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Heavy-quark observables in ultrarelativistic heavy-ion collisions, like the nuclear modification
factor and the elliptic flow, give insight into the mechanisms of high-momentum suppression and low-
momentum thermalization of heavy quarks. Here, we present a global study of these two observables
within a coupled approach of the heavy-quark propagation in a realistic fluid dynamical medium,
MC@sHQ+EPOS2, and compare to experimental data from RHIC and LHC experiments. The
heavy quarks scatter elastically and inelastically with the quasiparticles of the quark-gluon plasma
(QGP), which are represented consistently with the underlying equation of state. We examine
two scenarios: first, we interpret the lattice QCD equation of state as a sum of partonic and
hadronic contributions, and second, as a gas of massive partonic quasiparticles. It is observed that
independent of their momentum the energy loss of heavy quarks depends strongly on how the lattice
QCD equation of state is translated into degrees of freedom of the QGP.

I. INTRODUCTION

At top-RHIC and LHC energies a color-deconfined
QCD medium of high temperatures and densities, the
quark-gluon plasma (QGP), is created during ultrarela-
tivistic heavy-ion collisions. The properties of this fasci-
nating new state of matter can be probed by heavy-flavor
particles, which are predominantly produced in the initial
hard nucleon-nucleon interactions. Due to the propaga-
tion through the colored partonic medium high-pT heavy
quarks suffer from a substantial energy loss, while low-pT
heavy quarks are expected to thermalize at least partially
within the medium.

The nuclear modification factor, RAA, which is the ra-
tio of the spectra measured in heavy-ion collisions to the
scaled proton-proton reference, and the elliptic flow, v2,
which is at low-pT a measure of thermalization inside the
medium and reflects at high-pT the spatial anisotropy
of the initial state, are traditional observables of heavy-
flavor hadrons and decay leptons.

A suppression of high-pT D mesons, heavy-flavor de-
cay electrons and muons has been measured by the STAR
[1, 2] and Phenix [3] collaborations at RHIC and the AL-
ICE [4–6] and CMS [7] collaborations at LHC. The v2 of
D mesons, heavy-flavor decay electrons and muons was
found to be nonvanishing both at RHIC [8] and at LHC
[9].

Perturbative QCD calculations for the average energy
loss of high-pT particles include elastic [10–13] and/or
inelastic scatterings [14–27]. In most of these models,
no evolution of the QGP is considered and only aver-
age temperatures and path-length distributions are in-
cluded. The generic form of the RAA as a function of
pT or the integrated RAA as a function of centrality can
easily be reproduced by most calculations on the basis of
fundamental principles despite rather different ingredi-
ents. The strength of the suppression, however, depends
strongly on the details of the space-time evolution of the
QGP [28]. For quantitative predictions the fully coupled

dynamics of the heavy quarks and of the QGP needs to
be taken into account. Under the assumption that the
time evolution of the heavy-quark distribution function
in the QGP can be described by Fokker-Planck dynamics
[29–35], the interaction of a heavy quark with the QGP
is expressed by two transport coefficients: a drag force
Ai and a diffusion tensor Bij , which can be written as
B⊥ and B||. These quantities can be calculated from the
microscopic 2→ 2 processes by

dX

dt
=

1

2E

∫
d3k

(2π)32Ek

∫
d3k′

(2π)32Ek′

∫
d3p′

(2π)32E′

×
∑ 1

di
|Mi,2→2|2 ni(k)X

× (2π)4δ(4)(p+k−p′−k′) , (1)

where p(p′) and E = p0 (E′ = p′0) are momentum and
energy of the heavy quark before (after) the collision and
k(k′) and Ek = k0 (Ek′ = k′0) are momenta and energies
of the colliding light quark (i = q) or gluon (i = g). For
the scattering process of a heavy quark with a light quark
(qQ → qQ) dq = 4 and for the scattering off a gluon
(gQ → gQ) dg = 2. n(k) is the thermal distribution of
the light quarks or gluons. Mi is the matrix element for
the scattering process i, calculated using pQCD Born ma-
trix elements. In order to calculate the quantities men-
tioned above, Ai and Bij , one has to take X = p−p′i and
X = 1/2(p − p′i)(p − p′j). Usually, the simultaneous cal-
culation of both coefficients from Eq. 1 does not satisfy
the Einstein relation which assures that asymptotically
f(~p, t) is the distribution function at thermal equilibrium.
In most Fokker-Planck/Langevin approaches one quan-
tity is calculated and the other one is obtained via the
Einstein relation under the assumption that B⊥ = B||. It
has recently been shown that the results from the Fokker-
Planck/Langevin approach differ substantially from that
of the full Boltzmann transport equation in which the
collision integrals are explicitly solved [36] because the
underlying assumption, that the scattering angles and
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the momentum transfers are small, is not well justified.
A recent review article [37] gives a broad overview over
the various approaches of heavy-flavor energy loss using
either the Fokker-Planck/Langevin or the Boltzmann dy-
namics.

From Eq. (1) one sees immediately that all quanti-
ties depend on the distribution of the partonic scattering
partners ni(k). In a thermal medium ni(k) is given by
the Fermi-Dirac, Bose-Einstein or (if quantum statistics
is neglected) the Boltzmann distribution. It is obvious
that these quantities depend on the local temperature
and velocities of the medium, which in most approaches
are given by a fluid dynamical description of the QGP.
As a consequence, final observables like RAA and v2 are
strongly affected by the details of the medium evolution.
While the solution of the fluid dynamical conservation
equations requires only the knowledge of thermodynamic
quantities, such as the equation of state, and transport
coefficients, the actual nature of the quasiparticles is im-
portant for the scattering cross sections between heavy
quarks and light partons. Usually, ni(k) is taken as a
thermal distribution of massless, noninteracting partons
[12, 26, 27]. The equation of state from lattice QCD cal-
culations [38, 39] is not compatible with this assumption.
It shows that the Stefan-Boltzmann limit is obtained only
at extremely high temperatures which are not relevant for
heavy-ion collisions.

