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1Cyclotron Institute and Department of Physics and Astronomy,
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We propose to model hadronization of parton showers in QCD jets through a hybrid approach
involving quark recombination and string fragmentation. This is achieved by allowing gluons at
the end of the perturbative shower evolution to undergo a non-perturbative splitting into quark
and antiquark pairs, then applying a Monte-Carlo version of instantaneous quark recombination,
and finally subjecting remnant quarks (those which have not found a recombination partner) to
Lund string fragmentation. When applied to parton showers from the PYTHIA Monte Carlo event
generator, the final hadron spectra from our calculation compare quite well to PYTHIA jets that
have been hadronized with the default Lund string fragmentation. Our new approach opens up the
possibility to generalize hadronization to jets embedded in a quark gluon plasma.

PACS numbers: 13.87.-a,13.87.Fh

I. INTRODUCTION

Hadron production from jets in high-energy collisions
of hadrons or nuclei is often parameterized through frag-
mentation functions, using the universality of the process
as given by factorization theorems of quantum chromo-
dynamics (QCD) [1]. On a microscopic level, hadron
production in jets can be modeled very well through a
perturbative evolution of the parton shower inside the
jet using DGLAP splitting kernels to some low virtuality
cutoff Q0, followed by a non-perturbative hadronization
model like the Lund string model or cluster hadroniza-
tion applied to the parton shower. Event generators
like PYTHIA [2] and HERWIG [3] have successfully im-
plemented such strategies to describe high momentum
hadron production in e++ e−, p+p and other processes.

In collisions of heavy nuclei at high energy, QCD fac-
torization in jet hadronization is broken up to much
higher hadron momentum, roughly 6-8 GeV/c at typical
collider energies, compared to the situation in elementary
e+ + e− and p + p collisions. This can be readily seen
from the baryon enhancement measured in nuclear colli-
sions both in Au+Au collisions at the Relativistic Heavy
Ion Collider (RHIC) [4] and in Pb+Pb collisions at the
Large Hadron Collider (LHC) [5]. It has been suggested
that hadron production at intermediate momenta, i.e. 2-
8 GeV/c, can be described through the process of quark
recombination or coalescence [6–11]. It is an intriguing
idea to combine the concepts of quark recombination and
parton showers since recombination can be easily gener-
alized to the hadronization of jets in dense environments
as found in relativistic heavy ion collisions. In fact, quark
recombination was applied to hadronization in jets in the
early days of QCD [12–14], and more recently by Hwa
and Yang [15]. However, parton showers in those early
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works were not obtained from the sophisticated parton
Monte Carlo generators available today, but rather fitted
to data or determined from specific models. In addition,
earlier work also used event-averaged spectra, ignoring
fluctuations coming from the small number of partons in
each jet.
Here we show that essential aspects of hadron pro-

duction in jet showers can be reproduced if we replace
Lund string fragmentation in PYTHIA with an improved
recombination model. We work with quarks and glu-
ons at the end of their perturbative shower evolution,
then let gluons decay into quark-antiquark pairs, evalu-
ate quark recombination probabilities based on hadron
Wigner functions by Monte Carlo sampling, and finally
reapply Lund string fragmentation to those quarks which
have not found a recombination partner. Finally, we com-
pare our results to full PYTHIA results which simply
hadronize entire showers by string fragmentation.
The paper is organized as follows. In the next section

we describe how we prepare perturbative parton showers
and extract the constituent quark distributions in phase
space. In Sec. III, we describe the recombination model
used in the present study and our treatment of remnant
partons. In Sec. IV, we discuss our results and compare
to full PYTHIA with string fragmentation. We conclude
in Sec. V. Also included is an Appendix to derive the
recurrence relation for the overlap integral between the
Gaussian wave packets of partons and the harmonic oscil-
lator wave functions of hadrons in the Wigner formalism
used in the recombination calculation. Although in this
work we deal strictly with jets in the vacuum, our moti-
vation derives from the desire to generalize our approach
to jets in a QCD medium later on [16].

