉
=
√

4π (2 lf + 1) eZeff(L)
∑
Ji

∑
li

∑
mli msmlf

ili
〈
lf mlf sms

∣∣Jf Mf

〉
〈limli sms|JiMi〉

×
〈
li 0 sMi

∣∣JiMi

〉 〈
lf0L0

∣∣li0〉 〈lf mlf LM
∣∣limli

〉
Rlf sL Jf li Ji(k), (26)

Rlf sL Jf li Ji(k) =

∫ ∞
0

drαd r
L+2
αd Ilf s Jf (rαd)ψ

(+)
li s Ji

(k, rαd). (27)

When deriving Eq. (26) it was taken into account that
〈
χsm′′s

∣∣χsms〉 = δm′′s ms and [20]∫
dΩY ∗lfmlf

(r̂αd)Y
∗
LM (r̂αd)Ylimli (r̂αd) =

√
(2 lf + 1) (2L+ 1)

4π (2 li + 1)

〈
lf 0 L 0

∣∣li 0
〉

×
〈
lf mlf LM

∣∣limli

〉
. (28)

Now we are able to rewrite the expression for the photon differential cross section including all the kinematical
factors. If the polarization of the initial and final nuclei (in the case under consideration deuteron and 6Li) and of the
photon are not measured then the differential cross section takes the form

dσ

dΩ
=

1

4

(2 lf + 1)

(2 Jd + 1)(2 Jα + 1)

(~ c)3

µαd c2
k

E2

e2

~ c
∑
MiMf

∑
J′i Ji

∑
L′L

iL
′−L Zeff(L′) Zeff(L)

×
√

(L′ + 1)(L+ 1)

L′ L

kL
′+L+1

γ

(2L′ − 1)!! (2L− 1)!!

∑
m′lf

mlf

∑
m′sms

∑
M ′M

∑
λ=±1

DL′

M ′ λ(ϕ, θ, 0)DL∗

M λ(ϕ, θ, 0)

×
∑
l′i li

∑
m′li

mli

ili−l
′
i

〈
lf m

′
lf
sm′s

∣∣Jf Mf

〉 〈
lf mlf sms

∣∣Jf Mf

〉 〈
l′im

′
li sm

′
s|J ′iMi

〉
× 〈limli sms|JiMi〉

〈
l′i 0 sMi

∣∣J ′iMi

〉 〈
li 0 sMi

∣∣JiMi

〉 〈
lf 0 L′ 0

∣∣l′i0〉 〈lf 0 L 0
∣∣li 0

〉
×
〈
lf m

′
lf
L′M ′

∣∣l′im′li〉 〈lf mlf LM
∣∣limli

〉
R∗lf sL′ Jf l′i Ji(k)Rlf sL Jf li Ji(k). (29)

Equation (29) can be further simplified taking into account that [23]∑
mlf msmli

〈
lf mlf sms

∣∣Jf Mf

〉
〈limli sms|JiMi〉

〈
lf mlf LM

∣∣limli

〉
= (−1)s+Jf+li+L

√
(2 Jf + 1)(2 li + 1)

〈
Jf Mf LM

∣∣JiMi

〉 { lf s Jf
Ji L li

}
, (30)

where

{
lf s Jf
Ji L li

}
is the 6j-symbol [23].
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Then

dσ

dΩ
=

1

4

(2 lf + 1)(2 Jf + 1)

(2 Jd + 1)(2 Jα + 1)

(~ c)3

µαd c2
k

E2

e2

~ c
∑
MiMf

∑
J′i Ji

∑
L′L

iL
′−L Zeff(L′) Zeff(L)

×
√

(L′ + 1)(L+ 1)

L′ L

kL
′+L+1

γ

(2L′ − 1)!! (2L− 1)!!