In the present work, we address two different interpre-
tations of the equation of state in terms of the underly-
ing degrees of freedom. First, we follow the phenomeno-
logical parametrization of the lattice QCD equation of
state as a sum of a partonic and a hadronic contribu-
tions. Here the partons are considered as massless. This
parametrization is used explicitly in EPOS2, the fluid
dynamical evolution which models the QGP in our ap-
proach. In a recent work [40] we investigated the effect of
hadronic bound states above the transition temperatures
by an adhoc parametrization of their contribution. Here,
a parametrization is used, which is compatible with the
underlying QCD equation of state. Second, we determine
quasiparticle masses by fitting the entropy density, cal-
culated in lattice QCD. Quasiparticle models have been
used in various forms to describe the thermodynamics of
QCD [41, 42]. In the off-shell transport approach with a
hadronic and a partonic phase, PHSD [43], a dynamical
version is implemented. The approach has recently also
been applied to the dynamics of charm quarks [44, 45].
Differences between our approach and the PHSD imple-
mentation include in particular the fluid dynamical ver-
sus microscopic treatment of the light parton dynamics
and the parametrization of the coupling constant which
depends in our case on the momentum transfer in the
collisions whereas PHSD uses a coupling constant which
depends on the temperature of the environment.

Our model couples the Monte-Carlo treatment of
the full Boltzmann transport equation of heavy quarks
(MC@sHQ) [12] to the 3 + 1 dimensional fluid dynam-
ical evolution of the locally thermalized QGP following

the initial conditions from EPOS2 [46, 47]. EPOS2 is
a multiple scattering approach which combines pQCD
calculations for the hard scatterings with Gribov-Regge
theory for the phenomenological, soft initial interactions.
Jet components are identified and subtracted while the
soft contributions are mapped to initial fluid dynamical
fields. By enhancing the initial flux tube radii viscosity
effects are mimicked, while the subsequent 3 + 1 dimen-
sional fluid dynamical expansion itself is ideal. Including
final hadronic interactions the EPOS2 event generator
has successfully described a variety of bulk and jet ob-
servables, both at RHIC and at LHC [46, 47].

The fluid dynamical evolution is used as a background
providing us with the temperature and velocity fields
necessary to sample thermal scattering partners for the
heavy quarks. These scatterings can occur purely elasti-
cally or inelastically. The elastic cross sections are ob-
tained within a pQCD inspired calculation, including
a running coupling constant αs [12, 48]. The contri-
bution from the t-channel is regularized by a reduced
Debye screening mass κm2

D, which is calculated self-
consistently [12, 13], yielding a gluon propagator with
1/t→ 1/(t− κm̃2

D(T )) for all momentum transfers t. In
this HTL+semihard approach [12], κ is determined such
that the average energy loss is maximally insensitive to
the intermediate scale between soft (with a HTL gluon
propagator) and hard (with a free gluon propagator) pro-
cesses. The inelastic cross sections include both, the in-
coherent gluon radiation [49], which has been extended to
finite quark masses [50], and the effect of coherence, i.e.
the Landau-Migdal-Pomeranchuk (LPM) effect [51]. The
spatial diffusion coefficient from this approach [52, 53] is
compatible with the available lattice QCD calculations
[54], which currently have still large uncertainties. In or-
der to further constrain the model, we rescale the cross
sections by a global factor K, which is chosen such that
the results give a reasonable agreement with the RAA

data at intermediate and high pT . For
√
sNN = 2.76 TeV

at LHC, KLHC
c = 1.5 for purely collisional processes

and KLHC
c+r = 0.8 for collisional+radiative(LPM) pro-

cesses. The rescaling is less well determined at the√
sNN = 200 GeV RHIC energy, because high-pT data

is not yet available. In this work we apply the same K-
factors at RHIC as at LHC. All other observables are then
calculated with the same rescaled cross sections. Results
presented within this model, MC@sHQ+EPOS2, so far
[40, 55, 56] assume massless thermal partons.

This paper is organized as follows. We describe the
two approaches to the coupling between the heavy-quark
sector and the fluid dynamical medium via the equation
of state in section II. In section III we investigate the
consequences of this coupling on the drag coefficient be-
fore we present the results for the RAA and v2 of the full
evolution at LHC and RHIC energies in section IV and
the conclusions in section V.
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II. EQUATION OF STATE AND COUPLING TO
THE HEAVY QUARKS

Thanks to the continued progress in lattice QCD calcu-
lations at vanishing net-baryon density, today the QCD
equation of state is known very precisely [38, 39]. This
knowledge tremendously reduced uncertainties in fluid
dynamical simulations of ultrarelativistic heavy-ion col-
lisions and facilitated quantitative estimates for the value
of the shear viscosity as well as constraints for the ini-
tial state. For heavy-flavor dynamics the use of a realistic
space-time evolution, i.e. of an approach that reproduces
the available data on bulk observables, is therefore possi-
ble and should become standard for reliable quantitative
statements about heavy-flavor energy loss and thermal-
ization in heavy-ion collisions.

At this level of precision the question of the nature of
the active degrees of freedom in the QGP arises, as it
affects the matrix elements as well as the thermal distri-
bution function of partons in Eq. (1). In [40] we dis-
cussed the reduction of heavy-flavor energy loss in the
presence of color-neutral hadronic bound states above Tc
as was advocated in [57]. For an estimated fraction of
hadronic bound states, the RAA at LHC could still be
reproduced by increasing the K-factor for a collisional
plus radiative scenario from KLHC

c+r = 0.8 (for a 100 %

partonic medium) to KLHC
c+r = 1.0. It was found that

the v2 was more sensitive to the smaller fraction of par-
tons in the medium at later times of the evolution. Ac-
cording to some lattice calculations for the quark-number
susceptibilities there are indications for the existence of
hadronic bound states above Tc, although this is excluded
by other investigations [58] on the lattice. While a def-
inite statement or even a quantitative description is not
yet available, one might refer to model studies [59, 60]
which all give an estimate for the fraction of hadronic
bound states by either adjusting their thermodynamic
quantities to the ones calculated on the lattice or ac-
cording to the model ingredients. None of these models
is, however, able to reproduce the lattice (off-diagonal)
quark-number susceptibilities correctly, which motivated
the work in [57], and which are the essential quantities
when the existence of hadronic bound states above Tc
is claimed. It is thus not clear if these models capture
the proper physics of hadronic bound states around the
transition temperature.