II. PARTON SHOWERS

We are not concerned here with the mechanisms in-
volved in creating parton showers. We use PYTHIA
6.3 [2] as a tool to create perturbative parton showers
as input to our hadronization procedure. PYTHIA 6.3
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FIG. 1: (Color online) Distribution dN/dz of shower partons
in terms of the momentum fraction z of the initial jet mo-
mentum at the end of the perturbative shower evolution for
a jet of 100 GeV before (upper panel) and after forcing gluon
decays into quark-antiquark pairs (lower panel).

also serves as our benchmark for hadronization when we
run pure Lund string fragmentation on the same ensem-
ble of parton showers. Of course, another event generator
that allows the extraction of shower partons from a jet
before hadronization would work as well. Unless explic-
itly stated otherwise, the results presented here use mo-
noenergetic jets of energy 100 GeV which are extracted
from e+ + e− collisions at a center-of-mass energy of√
s = 2Ejet = 200 GeV in PYTHIA 6.3. By setting

the cutoff for the perturbative evolution of the jet to
Q0 = 1 GeV, we extract the final parton configuration
before string breaking. The upper panels of Figs. 1 and 2
show the resulting light quark (u, d, ū, d̄), strange quark
(s, s̄) and gluon (g) spectra as functions of their longitu-
dinal momentum fraction z in the jet and as functions
of their momentum pT transverse to the jet axis, respec-
tively. More precisely we define

z =
p ·Pjet

|Pjet|2
, pT =

√

|p|2|Pjet|2 − (p ·Pjet)2

|Pjet|
. (1)

where p is the 3-momentum of the considered parton and
Pjet is the 3-momentum of the original parton creating
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FIG. 2: (Color online) Same as Fig. 1 for the shower parton
transverse momentum distribution dN/d2pT .

the jet. The spectra dN/dz and dN/d2pT are for one
jet averaged over an ensemble of 106 PYTHIA jets with
Ejet = 100 GeV.

Since recombination models are usually built on the
premise of dominance of the lowest Fock states in hadron
wave functions, similar to hadronization in exclusive pro-
cesses [17, 18], only quarks and antiquarks are considered
(see Ref. [19] for a study on higher Fock states). Suc-
cessful recombination models therefore postulate a (non-
perturbative) splitting of gluons into quark-antiquark
pairs. In PYTHIA, the final virtuality of shower gluons
is forced to zero when the value becomes smaller than
Q0. Instead of undoing this step, we assume for simplic-
ity that at the end of their perturbative evolution the
virtualities of gluons are uniformly distributed between
2mu,d and mmax > 2ms, where mu,d = 0.33 GeV and
ms = 0.5 GeV are constituent quark masses for light and
strange quarks, respectively, as in PYTHIA. We decay
gluons isotropically in their rest frame into qq̄ pairs. The
decay chemistry gives equal weight to uū and dd̄ pairs for
gluon virtualities between 2mu,d and 2ms, while above
the strangeness threshold the ratio of light to strange
quarks is simply given by phase space and the vector
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nature of the decay as

Γ(g∗ → uū, dd̄)

Γ(g∗ → ss̄)
= 2

m2 + 2m2
u,d

m2 + 2m2
s

√

m2 − 4m2
u,d

m2 − 4m2
s

. (2)

We do not consider heavy quarks in this study. For
the value of mmax, we fix it by fitting PYTHIA results
from string fragmentation for the ratio of strange to non-
strange hadrons and obtain mmax = 1.25 GeV, which is
used throughout this work.
We note that in reintroducing the non-perturbative

gluon virtuality manually without rebalancing momenta
in the last splitting in PYTHIA, the typical error in to-
tal energy of the shower introduced this way is less than
1% for 100 GeV jets. The lower panels of Figs. 1 and 2
show the spectra of light and strange quarks from gluon
decays for the same sample of 100 GeV jets used pre-
viously, together with the total light and strange quark
spectra. The average number of quark and antiquarks in
these 100 GeV jet showers after decays is about 13.
In principle, quark recombination could be formulated

completely in momentum space (see Ref. [20] for appli-
cations to jet showers). However, for future applications
in heavy ion collisions, where thermal partons will have
nontrivial space-momentum correlations, we espouse a
formulation of quark recombination employing Wigner
functions with both momentum and space-time informa-
tion. We are therefore led to introduce a space-time
structure of showers. We do this based on two simple
premises: (i) Virtual partons with virtuality Q have an
average lifetime 1/Q in their rest frame before splitting.
This time is then properly boosted into the lab frame. (ii)
The centers of wave-packets representing partons move
on free classical trajectories given by the velocity p/E
of the parton in the lab frame, where E is the parton
energy.
In the jet rest frame the spatial density of its shower