∑
M ′M

∑
λ=±1

DL′

M ′ λ(ϕ, θ, 0)DL∗

M λ(ϕ, θ, 0)

×
∑
l′i li

ili−l
′
i
〈
l′i 0 sMi

∣∣J ′iMi

〉 〈
li 0 sMi

∣∣JiMi

〉 〈
lf 0 L′ 0

∣∣l′i0〉 〈lf 0 L 0
∣∣li 0

〉
× (−1)l

′
i+li+L

′+L
√

(2 l′i + 1)(2 li + 1)
〈
Jf Mf L

′M ′
∣∣J ′iMi

〉 〈
Jf Mf LM

∣∣JiMi

〉
×

{
lf s Jf
J ′i L

′ l′i

} {
lf s Jf
Ji L li

}
R∗lf sL′ Jf l′i J′i (k)Rlf sL Jf li Ji(k). (31)

From
〈
Jf Mf L

′M ′
∣∣J ′iMi

〉 〈
Jf Mf LM

∣∣JiMi

〉
follows that M ′ = M and [20]

DL′

M λ(ϕ, θ, 0)
(
DL
M λ(ϕ, θ, 0)

)∗
= (−1)M−λDL′

M λ(ϕ, θ, 0)DL
−M −λ(ϕ, θ, 0)

= (−1)M−λ
∑
J

〈
L′M L−M

∣∣J0
〉 〈
L′λ L− λ

∣∣J0
〉
DJ

00(ϕ, θ, 0)

= −(−1)M
∑
J

〈
L′M L−M

∣∣J0
〉 〈
L′λ L− λ

∣∣J0
〉
PJ(cos θ) (32)

and ∑
λ=±1

〈
L′λ L− λ

∣∣J0
〉

=
〈
L′1 L− 1

∣∣J0
〉 [

1 + (−1)L
′+L−J]. (33)

Then

dσ

dΩ
= −1

4

(2 lf + 1)(2 Jf + 1)

(2 Jd + 1)(2 Jα + 1)

(~ c)3

µαd c2
k

E2

e2

~ c
∑
MiMf

∑
J′i Ji

∑
L′L

iL
′−L Zeff(L′) Zeff(L)

√
(L′ + 1)(L+ 1)

L′ L

×
kL
′+L+1

γ

(2L′ − 1)!! (2L− 1)!!

∑
M

(−1)M
∑
J

〈
L′M L−M

∣∣J 0
〉 〈
L′1 L− 1

∣∣J 0
〉 [

1 + (−1)L
′+L−J]

× PJ(cos θ)
∑
l′i li

ili−l
′
i
〈
l′i 0 sMi

∣∣J ′iMi

〉 〈
li 0 sMi

∣∣JiMi

〉 〈
lf 0 L′ 0

∣∣l′i0〉 〈lf 0 L 0
∣∣li 0

〉
× (−1)l

′
i+li+L

′+L
√

(2 l′i + 1)(2 li + 1)
〈
Jf Mf L

′M
∣∣J ′iMi

〉 〈
Jf Mf LM

∣∣JiMi

〉
×

{
lf s Jf
J ′i L

′ l′i

} {
lf s Jf
Ji L li

}
R∗lf sL′ Jf l′i J′i (k)Rlf sL Jf li Ji(k). (34)

Eq. (34) is quite general and can be applied for the analysis of the photon angular distribution in the direct radiative
capture reactions contributed by electric transitions with different multipolarities L or with one dominant L. In Eq.
(29) ~ c = 197.3 MeV fm, e2/(~ c) = 1/137, µαd c

2 and E are expressed in MeV, kγ and k are expressed in fm−1.
Assuming that only L = 1 or L = 2 contribute one can easily derive differential cross sections for the electric dipole
and quadrupole transitions.

Equation (34) can be further simplified for the 2H(α, γ)6Li reaction, for which lf = 0, Jf = 1, s = 1, Jα = 0. For
this reaction {

0 s Jf
Ji L li

}
= (−1)Jf+L+Ji

δs Jf δli L√
(2 Jf + 1)(2L+ 1)

,{
0 s Jf
J ′i L

′ l′i

}
= (−1)Jf+L

′+J′i
δs Jf δl′i L′√

(2 Jf + 1)(2L′ + 1)
, (35)
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0 0 L 0

∣∣li0〉 = δli L and
〈
0 0 L′ 0

∣∣l′i0〉 = δl′i L′ .
Then for the differential cross section for the reaction under consideration we get

dσ

dΩ
= − 1

12

(~ c)3

µαd c2
k

E2

e2

~ c
∑
MiMf

∑
J′i Ji

∑
L′L

Zeff(L′) Zeff(L)

√
(L′ + 1)(L+ 1)

L′ L

×
kL
′+L+1

γ

(2L′ − 1)!! (2L− 1)!!