Here, we follow two other approaches. The first
is closely related to the approach of [40] but here
we treat the equation of state as implemented in the
EPOS approach. There the lattice equation of state is
parametrized, above Tf = 134.74 MeV, as a sum of an
ideal partonic gas and of a hadron resonance gas (HRG).
Assuming that heavy quarks interact only with the col-
ored partonic medium the heavy quark energy loss will be
reduced as compared to a model in which is assumed that
above Tc only partons exist. For the second approach, no
coexistence of partons and hadrons is assumed, but the
partons constituting the medium above a temperature

Tf < Tc are massive quasiparticles. These masses can be
determined as a function of the temperature by fitting
the equation of state.

A. EPOS parametrization of the lattice equation of
state

There are several parametrizations of the lattice QCD
equation of state that connect a high-temperature part
to a hadronic medium at lower temperatures [61, 62].
The parametrization used in the EPOS2 fluid dynamical
simulations relies on an effective hadronic and an effective
partonic contribution such that the pressure reads

p(T ) = pQGP(T ) + λ̃(T )(pHRG − pQGP) , (2)

where pQGP is the pressure in the Stefan-Boltzmann (SB)
limit of QCD, i. e. the pressure of an ideal ultrarelativis-
tic plasma of massless quarks and gluons

pQGP =
dg + 7/8dq

90
π2T 4 . (3)

The degeneracy factors of the gluons and quarks are dg =
2× (N2

c − 1) and dq = 2spin× 2qq̄ ×Nc×Nf with Nc = 3
colors and Nf = 3 flavors. The hadronic contribution is
given by the pressure of the hadron resonance gas model

pHRG/T
4 =

1

V T 3

∑
i∈mesons

lnZMmi(T, V, µB , µQ, µS)

+
1

V T 3

∑
i∈baryons

lnZBmi(T, V, µB , µQ, µS) , (4)

and

lnZM/B
mi = ∓V di

2π2

∫ ∞
o

dkK2 ln(1∓ zi exp(−εi/T )) , (5)

with the energies εi =
√
k2 +m2

i and the fugacities

zi = exp((BiµB +QiµQ + Siµs)/T ) . (6)

µX are the chemical potentials for baryon number (X =
B), electric charge (X = Q) and strangeness (X = S).
The EPOS parametrization assumes that below the tem-
perature Tf = 134.74 MeV the equation of state is given

by a pure HRG and thus λ̃(T < Tf ) = 1. Above Tf λ̃(T )
is obtained from a fit of (2) to lattice calculations [54]
and with following form

λ̃(T ) = exp

[
−
(

T − Tf
δ(1 + (T − Tf )/(δa))

)
− b

(
T − Tf

δ(1 + (T − Tf )/(δa))

)2 ]
. (7)

As shown in [47] this parametrization reproduces well
the lattice equation of state at µB = 0 for the following
parameter: δ = 0.24 GeV, a = 0.77, b = 3.0.
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FIG. 1: (Color online) The fraction of partonic degrees of
freedom as given by the EPOS parametrization of the lattice
equation of state.

The fraction of the effective partonic degrees of free-
dom, given by λ = 1− λ̃ in equation (2), is shown in Fig.
1 which should be compared to the equivalent figure of
[40]. We observe that λ approaches unity very slowly.
Even at temperatures as high as T ∼ 1 GeV, which can
be reached locally in the initial hot spots at LHC ener-
gies, it is still λ ≈ 0.84. In reality the resulting difference
can, however, not stem from hadronic contributions, as
the present parametrization suggests. We assume that
the difference from the Stefan-Boltzmann limit is due to
some residual interactions at high temperatures, which
effectively reduce the possibility for the heavy quarks to
scatter off constituents of the colored medium.

B. Thermal masses of the light quarks

Our second approach is an extension of the model es-
tablished in [12] by assuming that the incoming and out-
going light partons, which interact with the heavy quarks,
have a finite mass. For this purpose, we treat those as
long-living quasiparticles. It is well known that quasipar-
ticle models are able to reproduce the lattice QCD equa-
tion of state [43, 63, 64] by assuming effective dispersion
relations for noninteracting quasi-quarks and -gluons in
the QGP. Due to the statistical factor of exp[−m/T ] we
expect that in a medium with a given temperature the
density of light massive partons is reduced as compared
to the density of massless partons, which leads to a re-
duced scattering rate.

The temperature dependence of the parton masses is
obtained from fitting the entropy density of a noninter-
acting gas of massive quarks and gluons to the lattice
equation of state [38, 39].
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FIG. 2: (Color online) Thermal masses of the quarks and
gluons in the QGP within a quasiparticle approach.

The pressure and the energy density read

p(T ) = dq

∫
d3p

(2π)3

p2

3Eq
fFD(Eq)

+ dg

∫
d3p

(2π)3

p2

3Eg
fBE(Eg)−B(T ) (8)

e(T ) = dq

∫
d3p

(2π)3
EqfFD(Eq)

+ dg

∫
d3p

(2π)3
EgfBE(Eg) +B(T ) (9)

with Eq =
√
p2 +m2

q, Eg =
√
p2 +m2

g and the tem-

perature dependent bag constant B(T ). fFD and fBE

are the Fermi-Dirac and Bose-Einstein distributions re-
spectively. In order to connect mq and mg we use the

perturbative HTL-result mg =
√

3mq [65] as a conserva-
tive estimate. We assume the same thermal masses for u,
d and s quarks. The mean-field contribution B cancels
in the entropy density

s(T ) =
e(T ) + p(T )

T
. (10)