partons depends on the time they are produced. However
their density in momentum space is about 0.025/GeV3

and significantly smaller than the corresponding value
of about 2.5/GeV3 for partons in a quark-gluon plasma
at its phase transition temperature. One can analyze
this parton initial state for hadronization more quantita-
tively. As we will discuss in detail in the next section, the
decisive physical quantities for recombination between a
particular quark and antiquark pair to occur are the rel-
ative distances y and k between the partons in space and
momentum space measured at a common time in the rest
frame of the pair. In Fig. 3 we show the statistical dis-
tribution of all quark-antiquark pairs we find in 100 GeV
jet parton showers (normalized to one jet) as a function
of their distances y and k in their common rest frame
at the time when the latter parton of a pair is created.
We find that this distribution peaks at y ∼ 0.5 fm and
k ∼ 0.3 GeV, although large tails exist. This points to
the existence of a “bulk” of partons in a jet shower which
are quite close in phase space and amenable to recombi-
nation, while another, non-negligible fraction of partons
will be far removed from other partons in phase space.

FIG. 3: (Color online) Statistical distribution of quark-
antiquark pairs in 100 GeV jet parton shower in terms of
relative spatial and momentum coordinates y and k of the
pair. The coordinates are defined in the common rest frame
of the pair at the time the latter parton is created in the
shower.

III. QUARK RECOMBINATION

Instantaneous quark recombination is most conve-
niently expressed in terms of an overlap of Wigner func-
tions [11]. The momentum distributions of mesons and
baryons formed from recombination of quarks are gener-
ally given by [6]

dNM

d3PM
= gM

∫

d3x1d
3p1d

3x2d
3p2fq(x1,p1)fq̄(x2,p2)

×WM (y,k)δ(3)(PM − p1 − p2) , (3)

and

dNB

d3PB
= gB

∫

d3x1d
3p1d

3x2d
3p2d

3x3d
3p3fq1(x1,p1)

×fq2(x2,p2)fq3(x3,p3)WB(y1,k1;y2,k2)

×δ(3)(PB − p1 − p2 − p3) , (4)

respectively, if one takes the Wigner functions of quarks
to be delta functions in space and momentum. In the
above, fq(x1,p1) and fq̄(x2,p2) are the phase-space dis-
tribution functions of quarks and antiquarks, and they
are normalized as

∫

d3xd3pfq,q̄(x,p) = Nq,q̄, where Nq,q̄

is the quark or antiquary number. The Wigner functions
of the meson and baryon (or antibaryon) are denoted by
WM (y,k) and WB(y1,k1;y2,k2), expressed in terms of
the relative coordinates and relative momenta of their
valence quarks. For mesons, they are defined as

y = x1 − x2, k =
1

m1 +m2
(m2p1 −m1p2), (5)
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where m1 and m2 are the masses of the quark and anti-
quark, respectively. For baryons (or antibaryons), while
y1 and k1 are similarly defined as in Eq.(5), the sec-
ond relative coordinate y2 and relative momentum k2

are given by

y2 =
m1x1 +m2x2

m1 +m2
− x3,

k2 =
m3(p1 + p2)− (m1 +m2)p3

m1 +m2 +m3
, (6)

with m3 being the mass of the third quark (or an-
tiquark). The meson and baryon Wigner functions
are normalized as (2π)−3

∫

d3yd3kWM (y,k) = 1 and
(2π)−6

∫

d3y1d
3k1d

3y2d
3k2WB(y1,k1;y2,k2) = 1. The

factor gM in Eq.(5) accounts for the probability for the
color triplet, spin-1/2 quark and antiquark to form a
given color singlet meson, while gB is the correspond-
ing factor for three quarks (antiquarks) to form a given
color singlet baryon (antibaryon). In the present study,
the phase space functions of quarks and antiquarks will
be replaced by the Wigner functions of individual quarks
and antiquarks from the Monte Carlo jet shower genera-
tor, and we are going to use harmonic oscillator wave
functions for hadrons to evaluate the momentum and
space-time overlap integrals.
In Ref. [6] for recombination of thermal partons among

