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We explore effects of the screening due to the relativistic electron-positron plasma and presence
of resonances in the secondary reactions leading to A = 7 nuclei during the Big Bang Nucleosynthe-
sis. In particular, we investigate and examine possible low-lying resonances in the 7Be(3He, γ)10C
reaction and examine the resultant destruction of 7Be for various resonance locations and strengths.
While a resonance in the 10C compound nucleus is thought to have negligible effects we explore the
possibility of an enhancement from plasma screening that may adjust the final 7Be abundance. We
find the effects of relativistic screening and possible low-lying resonances to be relatively small in
the standard Early Universe models.

PACS numbers: 26.35.+c,25.55.-e

I. INTRODUCTION

Observation of the accelerated expansion of the Uni-
verse, measurement of the Cosmic Microwave Back-
ground Radiation temperature anisotropies and the ob-
servation of the light elements produced during the Big
Bang Nucleosynthesis (BBN) epitomize the current sta-
tus of the precision cosmology. Especially the BBN is an
ideal tool not only to test aspects of the Standard Mod-
els of cosmology as well as of nuclear and particle physics
but also to look for new physics beyond those standard
models. (For recent reviews of BBN see Refs. [1–4]).
In particular new calculations of the light-element abun-
dances are performed [1] using the recent high-precision
2015 Planck measurement of the baryon-to-photon ratio,
helium abundance and the effective number of relativis-
tic degrees of freedom, Neff [5], as well as astronomical
observations of deuterium [6, 7]. These calculations find
that D/H observations are now more precise than the
corresponding theoretical predictions, but predictions for
A = 7 nuclei continue to disagree with observations. A
recent update (NACRE II) of the compilation of charged-
particle-induced thermonuclear reaction rates for nuclei
with mass number A < 16 [8] was used in the calcula-
tions of Refs. [1] and [2]. These calculations also provide
confidence limits for the production of 6Li, 9Be, 11B, and
carbon, oxygen, and nitrogen (CNO). A precise value of
the CNO/H is not only important for population III star
formation, but as we elaborate in this paper, may also
affect the abundances of A = 7 nuclei.

The purpose of the present paper is twofold. One is to
explore the plasma effects in the BBN more completely.
It was already demonstrated that non-relativistic screen-
ing of the Coulomb interaction in nuclear reactions tak-
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ing place during the BBN epoch does not produce a no-
ticeable impact on light element abundances [9]. How-
ever, the screening effects due to the relativistic electron-
positron plasma was not included in the analysis of Ref.
[9]. It was recently shown that electron-positron plasma
screening is crucial for neutrino interactions in the BBN
epoch [10]. In the current work we include the effects of
the screening due to the electron-positron plasma in nu-
clear reactions during the BBN epoch. A second purpose
is to explore the ramifications of the possible presence of
resonances in relatively unexplored reactions involving
A = 7 nuclei.

II. EFFECTS FROM SCREENING IN A
RELATIVISTIC ELECTRON PLASMA

For a low-density plasma at T∼1 to 2 MeV, non-
relativistic screening can be neglected as the associated
Debye length is λD ∼ 104 fm (see Appendix) [9]. For
example, for Z1 = Z2 = 2, and temperature of 1 MeV,
one gets λD = 104 fm and the Salpeter correction to the
reaction rate fD−1 ≈ 6×10−4. However, for an electron-
positron plasma, as would exist in the BBN epoch, the
temperature is of the same order as the electron mass, re-
quiring the relativistic expression (given in the Eq. (A.3)
of Appendix). For a vanishing chemical potential, this
Debye length as a function of temperature is shown in
Figure 1. At higher temperatures, this is much smaller
than the Debye length which was determined for screen-
ing by non-relativistic electrons alone.

Using this Debye length, we used a BBN nuclear reac-
tion network to determine the change in mass fractions
based on the screening enhancement factor. Corrections
were made to reaction rates in the network by inserting
the Debye length for a relativistic plasma into Eq. (A.5).
The reaction network used is shown in Figure 2. Reac-
tions up to and including Z = 6 were included, as well
as weak rates and decays.
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FIG. 1. The Debye length for a relativistic electron plasma
as a function of temperature at µ = 0.