∑
M

(−1)M
∑
J

〈
L′M L−M

∣∣J0
〉 〈
L′1 L− 1

∣∣J0
〉

×
[
1 + (−1)L

′+L−J]PJ(cos θ)
〈
L′ 0 Jf Mi

∣∣J ′iMi

〉 〈
L 0 Jf Mi

∣∣JiMi

〉
×
〈
Jf Mf L

′M
∣∣J ′iMi

〉 〈
Jf Mf LM

∣∣JiMi

〉
R∗0L′ 1 J′i (k)R0L 1 Ji(k). (36)

Equations (34) and (36) are our first main result.

B. Total cross sections

The total cross sections can be obtained by integrating the above differential cross sections over the photon’s solid
angle. Integrating Eq. (34) keeps only the term J = 0 what leads to L′ = L. Then∑

Mf M

〈
Jf Mf LM

∣∣J ′iMi

〉 〈
Jf Mf LM

∣∣JiMi

〉
= δJi Ji , (37)

〈
LM L−M

∣∣0 0
〉

= (−1)L−M
√

1/(2L+ 1) and
〈
L1 L− 1

∣∣0 0
〉

= (−1)L−1
√

1/(2L+ 1). From
〈
lf 0 L 0

∣∣li 0
〉

follows
that two subsequent li can differ by 2. At astrophysically relevant energies only minimal li dominate. Hence we can
drop the sum over li assuming that each li is uniquely determined by L. Also

〈
li 0 sMi

∣∣JiMi

〉
= (−1)s+Mi

√
2 Ji + 1

2 li + 1

〈
Ji −Mi sMi

∣∣li 0
〉

(38)

and ∑
Mi

(〈
Ji −Mi sMi

∣∣li 0
〉)2

= 1. (39)

Taking into account the above results the total cross section reduces to

σ = 2π
(2 lf + 1)(2 Jf + 1)

(2 Jd + 1)(2 Jα + 1)

(~ c)3

µαd c2
k

E2

e2

~ c
∑
Ji

(2 Ji + 1)
∑
L

(
Zeff(L)

)2 (L+ 1)(2L+ 1)

L

×
k2L+1
γ(

(2L+ 1)!!
)2 (
〈
lf 0 L 0

∣∣li0〉)2 [{ lf s Jf
Ji L li

}]2 ∣∣Rlf sL Jf li Ji(k)
∣∣2. (40)

The total cross section for the dipole (quadrupole) transition can be obtained from Eq. (40) by taking L = 1 (L = 2).
The total cross section for the reaction under consideration takes the form (lf = 0, s = Jf , li = L)

σ =
2π

3

(~ c)3

µαd c2
k

E2

e2

~ c
∑
Ji

(2 Ji + 1)
∑
L

(
Zeff(L)

)2 L+ 1

L

k2L+1
γ(

(2L+ 1)!!
)2 ∣∣R0L 1 Ji(k)

∣∣2. (41)

Equations (40) and (41) are our second main result.
The astrophysical factor is determined by

S(E) = E e2π ηi σ(E). (42)

Here, ηi is the Coulomb parameter in the initial state of the radiative capture process. Replacing σ(E) by σEi(E),
where i = 1, 2, we get the astrophysical factors for the dipole (E1) and quadrupole (E2) transitions, correspondingly.
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C. Potential model

The most important quantity in calculations of the radiative capture reactions is the radial matrix element
Rlf sL Jf li Ji(k), which is expressed in terms of the the initial and final nuclear wave functions. Different approaches
were used to calculate the radial matrix elements. The most frequent used potential approach was based on the pio-
neering works [24, 25]. In the potential approach the initial scattering wave function is a solution of the Schrödinger
equation with the α− d potential, which can be found from the fitting experimental elastic scattering phase shifts in
the corresponding partial waves (li = 1, 2 in the case under consideration). The result is very sensitive to the choice
of the final overlap function Ilf s Jf (rαd). It was long ago recognized [26] that the 2H(α, γ)6Li reaction is peripheral
at astrophysically relevant energies, that is, the overall normalization of the astrophysical factor at Big Bang energies
30 . E . 400 keV is practically determined by the square of the ANC ClfsJf .