themselves and with jet partons, both the color and spin
quantum numbers are treated on a purely statistical ba-
sis. The color flow in the parton shower is in principle
tractable, although not yet implemented here for simplic-
ity. Since the number of shower partons in a jet is very
small, strong color correlations exist and the probability
for colored shower partons to form color singlet hadrons
is thus much larger than given by a statistical factor for
colored thermal partons. For the present study we will
neglect the statistical factors due to the color degrees of
freedom and only include those due to the spin degrees
of freedom. However, we prohibit the quark-antiquark
pair from a forced gluon decay to recombine into a color-
singlet meson. This approximation can be solidified by
either invoking local color neutrality arguments [3, 21], as
also used for cluster hadronization in HERWIG, or the
color evaporation approach, similar to the one used in
heavy quarkonium production in nuclear reactions where
the quark and antiquark pair’s wave function is assumed
to be readjusted to a color singlet through soft gluon
emission prior to form a bound state [22–24]. Of course
this could be improved in the future by following color
flow in the parton shower simulation.
Because of their large relative momenta, shower par-

tons are quite likely to recombine into excited hadron
states. Wigner functions can have negative values, which
makes them unsuitable for direct Monte Carlo evalua-
tion. Instead we have to sample the quantum mechanical
overlap integrals of the hadron Wigner functions with the
Wigner functions representing the wave packets of shower
partons, which we take to be Gaussians here. The result-
ing quantum mechanical overlap integral, which is guar-

anteed to provide a positive definite probability density
that can be sampled, is equivalent to a Gaussian smearing
of the Wigner functions in Eqs.(3) and (4), i.e., replacing
WM by [25]

WM (y,k) =

∫

d3x′
1d

3k′
1

(2π)3
d3x′

2d
3k′

2

(2π)3

× Wq(x
′
1,k

′
1)Wq̄(x

′
2,k

′
2)WM (y′,k′). (7)

In the above, Wq(x
′
1,k

′
1) and Wq̄(x

′
2,k

′
2) are, respec-

tively, the Wigner functions of the quark and antiquark
with their centroids at (x1,k1) and (x2,k2), respectively.
The formula for baryons is analogous.
We can evaluate Eq.(7) with the help of some mathe-

matics worked out in Appendix. The result for a meson
in the n-th excited state in the center of mass frame of
the quark-antiquark pair is

WM,n(y,k) =
vn

n!
e−v. (8)

with

v =
1

2

(

y2

σ2
M

+ k2σ2
M

)

. (9)

where σM is the width of the harmonic oscillator wave
function for the relative motion of quark-antiquark pair.
Similarly, the Gaussian smeared Wigner function for a

baryon, with a wave function in the n1-th excited state
in one relative coordinate and in the n2-th excited state
in the other relative coordinate, is given by

WB,n1,n2
(y1,k1;y2,k2) =

vn1

1

n1!
e−v1 · v

n2

2

n2!
e−v2 , (10)

with

vi =
1

2

(

y2
i

σ2
Bi

+ k2
i σB2

i

)

, i = 1, 2. (11)

Since the wave functions of quarks and/or antiquarks
in a hadron are always given in the rest frame of the
hadron, we evaluate the relative coordinates and mo-
menta in Eqs.(5) and (6) using the parton coordinates
and momenta given at constant rest frame time [26, 27]
in terms of their equal-time coordinates in the hadron
rest frame. To this end, for each candidate partons to be
treated their phase-space coordinates have to be Lorentz
transformed from the lab frame to their common rest
frame, and subsequently the partons produced earlier in
the parton shower are propagated like free particles to
the time at which the last candidate parton is produced
and available for hadronization. We have checked that
an algorithm that rather takes the distance of closest ap-
proach for the candidate partons has not much influence
on the results as the parton shower is rapidly expanding.
The two width parameters σB1 and σB2 in the baryon

Wigner function are related to each other by

σB2 = σB1

(

µ1

µ2

)1/2

, (12)
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where the two reduced masses are defined as [28]

µ1 =
m1m2

m1 +m2
, µ2 =

(m1 +m2)m3

m1 +m2 +m3
. (13)

The width parameters of the harmonic oscillator wave
function can be related to the measured size of the formed
hadron. More precisely, for a meson consisting of quark
and antiquark of masses m1 and m2 and charges Q1 and
Q2, its mean-square charge radius is related to σM by [28]

〈r2〉M = |〈Q1(x1 −X)2 +Q2(x2 −X)2〉|

=
3

2

|Q1m
2
2 +Q2m

2
1|

(m1 +m2)2
σ2
M , (14)

where X = (m1x1 + m2x2)/(m1 + m2) is the center of
mass coordinate.