FIG. 2. The BBN reaction network used up to and including
nuclei Z = 6.

Mass fractions Xbare were determined using a network
with unscreened rates. These are compared to mass frac-
tions Xscr from a network employing rates from reactions
screened by a relativistic electron plasma. The change in
mass fraction:

∆X

X
≡ Xscr −Xbare

Xbare
(1)

is shown in Figure 3. At early times in the network, the
temperature is higher, and the consumption of protons,
deuterium, and helium proceeds at a higher rate for the
screened reactions compared to the unscreened case. The
overall net destruction of these lighter elements is higher
in the screened case. While there is an overall reduction
in some of the heavier elements, the relative change for
those is extremely small. Reaction screening is likely to
be small in the regime of zero electron chemical potential.

10 100 1000 10000
Time (s)

-1

-0.5

0

0.5

1

1
0

-3
∆

X
/X

p

d
t
n
3
He

4
He

6
Li

7
Li

8
Be

FIG. 3. Relative change in mass fractions for nuclei in the
BBN network as a function of time.
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FIG. 4. Debye length as a function of temperature in an
electron plasma for non-zero chemical potential for various
chemical potentials.

A. Non-Zero Chemical Potential

Inclusion of a non-zero chemical potential in Equation
A.3 will increase the inverse screening length and thus
decrease the Debye length, thus increasing the reaction
rate enhancement factor.

For a non-zero chemical potential, Equation A.3 was
solved numerically. The Debye length, λD, for various
chemical potentials, µ, as a function of temperature is
shown in Figure 4. A somewhat large chemical potential
is necessary for a reduction in the Debye length by one
order of magnitude, and this occurs only at low tempera-
ture. At higher temperatures, the electron kinetic energy
dominates over the chemical potential, and the effect of
µ is reduced. The resulting enhancement factor, fD, is
shown in Figure 5 for Z1 = Z2 = 2. From this figure, one
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FIG. 5. Reaction rate enhancement factor as a function of the
electron chemical potential for temperatures T = 0.1 through
0.5 MeV with Z1 = Z2 = 2.

sees that for zero chemical potential the enhancement
factor changes more rapidly at low temperature than at
high temperature. As the temperature approaches the
value of the electron mass, the enhancement factor in-
creases less rapidly. One also sees that the enhancement
factor as a function of µ changes much less at higher
temperatures than at lower temperatures.

It is customary to relate the chemical potential to the
electron degeneracy parameter:

ξ =
µ

T
. (2)

Assuming a constant degeneracy parameter, then the
chemical potential is much lower at lower T, reducing
the effect of µ at lower T. This is shown in Figure 6.
One sees that, because the chemical potential now is a
linear function of temperature, there is little change in
the enhancement factor with degeneracy.

It is thus concluded that, since the electron degener-
acy is very small, screening from the relativistic electron-
positron plasma has little effect on the final abundance
distribution in the standard BBN.

III. REDUCTION OF 7BE FROM REACTIONS
ON 3HE

There is significant discrepancy between the observa-
tions and the BBN predictions for A = 7 nuclei, known
as the “lithium problem”. (For an overview of the cur-
rent status of the lithium problem see Ref. [11]). One
alternative mechanism for the possible reduction of 7Li
was proposed in Ref. [12], namely that the consump-
tion of 7Be (and subsequently 7Li) may occur through a
resonant reaction through the 10C compound nucleus:

7Be +3 He→10 C∗ →10 C + γ (3)

→9 B + p (4)

→ 2α+ 2p (5)
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FIG. 6. The reaction rate enhancement factor as a function
of temperature for various electron degeneracy factors with
Z1 = Z2 = 2. In this figure, f = fD(µ 6= 0).

While this reaction has certainly been previously ex-
plored [13], here it is investigated in light of possible reso-
nance structure in the mirror product 10Be [14], particu-
larly at resonant energies greater than 0.5 MeV. Prior
studies have not found resonances in the 10C nucleus
[13] for relatively large widths in the range ER < 500
keV. This work examines resonances both within and
outside the energy range and widths previously investi-
gated where the effects of a relativistic electron-positron
plasma on BBN reaction rates are included. We examine
the possible effects of shifts in the thermonuclear reac-
stion rates for resonant and non-resonant reactions from
a relativistic electron plasma.