In [27] the 6Li bound-state wave function was calculated within the framework of the multi-cluster dynamic model.
Projection of this bound-state wave function on the two-body channel α+ d channel gives the overlap function with
correct tail. The two-body potential model was used in [26] to calculate the astrophysical factors for the electric dipole
and quadrupole transitions and the total S(E) factor at energies E ≤ 500 keV. In the two-body potential model the
overlap function is replaced by the α− d bound-state wave function:

IlfsJf (rαd) = S
1/2
nrlfsJf

ϕnrlfsJf (rαd), (43)

where ϕnrlfsJf (rαd) is the α − d two-body bound-state wave function calculated in some phenomenological Woods-
Saxon α − d plus Coulomb potential, nr = 1 is the principal quantum number showing the number of the nodes of
the radial bound-state wave function at rαd > 0. SnrlfsJf is the spectroscopic factor of the configuration α + d in

the ground state of 6Li. The tail of the bound-state wave function is given by

ϕnrlfsJf (rαd)
rαd>r0≈ bnrlfsJf W−η, lf+1/2(2κ rαd)/rαd, (44)

where bnrlfsJf is the single-particle ANC. The value of bnrlfsJf depends on the adopted bound-state potential. The
spectroscopic factor SnrlfsJf reflects the fact that the overlap function is not an eigenfunction of any Hamiltonian
and, hence, is not normalized to unity, in contrast to the bound-state wave function. Eq. (44) puts limitation on the
spectroscopic factor for given bnrlfsJf .

The bound-state Woods-Saxon potential should be adjusted to obtain the experimental α−d binding energy (well-
depth procedure). However, there are infinite number of such potentials because there are three fitting parameters:
geometrical parameters, radius and diffuseness, and the well depth. The final adjustment can be done using the
spectroscopic factor. The two-body potential model was also used in [15]. To find the α − d bound-state wave
function the Woods-Saxon potential was adjusted to fit the experimental s-wave elastic scattering phase shift and to
reproduce the experimental α − d binding energy. Since the experimental elastic scattering phase shift includes the
many-body effects of the scattered nuclei, the same is true for the two-body potential, which fits the elastic scattering
data. Hence, the spectroscopic factor in Eq. (44) should be set to SnrlfsJf = 1. However, there is again infinite
number of the Woods-Saxon potentials, which differ by the most crucial quantity - the ANC (the inverse scattering
problem theorem by Gel’fand-Levitan-Marchenko [28]). The potential adopted in [15] was one of the infinite set of
the phase-equivalent potentials with the ANC, which exceeds the experimental ANC [29] and ab initio calculations
[30] by ≈ 18% . Hence, the normalization of the peripheral part of the S(E) factor calculated in [15] exceeded the
correct one by ≈ 38%. All these questions about ambiguity of the two-body bound-state potentials were addressed
in details in [31].

The first full microscopic 6-body approach to calculate the final state 6Li bound-state wave function was developed
in [19] using the variational Monte Carlo method. The projection of the 6Li on the two-body channel α+d has correct
tail with the ANC close to the experimental one [29]. The calculated total S(E) factor is in a good agreement with
direct measurements around 3+ resonance at E = 712 keV.