The thermal masses of quarks and gluons are shown in
Fig. 2. At high temperatures we find the almost linear
behavior as it is known from pQCD calculations. The
quasiparticle masses show a strong increase for tempera-
tures above and close to T = 134 MeV, which coincides
very well with Tf from the EPOS parametrization. In
this simple quasiparticle picture no assumption about
the structural form of the temperature dependence of
the thermal masses is made. Other quasiparticle ap-
proaches [41, 42] express the masses via the perturba-
tive form m2 ∝ g2T 2 and parametrize a logarithmic
temperature-dependence of the coupling g by a fit to
the lattice QCD equation of state. It is thus assumed
that the nonperturbative physics in the vicinity of the
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FIG. 3: (Color online) The effective reduction λm of the scat-
tering rates for different momenta of the charm quark as a
function of the temperature for scattering off massive quasi-
quarks (upper plot) and quasi-gluons (lower plot).

transition temperature can effectively be described by a
temperature-dependent coupling that strongly increases
near Tc. The definition of the running coupling constant
at finite temperatures is not unique. In our approach we
do not assume any explicit temperature dependence of
αs. The coupling is determined by the momentum trans-
fer in the individual scattering process. This is different
to the PHSD approach in which the coupling constant is
a function of the temperature. It shows a strong enhance-
ment near Tc leading there to an increase of Ai and hence
of the heavy-flavor energy loss [66] compared to what we
expect in our approach (although in our approach there
is as well an effective temperature dependence because at
a smaller temperature the momentum transfer is smaller
and therefore the coupling is larger) .

According to the calculation presented in appendix A
we define an effective reduction λm of the scattering rates
via the ratio of the drag coefficients A (see below for a
definition of this quantity) for the case of massive quasi-
particles as compared to massless light partons

λm(T, p) =
A(m(T ), p)

A(m(T ) = 0, p)
, (11)
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FIG. 4: (Color online) The effective reduction λm of the scat-
tering rates for different temperatures of the medium as a
function of the momentum of the charm quark for scattering
off massive quasi-quarks (upper plot) and quasi-gluons (lower
plot).

with the quasiparticle masses as shown in Fig. 2. We
assume the same form of reduction for both types of scat-
terings, that of the charm quark with a massive quasi-
quark, Qq → Qq, and that with a massive quasi-gluon,
Qg → Qg and in all channels, but use the respective ther-
mal masses for quarks and gluons. The thus obtained
effective reductions of the scattering rates are shown for
different momenta of the charm quark as a function of
the temperature in Fig. 3 and for different temperatures
as a function of the momentum of the charm quark in
Fig. 4.

The strong reduction of λm at low T is due to the
strong increase of the masses. Deep inside the high
temperature QGP phase low-momentum heavy quarks
are only slightly affected by the mass of their scatter-
ing partners. The scattering rates of high-momentum
heavy-quarks, however, are significantly reduced even at
high temperatures. Due to the assumption mgl(T ) =√

3mq(T ) the scattering of a heavy quark with a massive
gluon is more strongly suppressed than the scattering of
a heavy quark with a massive light quark.
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Contrary to the EPOS reduction of effective degrees
of freedom the interpretation of the equation of state via
thermal masses of quasiparticles leads to a momentum-
dependent reduction of the scattering rates, see fig-
ure 4. One clearly observes a rapid decrease of λq,gl

m

with the momentum p of the heavy quark for p <
4 GeV, while λq,gl

m is almost independent of the momen-
tum for higher momenta, which comes from a satura-
tion of the drag force at large momentum in the case
of a running coupling constant. We can thus expect
that for massive quasi-quarks the thermalization of low-
momentum heavy-quarks is less suppressed by scatter-
ing with partons of a finite thermal mass than the en-
ergy loss at higher momenta. This should result in an
elliptic flow, which (after fixing the RAA at high mo-
menta), is enhanced over a scenario where the effective re-
duction is only temperature-dependent but momentum-
independent.

III. DRAG COEFFICIENT

The drag coefficient is a relevant indicator for the en-
ergy loss which a heavy quark suffers in the medium.
It describes the average longitudinal momentum loss per
unit time (isotropic medium), and thus is related to the
drag force in Eq. (1) via

A||(~p, T ) = p||A(p, T ) = −
dp||

dt

∣∣∣∣
T

. (12)

In Figs. 5 and 6 we present the drag force for three
different assumptions about the degrees of freedom of
the QGP constituents: first, the standard massless par-
tons (solid lines), second, the EPOS parametrization of
the equation of state (short dashed lines) and third, the
description of the medium with massive quasiparticles
(long dashed lines). In each of these plots the two energy
loss mechanisms are shown, purely collisional (light, or-
ange lines) and the collisional+radiative(LPM) scenario
(black lines). Fig. 5 shows the drag force at fixed tem-
perature T = 300 MeV as a function of the momentum
of the charm quark (upper plot) and as a function of
temperature at fixed momentum (lower plot). The same
scenarios are shown in Fig. 6, but now including the
global rescaling factors K, which are obtained from an
optimal description of the RAA around pT ∼ 10 GeV
at
√
sNN = 2.76 TeV Pb+Pb collisions at the LHC (see

section IV).
We observe in both figures that the colli-

sional+radiative(LPM) energy loss increases with
the momentum at high momenta, while the purely
collisional energy loss mechanism leads to at most a
logarithmic increase. The reduction of the energy loss
in both scenarios in which the QGP constituents are
represented consistently with the equation of state as
compared to the standard case of massless partons is
clearly visible in Fig. 5. The drag force for each energy
loss mechanism is smallest for the medium consisting of
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FIG. 5: (Color online) The drag force for the three differ-
ent representations of the QGP constituents: massless par-
tons (solid), EPOS parametrization of the equation of state
(short dashed) and massive quasiparticles (long dashed), as
a function of the momentum (upper plot) and as a func-
tion of the medium temperature (lower plot). Results for
the purely collisional energy loss (black) and for the colli-
sional+radiative(LPM) are shown.

massive quasiparticles. The temperature dependence of
the reduction factor λ becomes obvious in the lower plot
of these Figs. 5 and 6. While the drag force is finite
at temperatures close to Tc in the ideal gas of massless
partons, it (almost) vanishes for the two other more
realistic representations of the QGP constituents. In the
PHSD model the temperature dependence of the strong
coupling constant and its strong increase in the vicinity
of Tc counter balance the reduction of the drag force due
to the large masses [66].