A. Resonances in 7Be+3He

Taking the resonance structure of 10Be as motivation, a
resonance is assumed for the 7Be+3He reaction. We note
that this reaction and any possible resonances within this
reaction have been shown to have a negligible effect on
BBN [15]. Likewise, there is no experimental evidence for
resonances below 500 keV [13]. The effects of screening
in the hot BBN plasma from electrons and positrons has
been investigated neither on the non-resonant nor reso-
nant rates. Any possible resonances at ER > 500 keV
and their corresponding strengths are not known. The
decay width Γ of the 10Be mirror nucleus for the 17.79
MeV state (0.53 MeV above the reaction threshold) is
known to be 110±35 keV [16] though the entrance chan-
nel width has not been experimentally determined.

We assume a resonance cross section of the form

σ(E) = πλ2ωγ
Γtotal

(E − ER)2 + Γ2
total/4

(6)
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where

Γtotal = Γin + Γout, (7)

γ is the reduced width

γ =
ΓinΓout

Γtotal
, (8)

λ is the de Broglie wavelength, and ω is the appropriate
spin factor.

In the current study, final BBN mass fractions are de-
termined for reaction rates based on a single resonance
ER of arbitrary strength ωγ. The mass fractions are de-
termined as a function of these two parameters.

The partial width for the entrance channel is derived
from a solution to the spherical wave equation at the
nuclear potential radius, and the functional form is [17]:

Γp(E) = 2PL(E)γL(a)2 (9)

where the factor γL is the reduced particle width at a
radius a and is given in the Wigner limit as:

γ2
L(a) = θ2

L(a)γ2
W (a) = θ2

L

3h̄2

2m12a2
(10)

and the penetrability factor PL is given by the regular
(FL) and irregular (GL) Coulomb functions:

PL(a) =
ka

F 2
L(ka) +G2

L(ka)
=

ρ

F 2
L(η, ρ) +G2

L(η, ρ)
(11)

where η is the Sommerfeld parameter and ρ ≡ ka. These
are evaluated numerically at the nuclear radius. In this
case, only the L = 0 terms are used, and the single-
particle width θ2

L = 0.5 is assumed.
The entrance channel width at lower energies is shown

in Figure 7 for the 7Be+3He reaction. Near threshold, the
particle width drops precipitously, while above thresh-
old, it increases to a substantial value. The effect of the
energy-dependent width can be shown in Figure 8 which
shows the integrand of the thermonuclear rate at T = 1
MeV for a resonance ER = 500 keV. The high energy
tail of the resonance can have a large effect on the over-
all rates.

Relativistic electron-positron screening can adjust the
incident particle energy, effectively shifting the threshold
energy in the cross-section. One can see that for near-
threshold or sub-threshold resonances, this shift could
result in a significant chance in the cross-section, as dis-
cussed in the next section.

In addition to the above resonance structure, we de-
termined BBN abundance distributions for a range of
narrow resonances and strengths. By scanning across
strengths and resonance locations, the relative reduction
of 7Be was mapped. The mapping of the relative mass
fraction of 7Be, R, is defined to be the final 7Be mass frac-
tion for a BBN calculation with a 10C resonance divided
by that with no resonance:

R ≡ Xres

Xnr
(12)
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FIG. 7. The assumed entrance channel width as a function of
incident particle energy for the 7Be(3He,γ)10C reaction.
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FIG. 8. The integrand of the thermonuclear reaction rate for
the energy-dependent width of the 7Be(3He,γ)10C reaction at
T=1 MeV for a resonance located at ER=500 keV.

IV. RELATIVISTIC ELECTRON SCREENING
AND THE 7BE+3HE REACTION

Prior to examining resonances in the 7Be+3He reac-
tion, we proceed with a discussion of the effects of rela-
tivistic electron screening on the same reaction.

While a resonance in 10C may increase the destruction
of 7Be, the effect may be magnified by the inclusion of
screening from the electron plasma. The enhancement
on the cross section is described in the Appendix. Incor-
porating screening into the usual thermonuclear reaction
rate (TRR) will create an energy shift E0 of the reaction
system because of the reduced particle potential. The
energy shift E0 is defined in the appendix.