In hour work, to calculate the photon differential cross sections we used the potential model approach. To calculate
the bound-state wave function, two different potentials were used. The first one is the Woods-Saxon potential with
the geometrical parameters: radius r0 = 1.20 fm and diffuseness a = 0.7 fm. The square of the single-particle ANC of
the bound-state wave function generated by this potential is b21011 = 7.22 fm−1. To get the correct normalization of
the leading asymptotic term of the final-state overlap function I011(rαd), that is, the square of the ANC C2

011 = 5.29
fm−1, we have to introduce in Eq. (43) the spectroscopic factor S1011 = 0.72. This method is referred to as M1. The
second method is similar to the one described in [31]. In this method, referred to as M2, the Woods-Saxon potential
used in [15] was modified to generate the bound-state wave function with correct asymptotic behavior. In this case the
spectroscopic factor is S1011 = 1, that is, the overlap function I011(rαd) and bound-state wave function ϕ1011(rαd)
do coincide at all radii. Thus, both used overlap functions have the same asymptotic behavior being different in the



11

internal region. In both methods the initial α−d scattering wave function is generated by the Woods-Saxon potential
from [15]. Its parameters are adjusted to reproduce the experimental phase shifts in the partial waves li = 1, 2:
the radial parameter is r = 1.25 fm, diffuseness a = 0.65 fm, the depth of the potential 56.7 MeV. At li = 2 this
potential reproduces the 3+ resonance. To calculate the bound-state and scattering wave functions and the radial
matrix elements we used the modified RADCAP code [32].

III. PHOTON ANGULAR DISTRIBUTION IN DIRECT RADIATIVE CAPTURE 2H(α, γ)6Li

The calculated photon angular distributions for the 2H(α, γ)6Li direct radiative capture using both methods, M1
and M2, are shown in Fig 1 for 4 different Big Bang energies, E = 70, 100, 200 and 400 keV. As one can see, the dipole
differential cross section has the peak at 90◦. The quadrupole transition has two peaks, at 45◦ and 135◦. However
their interference dramatically changes the angular distribution generating one peak at ≈ 50◦. Note that the exact
location of the peak slightly depends on the energy. These calculations provide a recipe for the best experimental
kinematics. Note that in the experiment performed by LUNA [16] the germanium detector was placed at a 90◦ angle
with respect to the ion beam direction. At this angle the differential cross section is significantly smaller than at the
peak value at ≈ 50◦.

Another important conclusion is that both methods, M1 and M2, give practically indistinguishable results con-
firming that at low energies the reaction 2H(α, γ)6Li is completely peripheral. It means that only the tail of the α−d
bound-state wave function contributes to the reaction matrix element. Hence, to calculate the reaction matrix element
it is enough to use any reasonable bound-state Woods-Saxon potential, which supports s-wave α−d bound state with
the 1.47 MeV binding energy, and then to introduce a proper spectroscopic factor to provide correct normalization of
the asymptotic term of the overlap function.

IV. ASTROPHYSICAL FACTOR

In Fig. 2 the experimental and calculated astrophysical S24(E) factors for the reaction 2H(α,d)6Li are presented. In
contrast to the differential cross section, the total astrophysical factor is given by the sum of the dipole and quadrupole
astrophysical factors and does not contain their interference term. The potential model used in the present calculations
with two different bound-state wave functions has been described in section II C. The expression for the astrophysical
factor has been derived in section II B by integrating the photon’s differential cross section over the photon’s solid
angle. Agreement between the LUNA data at two Big Bang energies and the potential model calculations based on
the ANC provides a compelling evidence of the power of the ANC method. Note that the LUNA results are the first
direct measurement of the 2H(α, γ)6Li cross section inside the Big Bang energy range.

Potential model, which we use here, allows us to reproduce the available direct data in the region of the first
resonance, E = 0.712 MeV, and even at higher energies. The validity of the potential model at higher energies can
be easily explained. At energies higher than Big Bang energies the quadrupole transition dominates. Owing to the
presence of the factor r2αd the quadrupole radial matrix element is dominantly peripheral in the energy interval up to
∼ 2 MeV. Hence, the used here potential model with correct normalization of the tail of the overlap function I011(rαd)
given by the ANC allows one to calculate the astrophysical factor in the broad energy interval 0 ≤ E ≤ 2 MeV.

Note that the calculations from [33] and [15] at Big Bang energies are higher then presented here. For example,
at 70 keV, which is the most effective Big Bang energy, S24(70keV) = 4.0 MeV nb [33], S24(70keV) = 3.16 MeV nb
[15] and the present result is S24(70keV) = 2.58 MeV nb. The insert in Fig. 2 shows the difference between different
calculations of the S24(E) factors in the Big Bang energy interval. At higher energies calculations from [33] reproduce
the data quite well while the results from [15] are systematically higher than the data before and after the resonance.