When one looks at the rescaled drag force in Fig. 6
one sees immediately that the curves as function of mo-
mentum are closer together for each of the energy loss
mechanisms than in Fig. 5. The determination of the
K-factors in comparison to experimental data for the
RAA includes an integration over the entire space-time
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FIG. 6: (Color online) Same as in Fig. 5, but the different
scenarios are rescaled with the K-factor determined from an
optimal description of the central RAA data at LHC. See text
for details.

evolution and an averaging over several initial momenta.
Despite the therefore very similar values of the RAA (see
section IV), the temperature dependence, see lower plot
of Fig. 6, is still very different. One observes in particular
a stronger temperature-dependence for both energy loss
scenarios inspired by the equation of state. In all of the
rescaled scenarios the drag force for the purely collisional
scenario exceeds that for a collisional+radiative(LPM)
interaction mechanism at low momenta p . 5 GeV. Due
to the momentum dependence of the reduction factor λ
the enhancement of the low-momentum drag force for
collisional energy loss is most pronounced in the case of
massive quasiparticles.

We now proceed by applying our model to the full
medium evolution in Pb+Pb collisions at

√
s = 2.76 TeV

and Au+Au collisions at
√
s = 200 GeV.

IV. RAA AND v2 AT LHC AND RHIC

For the fully coupled evolution of heavy quarks and
the QGP medium, we initialize the charm quarks at the
nucleon-nucleon scattering points from the EPOS2 ini-
tial conditions. The initial transverse momentum spec-
tra is obtained from FONLL calculations [67]. Nuclear
shadowing has been included according to the EPS09
parametrization of the nuclear parton distribution func-
tions [68]. For the charm quark propagation in the
medium we solve the same Boltzmann transport equation
as in previous works, where the medium constituents are
massless partons, but reduce the scattering rate accord-
ing to the effective reduction factors λ as discussed in the
previous section. After the evolution in the medium the
charm quarks hadronize at a given temperature either
via coalescence or via fragmentation [69]. Depending on
the local fluid velocity, the orientation of the hypersur-
face of constant hadronization temperature and the mo-
mentum of the heavy quark a coalescence probability is
determined. This probability is maximal when the heavy
quark and the thermally distributed light quark are close
in coordinate and momentum space. The normalization
is given by the requirement that a bottom quark at rest
can only hadronize via coalescence. At high pT the coa-
lescence probability goes to zero and fragmentation into
D mesons becomes the dominant hadronization process.
The fragmentation function is the same as used in order
to compare FONLL calculations to proton-proton data
[70] and is thus consistent with the initial production.

In Fig. 7 we show the RAA of D mesons for
√
sNN =

2.76 TeV central Pb+Pb collisions in the case of mas-
sive quasiparticles in the QGP compared to the case
where the QGP consists of massless partons. The decou-
pling temperature is T = 168 MeV. In these calculations
the cross sections are not rescaled, which corresponds to
K = 1. The case where the medium constituents are
massless partons is shown with the dashed lines. Here,
the purely collisional energy loss is evidently not strong
enough to explain the experimental data. Including ra-
diative corrections we find a good description for the in-
termediate pT range in the case of the massless QGP but
the overall suppression at high pT is too large. These
observations motivate the choice of K-factors. As ex-
pected, the strongly reduced drag force of charm quarks
in a medium with massive quasiparticles leads to a sub-
stantial reduction of the energy loss of charm quarks for
both energy loss scenarios, purely collisional and colli-
sional+radiative(LPM).

In the following, we use the K-factors determined by
the RAA-data around pT ∼ 10 GeV at a decoupling tem-
perature of Tf = 134 MeV. Then this same K-factor is
also applied for the case where the heavy-quark propa-
gation hadronizes at T = 168 MeV, which is the EPOS2
particlization temperature. By comparing results for the
higher and lower decoupling temperatures one can see
the effect of the late-stage evolution, during which the
description of the degrees of freedom is still in accordance
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FIG. 7: (Color online) Comparison of the D meson RAA

for a QGP consisting of massive quasiparticles (solid lines)
and massless partons (dashed lines). The cross sections are
not rescaled (K = 1). Purely collisional (orange, light) and
collisional+radiative(LPM) (black) energy loss scenarios are
shown.

with the interpretation of the equation of state.

In Fig. 8 we show the RAA of D mesons in central
collisions at LHC for both interpretations of the equa-
tion of state, the EPOS parametrization (upper plot)
and the massive quasiparticle interpretation of the light
partons (lower plot) as well as for the standard scenario
(massless quarks with Tc = 155 MeV and Kc = 1.22,
Kc+r = 0.61). It is seen thatK factors can be determined
such that the experimental data above pT & 8 GeV
can be equally well described by both representations
of the medium constituents. At high momenta, the de-
coupling temperatures do not affect the results. Below
pT . 5 GeV differences become more prominent. In
both cases, EPOS parametrization of the equation of
state or massive quasiparticles, the peak around pT ∼
1.5 − 2.5 GeV is higher and shifted toward larger pT if
the evolution is stopped at a later temperature, since the
radial flow in the medium increases with the evolution
time. Since the effective reduction of the scattering rates
in the scenario with massive quasiparticles depends on
the incoming momentum of the charm quark and scatter-
ings of low-momentum charm quarks are less suppressed
the coupling to the radial flow is stronger in this case.
This is especially true for a prolonged evolution in the
low temperature phase. Toward higher pT we can see a
slight upward trend of the RAA for the purely collisional
energy loss scenario.

1 We note, that these K factors differ from the ones in previous
publications, which were chosen such that intermediate and high-
pT RAA data were optimally reproduced, whereas here we focus
on reproducing RAA(pT ∼ 10 GeV) ∼ 0.3.
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FIG. 8: (Color online) D meson RAA in central
√
sNN =

2.76 TeV Pb+Pb collisions. In the upper plot the EPOS
parametrization of the equation of state is used, in the lower
plot the scenario with massive quasiparticles. Shown are
curves for purely collisional and collisional+radiative(LPM)
energy loss and for the two decoupling-temperatures T =
134 MeV and T = 168 MeV. Standard curves refer to the
case of massless light partons.