This shift is small, ∼ 20 keV for Z1 = 2 and Z2 = 4
at T ∼ 2 MeV. The values of ∆E as a function of tem-
perature are shown in Figure 9; the trend is nearly linear
except at low temperature. Its effect on non-resonant
TRRs is also expected to be small, particularly as the
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FIG. 9. The energy shift E0 due to relativistic screening as
a function of temperature for Z1=2, Z2=4, and µ=0. The
high temperature limit is as given in Equation A.9. The inset
shows the shifts at low temperature.

cross-section is negligible near E = 0. However, the shift
could be significant for resonant rates, particularly those
low-lying resonances near the threshold, where even a
small shift in the energy can result in a significant change
in the cross-section.

Another possible effect of this shift is the influence on
sub-threshold resonances. A shift to higher energy can
result in a much more significant decrease in the cross-
section and total reaction rate as less of the sub-threshold
resonance is integrated over. Using this shift, a possible
reduction in the TRR for low-lying resonances is investi-
gated. The result may be significant because the energy
shift results in less of the resonance tail being included
in the TRR. From Figure 9, one expects the enhance-
ment to be small, approximately 1%, and to scale with
temperature. This scaling is because as the temperature
decreases the Debye screening length increases, resulting
in a reduced energy shift, which approaches zero. This
is important to note as the effect is most pronounced
only at high temperatures (early in BBN) and in regions
where a significant portion of the resonance may be re-
moved from the reaction rate - near the threshold. This
may be advantageous as there may be a slight reduction
in BBN reaction rates during the early stages, resulting
in a slower progression to the A = 7 nuclei.

The effect of this shift is shown in Figure 10 which
shows a resonance (Γx = 110 keV, T = 1 MeV) in the 7Be
+3He reaction times the Boltzmann distribution for six
values of ER. This quantity is the integrand of equation
A.12. For this quantity, the particle energy is dictated by
the Boltzmann distribution while the value of the cross
section is determined by the energy shift (to higher en-
ergy), effectively shifting the cross-section to lower energy
in the particle distribution. We note, of course, that the
lowest resonances in this figure have been eliminated by
experiment, but they are shown here to indicate the rela-
tive strengths of the resonance tails and to emphasize the
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FIG. 10. The integrand of the reaction rate for a narrow
resonance for three values of the resonance energies for the
bare potential (dotted lines) and the screened potential (solid
lines). For the low-lying resonances, the resonance at 0.1 MeV
corresponds to the upper-most set of lines, while the reso-
nance at -0.05 MeV corresponds to the lowest set of lines.

point that the actual resonance peaks are not important
as the penetrability in the entrance channel at the lowest
energies reduces the cross-section to negligible values.

For all resonances shown, the shift to higher energy
shifts the entire integrand towards the high-energy tail of
the resonance. For the low-lying resonances, ER <∼ 500
keV, the integral is increased slightly as the tail of the
integrand is emphasized. For a higher-energy resonance,
ER >∼ 500 keV, only a very small portion of the lower
energy tail is cut out of the integration, as most of the
low-energy tail is dominated by the entrance channel pen-
etrability.

The enhancement for non-resonant rates is exempli-
fied in Figure 11 for Z1 = 2 and Z2 = 4. As expected,
the enhancement is small and always greater than unity
at non-zero temperature since the cross-section is always
monotonically increasing with energy and a small shift to
positive energy results in a larger cross section integrated
into the reaction rate. It was found that this enhance-
ment varies little with resonance energy and width. This
makes sense considering the integrand of the reaction rate
and the very small energy shift ∆E. In any case, essen-
tially the entire cross-section is integrated over, but it
is effectively shifted to a higher energy in the Maxwell-
Bolzmann distribution by an amount ∆E. For a very
small shift, the ratio of rates in Figure 11 is roughly:

Rsc
Rbare

∼ e∆E/T (13)

which is the Salpeter factor.
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FIG. 11. Ratio of screened to bare TRR for the non-resonant
component of the TRR only.