The accuracy of the long wavelength approximation in the case under consideration is quite high: a replacement of
rL in the integrand of the radial matrix elements (27) by O1(r), Eq. (19), for L = 1 and O2(r), Eq. (20), for L = 2
changes the astrophysical factor by only ≈ 1%. Note that two data points obtained by LUNA were extrapolated in
[16] to other energies using calculations in [31]. The calculations in this paper using the method M2 are similar to
calculations from [31] but performed with a different, more accurate code [32].

Hence the reaction rates calculated here and in [16] also agree. These reaction rates are significantly lower than
the adopted reaction rate from [34] and systematically lower than the reaction rate adopted by NACRE [35]. For
example, at T9 = 1, which corresponds to E = 86.2 keV, the adopted NACRE reaction rate exceeds the calculated
one in [31] by about 21.5%.
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FIG. 1. (Color online) Angular distributions of the photons emitted in the direct radiative capture 2H(α, γ)6Li at E = 70
keV (panel (a)), E = 100 keV (panel (b)), E = 200 keV (panel (c)) and E = 400 keV (panel (d)). All red (olive) lines are
obtained using method M1 (M2). The red dashed line (short dashed olive line): the angular distribution calculated for the
E1 transition; the red dotted line (short-dotted olive line): the E2 transition; the solid red line (dashed-dotted-dotted olive
line): the total photon differential cross section, which is contributed by the sum of the electric dipole and quadrupole terms
and their interference term.
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FIG. 2. (Color online) Astrophysical S24(E) factors for the 2H(α, γ)6Li reaction. Black dots are data from Ref. [13]; black
crosses are data from Ref. [12]; black triangles are data from Ref. [11]. Two blue boxes are the LUNA experimental data
reported at E = 94 and 134 keV [16] shown together with their uncertainties. The purple dashed-dotted line is the S24(E)
astrophysical factor from Ref. [33]. The black dashed-dotted line is the S24(E) factor from Ref. [15]. All the red (olive) lines
are our calculations obtained using model M1 (M2). The red dotted (olive short dotted), red dashed (olive short dashed)
and red solid (olive dashed-dotted-dotted) lines are the dipole, quadrupole and total S24(E) factors, correspondingly, from the
present calculations. Notations in the insert are the same.
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V. 6Li/7Li ISOTOPIC PRIMORDIAL ABUNDANCE RATIO

Evidently that the present paper and LUNA’s estimations of the Big Bang abundance of 6Li based on the reaction
rate of the 2H(α, γ)6Li coincide. For the baryon-to-photon ratio 6.047×10−10, which is within the interval determined
by the Planck collaboration [36], the calculated primordial abundance of 6Li is 6Li/H = (0.74 ± 0.16) × 10−14 [16]
which is 34% lower than the abundance given in [34].

In the latest comprehensive analysis of the Big Bang nucleosynthesis the primordial abundance of 6Li was determined
to be 6Li/H = (0.90−1.77)×10−14 ( Planck baryon-to-photon ratio was adopted) [6] and 6Li/H = (1.23−1.32)×10−14

(WMAP baryon-to-photon ratio was taken into account) [37]. As we see, the central values of both results are twice
as high as LUNA and present estimations. In both works [6, 37] the nuclear reaction rate from [15] was used claiming
that this reaction rate was obtained from the 6Li Coulomb breakup. However, it was clearly stated in [15] that the
attempt to determine the S24(E) factor from the Coulomb breakup failed and that a potential two-body model was
used to calculate S24(E), which turns out to be ∼ 30% higher than our and LUNA astrophysical factors [31] because
a too large value of the ANC was used in [15]. Hence, the second claim in [6] that the calculated astrophysical factor
in [15] and experimental LUNA astrophysical factor [16] “agree well” is also questionable and one of the reasons of
high values of the 6Li primordial abundance obtained in [6, 37] is that the adopted reaction rates for the 2H(α, γ)6Li
were based on results from [15].