Similarly, the width parameter σB1 in the Wigner func-
tion of a baryon consisting of three quarks of masses m1,
m2, and m3, and charges Q1, Q2, and Q3 are related to
its mean-square charge radius is by [29]

〈r2〉B = |〈Q1(x1 −X)2 +Q2(x2 −X)2 +Q3(x3 −X)2〉|

=
3σ2

B1

2(m1 +m2 +m3)

[

m2(m2 +m3)

m1 +m2
Q1 +

m1(m3 +m1)

m1 +m2
Q2 +

m1 +m2

m3
Q3

]

, (15)

TABLE I: Empirical charge radii Rc (from Ref. [30]), width
parameters σM or σB1, and spin statistical factors g for
hadrons used in the calculation.

Hadron Rc [fm] σM or σB1 [fm] g

π 0.67 1.09 1/4

ρ – 1.09 3/4

K 0.56 0.84 1/4

K∗ – 0.84 3/4

N 0.88 1.24 1/4

N∗ – 1.24 1/4

∆ – 1.24 1/2

Λ – 1.21 1/4

where X = (m1x1 + m2x2 + m3x3)/(m1 + m2 + m3)
denotes the center of mass of the three quarks.

We use measured charge radii for charged pions, pro-
tons and charged kaons to determine the width parame-
ters σπ , σK and σN in the pion, kaon and nucleon Wigner
functions. The same width parameters are used for their
isospin partners and their antiparticles as well as their
spin resonances ρ, K∗, N∗, and ∆. Since Λ and Λ̄ have
no charge, their width parameters are determined instead
from the matter radius, which is given by an equation
similar to Eq. (15) after setting Q1 = Q2 = Q3 = 1/3,
and assuming that their size is the same as that of a pro-
ton. Excited states of these hadrons are then accounted
for by the excited states of the harmonic oscillator wave
functions using the same width parameters. In Table I we
summarize the charge radii, width parameters and spin
statistical factors for all stable hadrons and resonances
included here.

Eqs. (9) and (10) can now be used to determine the re-
combination probability for a given quark-antiquark pair
or a triplet of quarks or antiquarks. For a given shower,
the relative coordinates in the common rest frame are
evaluated for all possible hadron candidates which are
subsequently accepted for recombination, or rejected, by
Monte Carlo methods.

Some quarks might have quite small probabilities for
recombination with any other parton in the same shower.
In that case, there is a large probability that the Monte
Carlo algorithm will not find a recombination partner.
Such quarks are typically far removed from others in
phase space, making all Wigner function overlap integrals
small. The reason for this to occur is the lack of confine-
ment in what is essentially a perturbative shower evolu-
tion. Of course isolated partons have to be connected by
strings to another color charge and Lund string fragmen-
tation can take care of their hadronization. We deal with
such partons far removed in phase space by reconnecting
them to other partons by QCD strings. This also includes
undoing the non-perturbative gluon splitting introduced
earlier, if none of the daughter quarks has found a re-
combination partner. We thus form short strings of the
types (q, q̄) and (q, g, g, . . . , q̄) and then hand them over
to PYTHIA 6.3 for hadronization.

We end up with the following picture: Final hadron
spectra are a mixture of hadrons from recombination
(from quarks close in phase space to other quarks) and
from string fragmentation (for quarks isolated in phase
space or otherwise leftover). Typically, high-z partons
are both rare and far removed in phase space. They are
unlikely to recombine with other partons in the shower
(or partons from a surrounding medium if one would con-
sider such). This can be seen in Fig. 4 where the prob-
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FIG. 4: (Color online) Probabilities of light and strange
quarks to recombine into hadrons as functions of their mo-
mentum fraction z for100 GeV jets.

ability of quarks to find a recombination partner is plot-
ted as a function of parton momentum fraction z for 100
GeV jets. Thus in our model moderate to high-z partons
still preferentially hadronize by string breaking. On the
other hand, we indeed find the existence of a bulk of jet
partons at lower z in which quarks are close enough in
phase space so that they prefer recombination. Recall
that our main motivation is to establish a hadronization
model which naturally generalizes to jets in a medium.
It is now straightforward to see how our formalism can
be applied to that more general case [16].
Excited states will be important channels for recom-

bination. Excited mesons and baryons up to n = 5 are
known experimentally [30]. However, here we include
the contributions from excited meson states up to n = 8
and excited baryon states up to n1 + n2 = 8, which can
be easily done with harmonic oscillator wave functions.
We allow excited states to decay to multiple pions in the
case of light quark mesons, to kaon and pion in the case
of light and strange mesons, to (anti)nucleon and pion in
the case of light flavor (anti)baryons, and to Λ and pion
in the case of baryons with strangeness ±1. For decays
into multiple pions, we determine their relative probabil-
ities through the available phase space according to [31]