A. Accuracy of the Salpeter Approximation

In the previous section, the exact integration of Equa-
tion A.12 was used to determine the correction to reac-
tion rates for the relativistic electron gas. The typical
prescription is to use the Salpeter approximation to de-
termine the width corrections. This approximation re-
sults from the separation of the exponent containing the
Debye length from the integration over energy and use
as an independent coefficient in the reaction rate with-
out shifting the cross section energy.

This correction can be evaluated by considering the
change in reaction rates using the exact screening due
to the Coulomb potential in the Yukawa form compared
with the Salpeter approximation. This evaluation is
shown in Figure 12 where we plot the quantity(

< σv >Yukawa

< σv >bare

)/
fD. (14)

In Figure 12, we take Γγ = 110 keV, Γp = 2 keV corre-
sponding to ER ≈ 500 keV, and the difference between
the ratio in Equation (14) and unity is multiplied by 104.
It can be seen that the relative difference between the cor-
rection in Figure 12 and the Salpeter correction factor is
on the order of 10−4. The small energy shifts from elec-
tron screening induce a difference ratio nearly equal to
the Salpeter correction factor to within ≈ 0.01%, though
it does appear that the difference gets larger at lower
temperatures and lower resonance energies as more of
the resonance falls below the reaction threshold for the
energy shifts induced by screening.

B. Thermonuclear Reaction Rates (TRRs) for
Various Resonances

TRRs for this reaction are shown in Figure 13 for sev-
eral resonances. For these resonances, we assume a total
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FIG. 12. The correction to the reaction rate from the en-
ergy shifts as studied in this work divided by the Salpeter
correction factor for several resonance energies, indicated in
the figure.

10C decay width Γx = 110 keV, a spin degeneracy fac-
tor ω = 0.5, and a single particle width θ2

L = 0.5. The
thermonuclear rates are shown only for the resonances
and must be added to the non-resonant rate, also shown
in the figure. We observe that the results in Figure 13
decrease with the decay width. For decay widths Γx <∼
50 keV, the resonant rates are less than the non-resonant
rate.

It is seen that the rates are similar for all the reso-
nances in this temperature range. Several factors must
be considered. First, for the energy-dependent widths,
a lower resonance may have a larger particle popula-
tion in the Maxwell-Boltzmann distribution, but the en-
trance channel widths are also smaller. Very roughly, the
rate is proportional to the penetrability factor times the
Maxwell-Boltzmann factor. While the penetrability fac-
tor increases with energy, the Maxwell-Boltzmann factor
decreases.

From the Figure 13 one can conclude that resonances
in the energy range of 0≤E≤1 MeV and with Γx < 110
keV for the 7Be+3He reaction are insufficient for reduc-
ing the BBN production of 7Be. This is consistent with
prior results [15], and the additional inclusion of relativis-
tic plasma screening effects have also been found to be
negligible. Thus, the validity of the previous analysis is
maintained. A possible BBN scenario with a higher den-
sity at lower temperatures may result in such a situation,
though one must gauge the effects of the density increase
on other reactions as well.

V. CONCLUSIONS

In this work we explored in detail the consequences
of the screening due to the relativistic electron-positron
plasma on non-resonant and possible resonances on the
secondary reactions destroying A = 7 nuclei during the



7

T (MeV)
2−10 1−10 1

v>
]

σ
 <

A
[N

10
lo

g

6−

4−

2−

0

2

4

6

8

 = 0 MeVRE
 = 0.2 MeVRE
 = 0.4 MeVRE
 = 0.6 MeVRE
 = 0.8 MeVRE
 = 1.0 MeVRE

Non-Resonant TRR

FIG. 13. Thermonuclear reaction rates for the 7Be(3He,γ)10C
reaction for several resonances for possible particle-decay
channels in the 10C compound nucleus. The dashed black
line is the non-resonant TRR. Assumptions are described in
the text.

Big Bang Nucleosynthesis. We found that effects of
screening from the relativistic plasma are small even for
the reaction with the largest Z1Z2, namely 3He+7Be. We
note that this reaction remains to be the least experimen-
tally explored one in the network of BBN reactions.