Figs. 9 shows the elliptic flow v2 of D mesons in the
30− 50 % most central collisions at LHC. It can be seen
again that due to the momentum dependence of the ef-
fective reduction, λg,q

m , in a massive quasiparticle picture
the coupling to the flow of the medium is stronger at low
momenta than it is the case for the EPOS parametriza-
tion of the equation of state. The evolution at lower tem-
peratures can again enhance the v2 compared to a higher
decoupling temperature. For completeness, we show our
results for RAA and v2 at top-RHIC energy in Figs. 10
and 11. We observe the same trends with respect to the
representation of the medium constituents, the decou-
pling temperature and the energy loss mechanism as for
the LHC. In order to determine the K-factors at RHIC,
data at higher pT for the D meson RAA would be very
helpful. The now available data covers a pT range which
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FIG. 9: (Color online) D meson v2 in 30− 50% most central√
sNN = 2.76 TeV Pb+Pb collisions. In the upper plot the

EPOS parametrization of the equation of state is used, in the
lower plot the scenario with massive quasiparticles. Shown are
curves for purely collisional and collisional+radiative(LPM)
energy loss and for the two decoupling temperatures T =
134 MeV and T = 168 MeV. Standard curves refer to the
case of massless light partons.

has not been included in the K-factor determination at
LHC. Here, we take therefore the same K-factors as de-
termined at the LHC and investigate the consequences
at the lower energy although there are some indications
that slightly higher K-factors improve the comparison to
the data at RHIC [56, 71]. It seems, however, that no
model can be tuned in such a way that it is able to cope
with the data, which might be a sign for an excess of
radial flow in the background medium.

V. CONCLUSIONS

In the present work, we have investigated the possibil-
ity to couple consistently the heavy-flavor dynamics to
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FIG. 10: (Color online) D meson RAA in central
√
sNN =

200 GeV Au + Au collisions. In the upper plot the EPOS
parametrization of the equation of state is used, in the lower
plot the scenario with massive quasiparticles. Shown are
curves for purely collisional and collisional+radiative(LPM)
energy loss and for the two decoupling-temperatures T =
134 MeV and T = 168 MeV.

the fluid dynamical evolution of the light bulk particles
in ultrarelativistic heavy-ion collisions. While today in
most models the equation of state is taken realistically
as the lattice QCD equation of state, thermal scatter-
ing partners are mostly sampled from the distribution of
a noninteracting, ideal gas of relativistic, massless par-
tons. This characterization of the nature of the quasi-
particles might only be justified at extremely high tem-
peratures where the Stefan-Boltzmann limit will even-
tually be reached. Here we looked into two different
representations of the degrees of freedom in the QGP,
which both reproduce the correct lattice QCD equation
of state. One is a parametrization of the lattice equa-
tion of state in terms of partonic and hadronic degrees
of freedom and is used in the fluid dynamical evolution
of the EPOS2 approach. The other is the description of
the medium constituents as massive quasiparticles. The
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FIG. 11: (Color online) D meson v2 in 20− 40% most central√
sNN = 200 GeV Au + Au collisions. In the upper plot the

EPOS parametrization of the equation of state is used, in the
lower plot the scenario with massive quasiparticles. Shown are
curves for purely collisional and collisional+radiative(LPM)
energy loss and for the two decoupling-temperatures T =
134 MeV and T = 168 MeV.

thermal masses have been obtained by fitting the lattice
equation of state. They show a strong increase at lower
temperatures. In the first case, the scattering rate of the
heavy quarks with the medium constituents is reduced
by the fraction of hadronic color-neutral degrees of free-
dom in the medium, which is a function of the medium
temperature. In the second case, we derived an effective
reduction of the scattering rate via a comparison of the
drag force for massive to that of massless medium con-
stituents. Here the reduction factor depends on the tem-
perature, the momentum of the heavy quark and whether
the heavy quark scatters with a quark or a gluon.

We could show that the high momentum part of the
RAA remains unchanged after a rescaling of the rates
with a global K-factor although the temperature depen-
dence of the drag force is very different in a realistic de-
scription of the medium constituents compared to mass-

less partons. Due to the reduced drag force, theK-factors
needed to reproduce the RAA data are found to be sig-
nificantly larger than in previous calculations with mass-
less partons. Differences are visible at lower transverse
momenta in the RAA and in the elliptic flow v2, where
the late stage evolution with low temperatures is more
important and the scattering rate significantly reduced.
Particularly interesting is the case of massive quasiparti-
cles, where the additional momentum dependence of the
reduction factor leads to a very pronounced impact of the
late stage evolution. The coupling to the radial flow and
the elliptic flow of the underlying medium is enhanced
after a global rescaling of the scattering rates by a K-
factor.

Since the central RAA data at intermediate and high
transverse momentum is currently used to calibrate the
energy loss model, further observables like the elliptic
flow studied here are sensitive to the representation of
the medium constituents, albeit the current precision of
the data is not good enough to distinguish these effects.
It would be interesting to look at azimuthal correlations
and higher-order flow harmonics [55, 56] in future work.
For this, we will use the upgraded EPOS3 version which
includes a coupled initial state for fluid dynamics and
heavy-flavor production and a viscous fluid dynamical
evolution.

The approach of massive quasiparticles seems one of
the more realistic approaches to understand the thermo-
dynamics, i.e. the equation of state of QCD, which can
also be used as a foundation to study heavy-flavor dy-
namics. This approach should be followed in more detail
to include the strong coupling effects leading to enhanced
thermal masses of the light quasiparticles also with re-
spect to the heavy-flavor interaction. The representa-
tion of the medium constituents by massless partons is
an unrealistic approximation for temperatures which are
reached in heavy-ion collisions.
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Appendix A: Heavy quark - massive light-quark
scattering

We start from the definition of the drag force in [29]

Ai(~p) =
1

16(2π)5Ep

∫
d3q

Eq
f(~q)

∫
d3q′

Eq′

∫
d3p′

Ep′
(p− p′)i

× δ(4)(Pin − Pfin)×
∑
|M|2

γQγp
, (A1)

where γQ is the degeneracy of the heavy quark (γQ = 6),
γp is the degeneracy of the light parton, ~p(~q) is the in-
coming momentum of the heavy quark (light parton), ~p ′

(~q ′) is the final momentum. Ex is the energy associ-
ated to the momentum ~x. mQ is the mass of the heavy
quark while mq is the mass of the light parton. The drag
force can easily be brought to a covariant form, as seen
by solving the Fokker Planck equation in the absence of
diffusion (Bij = 0.