Pl(M) ∼
[

1

6π2

(

M

mπ

)3
]l

(4l − 4)!(2l− 1)

(2l− 1)!2(3l− 4)!
. (16)

Here l is the number of pions,M is the mass of the excited
state, or the invariant mass of the light quark-antiquark
pair. The pion mass mπ in the above equation comes
from taking the radius of the emitting source to be that
of the inverse of the pion mass [31]. In the present study,
we replace 1/mπ by the distance between the recombined
quark and antiquark, and consider its decay to at most
four pions. The momentum distribution of these pions
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FIG. 5: (Color online) Longitudinal momentum fraction spec-
trum dN/dz of pions (upper left panel), kaons (upper right
panel), nucleons and antinucleons (lower left panel), and Λ
and Λ̄ (lower right panel) from our calculation. Shown sepa-
rately are contributions from the recombination of shower par-
tons (stars) and fragmentation of remnant partons (circles).
Also shown are the total contribution (dashed lines) and the
results from PYTHIA string fragmentation (solid lines).

is then determined from phase space considerations. An
excited nucleon N∗ or ∆ decays to a nucleon and l pions
if its invariant mass is between mN + lmπ and mN +
(l+1)mπ with mN being the nucleon masses. Again, we
include at most four pions in the decay and use phase
space considerations to determine their momenta. An
excited kaon or Λ is assumed to decay to a kaon or Λ
and multi-pions in a similar way.

IV. RESULTS

In the following, we compare results from our
hadronization model applied to parton showers from
PYTHIA 6.3 to calculations of PYTHIA with string frag-
mentation applied to the same parton showers.

First, we test the longitudinal structure of jets by com-
paring the spectra dN/dz as functions of the momentum
fraction z longitudinal to the jet axis for our sample of
100 GeV jets. In Fig. 5, we show the spectra of pions
(upper left panel), kaons (upper right panel), nucleons
and antinucleons (lower left panel), and Λ and Λ̄ (lower
right panel) from 100 GeV quark jets. We show sepa-
rately hadrons from recombined shower partons (stars),
from the fragmentation of remnant hadrons (circles) and
their sum (dashed line). The solid line indicates the re-
sult from PYTHIA 6.3 string fragmentation applied to
the same sample of jet parton showers. We also show the
recombination only through the ground state of the har-
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FIG. 6: (Color online) Same as Fig. 5 for the transverse mo-
mentum spectra.

monic oscillator wave functions (n = 0). As expected, we
see that recombination spectra fall off faster with z than
the string fragmentation contribution. String fragmenta-
tion dominates at intermediate and high z while recombi-
nation becomes the leading channel below z ∼ 0.1, where
the bulk of the hadron production resides.

We also note that recombination proceeds mainly
through excited hadron states and not directly into n = 0
ground state hadrons. The n = 0 channel includes direct
production of pion, kaon, nucleon, and Λ as well as pro-
duction from the decay of n = 0 spin-excited states ρ,K∗,
N∗ and ∆. The inclusion of excited states n > 0 makes
the recombination spectra considerably harder. Overall
we find that the results from our model are consistent
with spectra created by PYTHIA from pure string frag-
mentation. Note that the comparison to string fragmen-
tation — another model — only makes sense on a qual-
itative level. Precision tuning of our model would have
to involve fits to data which is outside the scope of this
work. We compare the transverse momentum spectra of
jets in Fig. 6. Again, results obtained from our hybrid
recombination and fragmentation model compare well to
pure string fragmentation.