Thus, by now the primordial abundance of 6Li has been established quite accurately. Taking into account the latest
estimate of the 7Li abundance 7Li/H = (5.1± 0.4)× 10−10 obtained from the most recent data on the 3He(α, γ)7Be
reaction rate [38–40], the resulting isotopic ratio is 6Li/7Li = (1.5 ± 0.3) × 10−5 [16]. This isotopic ratio is also the
result of the present paper. The obtained from the LUNA experiment and indirect ANC method the Big Bang lithium
isotopic ratio is lower than the previous estimates: 2.3× 10−5 [37] and (2− 3.3)× 10−5 [6] . However, invoking the
reaction rate following from the present paper (or from [31]) and [16] will bring the result obtained in [6, 37] closer to
our and LUNA estimations.

The established primordial lithium isotopic ratio is by three orders of magnitude lower then the upper limit de-
termined from the lithium observational data in poor-metal, warm dwarf stars what constitutes the second lithium
puzzle. However, the recent publication in Ref. [10] brings a hope that improving the accuracy of the observational
6Li data can resolve this puzzle without involving non-standard physics.

VI. SUMMARY

The analysis of the primordial 2H(α, γ)6Li reaction is presented. First, the general expression for the angular
distribution of the photons and specifically for the reaction under consideration is derived. After that the expressions
for the total cross sections for the electric dipole and quadrupole transitions are obtained. The calculated photon’s
angular distribution, which takes into account the electric dipole and quadrupole transitions and their interference,
exhibits the peak at ≈ 50◦. It provides a recipe for the best experimental kinematics. Note that at the first direct
measurements performed by LUNA [21], the germanium detector was placed at a 90◦ angle with respect to the ion
beam direction, at which the cross section is significantly smaller than at the peak value. New measurements with
a better geometry can significantly improve the accuracy of the data. Also the experimental and calculated S24(E)
astrophysical factors are presented. Nice agreement between the LUNA data at two Big Bang energies and the
potential model calculations based on the ANC proves the power of the ANC method.

The obtained primordial lithium isotopic ratio in [16] and here 6Li/7Li = (1.5 ± 0.3) × 10−5 is a very important
result in understanding of the second lithium problem. In resolving this puzzle one needs to reconcile both the Big
Bang model prediction of the lithium isotopic ratio and the observational data or to explain their three orders of
magnitude difference. The better the accuracy of the Big Bang Li isotopes abundance prediction and the better the
agreement with the observational data, the less there will be room for speculations. The results published by LUNA
and in this work, 6Li/7Li = (1.5± 0.3)× 10−5, sets up quite a strong limit on the primordial isotopic ratio from the
Big Bang model. The uncertainty of this ratio is contributed by only 8% uncertainty of the 7Li abundance [41] and
by 22% uncertainty of the 6Li primordial abundance [16]. One of the main conclusions from our work is that the
determined optimal kinematics can significantly improve the accuracy of the 2H(α, γ)6Li astrophysical S-factor and,
hence, the standard Bing Bang 6Li abundance.

But even existing predictions of the Big Bang isotopic ratio 6Li/7Li = (1.5± 0.3)× 10−5 puts quite a strong upper
limit and much more accurate than the observational data. It looks like such a low value of the Big Bang lithium
isotopic ratio makes the second lithium problem even more difficult to resolve. However, in [10] the lithium isotopic
analysis in four halo metal-poor stars was revisited using, for the first time, a combined 3D and NLTE modeling
technique. This upgraded model systematically reduces the Li isotopic ratio in all four analyzed stars significantly
weakening validity of data requiring a significant non-standard primordial 6Li production source. Hence, it is too
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early to discuss the compatibility of the Big Bang isotopic ratio 6Li/7Li, which follows from the latest data on the
2H(α, γ)6Li and 3H(α, γ)7Li Big Bang reactions, and the observational data of the lithium isotopic ratio in halo,
metal-poor, warm stars until the observational analysis will be improved significantly. At least, the work published in
Ref. [10] brings a new hope that the second lithium problem can be resolved without invoking non-standard physics.
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