∂f

∂t
=

∂

∂pi
(Aif) ⇒ d〈pi〉f

dt
= −

∫
d3p (Aif) (A2)

where f is the particle distribution in momentum space.
In particular, if we take f = δ(~p− ~p0), we obtain

dp0,i

dt
= −Ai(~p0) ⇒ d~p0

dτ
= − Ep

mQ

~A = − ~A , (A3)

where τ is the eigentime of the heavy quark. d~p0
dτ is the

spatial part of a covariant quantity. Adding the temporal
part we can define the covariant Aµ

Aµ(~p) =
−1

16(2π)5mQ

∫
d3q

Eq
f(~q)

∫
d3q′

Eq′

∫
d3p′

Ep′
(q − q′)µ

× δ(4)(Pin − Pfin)×
∑
|M|2

γQγp
, (A4)

using (p− p′)µ = −(q − q′)µ. Introducing

aµ :=

∫
d3q′

Eq′

∫
d3p′

Ep′
(q− q′)µδ(4)(Pin − Pfin)×

∑
|M|2

γQγp
,

(A5)
which is covariant as well we can evaluate aµ and

Aµ = − 1

16(2π)5mQ

∫
d3q

Eq
f(~q)aµ (A6)

in different frames.

1. Evaluation of aµ

We will evaluate aµ in the heavy quark-light parton
c.m. frame (dubbed acm) and Aµ in the frame where the
heavy quark is at rest. a0

cm = 0 by construction and

~acm =

∫
d3q′

Eq′Ep′
δ(
√
s− Eq′ − Ep′) (~q − ~q′)

∑
|M|2

γQγp
.

(A7)

Using Ep′ =
√
m2
Q + p2

rel and Eq′ =
√
m2
q + p2

rel we ob-

tain

δ(
√
s−Eq′ −Ep′) =

δ(q′ − prel)
prel
Eq′

+ prel
Ep′

=
Eq′Ep′

prel
√
s
× δ(q′− prel) ,

(A8)
and thus

~acm =
prel√
s

∫
dΩq′ (~q − ~q′)

∑
|M|2(s, t)

γQγp
. (A9)

Due to symmetry, ~acm ‖ q̂cm, where q̂ is the unit vector
in the direction of the light parton in the c.m., and we
write

~acm = acmq̂ ,

with

acm =
prel√
s

∫
dΩq′ (~q − ~q′) · q̂

∑
|M|2(s, t)

γQγp
. (A10)

Introducing the angle θ between ~q and ~q′ leads to

acm =
2πp2

rel(s)√
s

∫
d cos θ (1− cos θ)

∑
|M|2(s, t)

γQγp
.

(A11)
We define

m1(s) :=

∫ +1

−1

d cos θ
1− cos θ

2

∑
|M|2(s, t)

γQγp
, (A12)

which is positive defined, implying a force along −q̂,
which appears natural if one goes in the rest frame of
the heavy quark. We obtain

aµcm =

{
0 for µ = 0
4πp2rel(s)m1(s)√

s
× q̂µcm for µ 6= 0

. (A13)

2. Calculation of m1

For the evaluation of m1 we introduce v = cos θ − 1:

m1(s) := −
∫ 0

−2

v

2

∑
|M|2(s, t(v))

γQγp
dv .

In the c.m., one finds t = (p− p′)2 = −2p2
rel(1− cos θ) =

2p2
relv, which yields

m1(s) :=
1

8p4
rel

∫ 0

−4p2rel

∑
|M|2(s, t)

γQγp
(−t)dt . (A14)

The scattering amplitude M between a heavy and a
light quark reads (conventions of Itzikson and Zuber)

M =g2
∑
λ

tλa,a′t
λ
b,b′ (A15)

× ū(sp′ )(p′)γµu(sp)(p) gµν ū
(sq′ )(q′)γνu(sq)(q)

t−m2
g

,
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where a (b) is the initial color of the heavy quark (light
quark), and a′ (b′) are the final colors. Up to the color
factor the matrix element is identical to that for e−µ−

scattering and can be found in standard text books.

∑
|M|2 = 8g4 × col×

s2
− + u2

− + 2(m2
Q +m2

q)t

(t−m2
g)

2
.

with s− := s−m2
Q −m2

q and u− := u−m2
Q −m2

q. The
color factor “col” is evaluated to

col :=
∑

a,a′,b,b′

∣∣∣∣∣
8∑

λ=1

tλaa′t
λ
bb′

∣∣∣∣∣
2

=

8∑
λ,λ′=1

[
Tr(tλtλ

′
)
]2

=

8∑
λ,λ′=1

δλ,λ′

4
= 2 . (A16)

The matrix element reads therefore∑
|M|2

γqγQ
=

16g4

γqγQ
×
s2
− + u2

− + 2(m2
Q +m2

q)t

(t−m2
g)

2

=
256π2α2

s

γqγQ
×
s2
− + u2

− + 2(m2
Q +m2

q)t

(t−m2
g)

2

with γQ = γq = 6 and we obtain

m1(s) =
8π2

9p4
rel

∫ 0

−4p2rel

(−t)dt α2
s

s2
− + u2

− + 2(m2
Q +m2

q)t

(t−m2
g)

2
,

(A17)
where αs is t-dependent.

3. Aµ in the heavy quark rest system

In the c.m. system aµcm is given by Eq.A13. The boost
matrix Λ from the c.m. to the rest frame of the heavy
quark is given by

Λ(~u) =

(
u0 −〈~u
−~u〉 1 + ~u〉〈~u

1+u0

)
,

where (u0, ~u) is the 4-velocity of the rest frame of the
c-quark seen from the c.m. frame. ~u is the opposite of
the 4-velocity of the c.m. in the c-rest frame, i.e.