Finally we check our approach to hadronization with
jets of a smaller jet energy and find again that our
results reproduce pure string fragmentation reasonably
well. The spectra for Ejet = 25 GeV jets are shown in
Figs. 7 and 8 for the longitudinal and transverse momen-
tum spectra, respectively. The recombination probabil-
ity depends on the absolute distance of partons in phase
space. Hence we expect the range in z in which recom-
bination competes with remnant string fragmentation to
decrease with rising Ejet. On the other hand, at smaller
jet energies recombination stays more competitive out to
larger z at least for mesons, while for baryons the reduced
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FIG. 7: (Color online) Same as Fig. 5 for jets of energy Ejet =
25 GeV.
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FIG. 8: (Color online) Same as Fig. 6 for jets of energy Ejet =
25 GeV.

number of partons in lower energy jets can lead to the
opposite effect.

V. SUMMARY AND DISCUSSIONS

We have devised a model to hadronize perturbative
parton showers in jets based on a hybrid of quark recom-
bination and string fragmentation. Our algorithm re-
produces results from pure string fragmentation and can
be easily generalized to include partons from an ambient
medium.
We turn perturbative parton showers into showers of
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constituent quarks and antiquarks by gluon decay. We
then apply Monte Carlo methods to recombine quarks
and antiquarks using probabilities given by their overlap
integrals with respect to meson and baryon Wigner func-
tions. The width parameters in these Wigner functions
are fixed by hadron charge radii. Remnant quarks and
antiquarks, which are not used for recombination, are
connected by strings and subjected to the usual string
fragmentation procedure in PYTHIA. We find that de-
cays of excited states from recombination make the most
important contributions to spectra of pions, kaons, nu-
cleons and Lambdas.

We have checked that both the longitudinal and trans-
verse momentum structures of hadron showers reproduce
the results from PYTHIA string fragmentation. The only
adjustable parameter that we have kept is the mass cutoff
for gluon decays into quark-antiquark pair which is set by
the strange to non-strange hadron ratio. However, other
quantities which are not very well known, like the width
parameters in the Wigner functions for excited states of
hadrons, can in principle be used as parameters for fur-
ther fine tuning of results.

Our hybrid approach essentially keeps string dynamics
intact for the high-z tail of the jet and replaces string dy-
namics with recombination for the bulk of the jet where
O(10) quarks with a few GeV/c momentum can be found
close enough together in phase space to recombine.

In the presence of a quark-gluon plasma produced
in relativistic heavy ion collisions, we suggest that our
approach can be generalized by sampling the ambient
medium (e.g. provided by a fluid dynamic simulation into
which the jet is embedded) for thermal partons. Recom-
bination would be delayed if the ambient temperature
is above the critical temperature Tc. At Tc jet partons
would be allowed to recombine with thermal partons, and
remnant jet partons could also be allowed to connect to
thermal partons by strings. This process, like other jet-
medium interactions, would allow the exchange of energy
and momentum. Details of an in-medium algorithm will
be provided in a forthcoming manuscript [16].
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Appendix: Overlap integral of quark and hadron

Wigner functions

In this Appendix, we discuss in details the calculation
of the overlap integral of hadron Wigner functions with
the quark Wigner functions, specifically for the case that
the hadron Winger functions are obtained from the har-
monic oscillator wave functions and the quark Wigner
functions are obtained from Gaussian wave packets. In
this case, we call the overlap integral as the Gaussian
smeared Wigner functions of hadrons. Let us start by
noting that both the Gaussian wave packets and the har-
monic oscillator problem factorize into the three spatial
directions. We can thus solve the corresponding one di-
mensional problem and then readily find the solution in
three dimensions.
We start with the well known harmonic oscillator basis

in one dimension [32],

ψn(x) =
(mω

π~

)1/4 1√
2nn!

Hn(ξ)e
−ξ2/2, (A.1)

where ξ =
√

mω
~
x, Hn(ξ) are Hermite polynomials and

ω is the oscillator frequency. The Wigner transformation
of the harmonic oscillator wave functions, defined by

Wn(x, k) =

∫ ∞

−∞

dη eikηψn

(

x+
η

2

)

ψn

(

x+
η

2

)

,(A.2)

leads to [33]

Wn(u) = 2(−1)nLn(u)e
−u/2, (A.3)

where u = 2
(

x2

σ2 + σ2k2
)

with the width σ =
(

~

mω

)1/2
,

and the Ln are Laguerre polynomials.
We would like to calculate the overlap integral