We scanned through possible resonance parameters
(widths and resonance energies) in our calculations. The
very small entrance channel widths in any possible res-
onance renders its effects quite small. BBN reactions
would have to overcome this either by resonances to high
spin states - which is very unlikely, resonances via neu-
tron captures to destroy A=7 nuclei - which are inhibited
by an insufficient neutron abundance by the time A=7
nuclei are produced, or via resonances to energy states
high above threshold. As the temperature by the time
A=7 nuclei are produced in significant abundance is low
(T9 ∼ 1), this last case is also not highly probable.

Even though the effects we find are small, it still is
worthwhile to demonstrate how robust our current under-
standing of the BBN is to effects not previously consid-
ered. This is especially important since the instruments
scheduled to go online in the future, such as the Thirty
Meter Telescope [18], will measure the abundances of the
light elements resulting from the BBN with greater pre-
cision.
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Appendix: Appendix: Screening of the Coulomb
potential

In a plasma the Coulomb potential between two nuclei
is screened:

V scr
C =

Z1Z2e
2

r
exp

(
− r

λD

)
(A.1)

where λD is the Debye radius. The non-relativistic con-
tribution to the Debye radius is given by

λD =

 T

4πe2N
(∑

iXi
Z2

i

Ai
+ ξ

∑
iXi

Zi

Ai

)
1/2

(A.2)

where N is the ion number density, Xi is the mass frac-
tion of nuclei of type i, and ξ is a factor that accounts
for the electron degeneracy [19]. Eq. (A.2) is derived
using non-relativistic limit, which is appropriate for the
nuclei in the Big Bang. This formula was used in the
calculations of Ref. [9].

Contribution to the Debye length from the relativistic
electron-positron plasma can be calculated exactly to all
orders from the Schwinger-Dyson equation for the photon
propagator [20]. It is given as

π2

λ2
D

= e2 ∂

∂µ

∫ ∞
0

dpp2

[
1

e(E−µ)/T + 1
− 1

e(E+µ)/T + 1

]
,

(A.3)

where E =
√
p2 +m2

e and µ is the chemical potential.
The correction to the reaction rates,

〈σv〉 =
1

πm12

(
2

T

)3/2 ∫ ∞
0

e−E/TEσ(E)dE, (A.4)

due to the plasma effects was first calculated by Salpeter
[19]. He found that the rates are enhanced by a factor of

fD = exp

(
Z1Z2e

2

TλD

)
. (A.5)

A comparison of different derivations of the Salpeter’s
plasma correction is given in Ref. [21]. Here we outline
another derivation which illustrates the behavior of en-
hancement in the presence of resonances. The dynamics
of two colliding nuclei in a plasma below the Coulomb
barrier is described by [22]

HscrΨ = EΨ (A.6)
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where

Hscr = T + VN + V scr
C . (A.7)

For r � λD, the screened Coulomb potential of Eq. (A.1)
can be expanded as

V scr
C ∼ V bare

C − Z1Z2e
2

λD
= V bare

C − E0. (A.8)

In the high temperature limit, Equation A.3 yields:

E0 =
Z1Z2e

3

π

[
µ2 +

π2

3
T 2

]1/2

(A.9)

Inserting Eq. (A.8) into Eq. (A.6) one gets

HbareΨ = (E + E0)Ψ (A.10)

where

Hbare = K + VN + V bare
C (A.11)

with K being the kinetic energy associated with the rela-
tive motion of the nuclei and VN is the attarctive nuclear

potential. Hence the effect of the screening is to shift the
energy by an amount E0 in the calculations performed
using the bare Coulomb potential. As a result the reac-
tion rate takes the form

〈σv〉 =
1

πm12

(
2

T

)3/2 ∫ ∞
0

e−E/kTEσ(E + E0)dE.

(A.12)
After a change of variables E′ = E + E0, the rate then
takes the form

〈σv〉 ∼
∫ ∞
E0

e−(E′−E0)/T (E′ − E0)σ(E′)dE′. (A.13)

Since E0 is very small the lower limit of the integral can
be extended to zero and the term linear in E0 multiplying
the cross section can be ignored. In Ref. [23] it was shown
that the correction due to these approximations is indeed
very small. The E0/T contribution to the exponential
yields the Salpeter enhancement of Eq. (A.5). Note that
Eq. (A.12) demonstrates that a shift away or towards
the peak energy can appreciably alter the reaction rates
in the presence of resonances.
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