~u = − ~qr√
s

and u0 =
Eqr +mQ√

s
,

with s = (mQ+Eqr )
2− q2

r = m2
Q+m2

q + 2mQEqr , where
the subscript r indicates that the quantities are consid-
ered in the rest frame of the c-quark. We obtain

Λ =
1√
s

(
Eqr +mQ 〈~qr

~qr〉
√
s+ ~qr〉〈~qr√

s+Eqr+mQ

)

(a)

(b)

FIG. 12: Top: contribution of quarks to the drag of c-quarks
as a function of p with parameters corresponding to model C
of [12]; bottom: same for model E

and

ar =
4πp2

rel(s)m1(s)

s

×

(
Eqr +mQ 〈~qr

~qr〉
√
s+ ~qr〉〈~qr√

s+Eqr+mQ

)
·
(

0
q̂cm

)
=

4πp2
rel(s)m1(s)

s

(
qr

(Eqr +mQ) q̂r

)
(A18)

where we have used that q̂cm = q̂r, i.e. the direction of
~qr is not affected when going to the c.m. frame. In the
heavy quark rest system Aµ, defined in eq. A6, is given
by

Aµrest =− 1

8(2π)4mQ

∫
p2

rel(s)m1(s)

s

×
[∫

dΩ~q
(
qδµ0 + (Eq +mQ)q̂iδ

µi
)
fr(~q)

]
q2dq

Eq

=− 1

4(2π)3mQ

∫
p2

rel(s)m1(s)

s

×
[
qf0(q)δµ0 + (Eq +mQ)f1(q)δµi (û)i

] q2dq

Eq

=−
(
A0

rest +Avrestû
)µ

, (A19)
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where we have introduced

4πf0(q) =

∫
dΩ~qf

(
u0Eq − uq cos θ

T

)
=2π

∫
d cos θf

(
u0Eq − uq cos θ

T

)
(A20)

and

4πf1(q) =

∫
dΩ~qf

(
u0Eq − uq cos θ

T

)
cos θ (A21)

=2π

∫
d cos θf

(
u0Eq − uq cos θ

T

)
cos θ .

In the latter equation we used the fact that for the µ =
i components symmetry requires that Airest should be

directed along ~u. Hence ~Arest =
(
~Arest · û

)
û.

For a Juettner-Boltzmann distribution f0 and f1 are
given by

f(~q) = e−
u0Eq
T + ~q·~u

T ⇒ f0(q) =
e−

u0Eq
T

2

∫ +1

−1

d cos θe
qu cos θ
T

=e−
u0Eq
T × sinhα

α
, (A22)

and

f1(q) = e−
u0Eq
T × ∂

∂α

sinhα

α
. (A23)

with α := qu
T .

For the Fermi-Dirac distribution, which we use for our
calculation, there is also an analytical solution for the
moments f0 and f1.

f(~q) =
1

e
u0Eq
T − ~q·~uT + 1

⇒ f0(q) =
1

2

∫ +1

−1

dv

e
u0Eq−uqv

T + 1
,

(A24)
where v = cos θ. We rewrite this equation, introducing

α = uq
T and β =

u0Eq
T .

f0(q) =
1

2

∫ +1

−1

e
uqv
T dv

e
u0Eq
T + e

uqv
T

=
1

2

∫ +1

−1

eαv dv

eβ + eαv

=
1

2α

∫ e+α

e−α

d (eαv)

eβ + eαv
=

1

2α
ln

(
eβ + eα

eβ + e−α

)
.

(A25)

For f1, we get

f1(q) =
1

2

∫ +1

−1

v e
αv

eβ
dv

1 + eαv

eβ
=

1

2

+∞∑
n=1

(−1)n+1

∫ +1

−1

v

(
eαv

eβ

)n
dv

(A26)
Using the variable change ṽ = nαv, one gets

f1(q) =
1

2

+∞∑
n=1

(−1)n

(nα)2enβ
[
(1− ṽ)eṽ

]+nα
−nα

=
1

2

+∞∑
n=1

(−1)n

(nα)2enβ
[
enα − e−nα − nα(enα + e−nα)

]

=
1

2

 1

α2

+∞∑
n=1

(
− e

α

eβ

)n
n2

− 1

α2

+∞∑
n=1

(
− e
−α

eβ

)n
n2

−

1

α

+∞∑
n=1

(
− e

α

eβ

)n
n

− 1

α

+∞∑
n=1

(
− e
−α

eβ

)n
n


=

1

2α2

[
Li2

(
−e

α

eβ

)
− Li2

(
−e
−α

eβ

)
+ (A27)

α ln

(
1 +

eα

eβ

)
+ α ln

(
1 +

e−α

eβ

)]
,

where Li2(z) is the polylog function, with |z| < 1 in this
case, so that the power series converges.

4. Aµ in the fluid rest system

The transformation between the heavy quark rest sys-
tem and the rest system of the fluid cell is given by

(
A0

fluid
~Afluid

)
=

(
u0 −〈~u
−~u〉 1 + ~u〉〈~u

1+u0

)
·
(
−A0

rest

−Avrestû

)
(A28)

where u ≡ (u0, ~u) is the fluid 4-velocity measured in the
c-quark rest frame, that is u = 1

mQ
(Ep,−~p). We thus get

~Afluid =A0
rest~u−Avrest

(
1 +

‖~u‖2

1 + u0

)
︸ ︷︷ ︸
=

1+u0+‖~u‖2
1+u0

=u0

û

=
(
A0

rest‖~u‖ −Avrestu
0
)
û

=

(
Avrest

Ep
mQ
−A0

rest

‖~p‖
mQ

)
p̂ . (A29)

Thus we find for the drag force in the fluid rest system

~A =
m

Ep
~Afluid =

(
Avrest − βA0

rest

)
p̂ . (A30)

with β = p
Ep

. In Fig. 12, we present the drag force for the

models C (top) and model E (bottom) of [12]. For model
C αs = αs(2πT ) and the IR regulator µ2 = 0.15m2

D in
the propagator, while for model E, αs = αeff(t) and µ2 =
0.2m̃2

D [12]. The various curves correspond to mq = 0,
mq = T , mq = 2T and mq = 3T . One sees that giving
a finite mass to the light quark leads to the reduction of
the drag force for a given temperature.
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