Wn(x, k) =

∫

dx′1dk
′
1

(2π)3
dx′2dk

′
2

(2π)3

× W (x′1, k
′
1)W (x′2, k

′
2)Wn(x

′, k′), (A.4)

of the hadron Wigner function Wn(x
′, k′), where x′ =

x′1 − x′2 and k′ = (k′1 − k′2)/2, with the quark Wigner
functions

W (x′i, k
′
i) = 2e−(x′

i−xi)
2/δ2e−δ2(k′

i−ki)
2

, i = 1, 2, (A.5)

of width δ around centroids xi and ki in space and mo-
mentum. The latter are obtained from taking the quark
wave functions to be Gaussian wave packets, i.e.,

φi(yi) =
1

(πδ2)1/4
exp[ikiyi − (yi − xi)

2/(2δ2)]. (A.6)

In Eq.(A.4), x = x1 − x2 and k = (k1 − k2)/2, and
the result will only depend on the relative position and
momentum of the centroids of parton Wigner functions.
Using the generating function for Laguerre polynomi-

als [34],

1

1− t
e−

tx
1−t =

∞
∑

n=0

tnLn(x), (A.7)



9

it is straightforward to see that Eq. (A.3) leads to the
generating function for the oscillator Wigner functions

2

1 + t
exp

(

− 1− t

2(1 + t)
u

)

=

∞
∑

n=0

tnWn(u). (A.8)

Carrying out the integrals from Eq. (A.4) on both sides
of above equation, we obtain the following generating
function for the Gaussian smeared Wigner function Wn

2

(1 + t)(1 + aα)1/2(1 + aα−1)1/2

× exp

(

− ax2

(1 + aα)σ2
− ak2σ2

1 + aα−1

)

=
∞
∑

n=0

tnWn(x, k),

(A.9)

where a = 1−t
1+t and α = 2δ2/σ2. By Taylor expanding

the left hand side in t and comparing coefficients of the
same powers in t on both sides, we obtain the following
recurrence relation for the Wn:

Wn+5 = − 1

Λ5
(Λ4Wn+4 + Λ3Wn+3 + Λ2Wn+2

+Λ1Wn+1 + Λ0Wn), (A.10)

where Λi (i = 0, 1, . . . , 5) are given by

Λ0 = −[(1 + α)2 + n](1 − α)2,

Λ1 = [α(1 − α) + 2(x/σ)2 + 2α2(kσ)2 + n+ 1](1− α)2x

Λ2 = [(1− α)(α2 + 4α+ 1)− 2(x/σ)2(3α+ 1)

−2α(kσ)2(−α2 + 3α+ 2)

−2(n+ 2)(1 + α)2(1− α)](1 − α),

Λ3 = [α(1 − α)2 + 2(x/σ)2(3α2 − 2α− 1)

+2α(kσ)2(α3 − 3α2 + 9α− 7)

−2(n+ 3)(1 + α)2(1− α)2],

Λ4 = [2(x/σ)2 + 2α2(kσ)2 − (n+ 4)(1− α)2](1 + α)2,

Λ5 = −(n+ 5)(1 + α)2. (A.11)

Taking α = 2δ2/σ2 = 1 for simplicity reduces
Eq.(A.10) to

Wn+1 =
v

n+ 1
Wn, (A.12)

with

W 0 = exp(−v) and v =
1

2

(

x2

σ2
+ k2σ2

)

(A.13)

or equivalently

Wn =
vn

n!
e−v. (A.14)

The Gaussian smeared Wn has the form of a Poisson
distribution with the normalization

∞
∑

n=0

vn

n!
e−v = 1, (A.15)

which is similar to that of a coherent state [35].

In three dimensions, the Gaussian smeared Wigner
function is thus given by

Wn(x,k)

=
∑

nx+ny+nz=n

Wnx
(x, kx)W ny

(y, ky)Wnz
(z, kz)

=
∑

nx+ny+nz=n

vnx
x

nx!
e−vx ·

vnx
y

ny!
e−vy · v

nz
z

nz!
e−vz

=
1

n!
e−v

∑

nx+ny+nz=n

n!

nx!ny!nz!
vnx

x vny

y vnz

z

=
vn

n!
e−v, (A.16)

with

v = vx + vy + vz =
1

2

(

x2

σ2
+ k2σ2

)

. (A.17)

The fourth equality in Eq.(A.16) follows from using the
trinomial expansion formula

∑

nx+ny+nz=n

n!

nx!ny!nz!
vnx

x vny

y vnz

z

= (vx + vy + vz)
n = vn. (A.18)
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