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In this article we present an extension of our recent Rapid Communication [Phys. Rev. C 90,
051301(R) (2014)] where we calculate the nuclear matrix elements for neutrinoless double-β decay
of 76Ge. For the calculations we use a novel method that has perfect convergence properties and
allows one to obtain the nonclosure nuclear matrix elements for 76Ge with a 1% accuracy. We
present a new way of calculation of the optimal closure energy, using this energy with the closure
approximation provides the most accurate closure nuclear matrix elements. In addition, we present
a new analysis of the heavy-neutrino-exchange nuclear matrix elements, and we compare occupation
probabilities and Gamow-Teller strength with experimental data.

PACS numbers: 23.40.Bw, 21.60.Cs, 23.40.Hc, 14.60.Pq

I. INTRODUCTION

The search for neutrinoless double-β decay is one of
the most interesting and intensively studied topics of the
modern nuclear physics. Neutrinos are unique particles,
while there are many examples of truly neutral particles
of integer spin (when the particle fully coincides with its
antiparticle, for example, photon and π0 meson), neutri-
nos are the only candidates for the truly neutral particles
of half-integer spin. Explanation of such an asymmetry
between the fermions and bosons is an ultimate challenge
of the modern physics, and observation of neutrinoless
double-β decay would remove this difference and would
make a significant contribution to our understanding of
the Nature.

Detecting neutrinoless double-β (0νββ ) decay is no
doubts a very hard experimental task since the proba-
bilities of 0νββ decays are extremely small. Alongside
with the experimental difficulties there are certain chal-
lenges in the theoretical part of the problem where ac-
curate calculations of the nuclear matrix elements that
involves the knowledge of a large number of nuclear states
in the intermediate nucleus is required. Some of the re-
cent theoretical attempts to address this problem within
different approaches and models are: the quasiparticle
random phase approximation (QRPA) [1–3], the inter-
acting shell model (ISM) [4, 5], the interacting boson
model (IBM-2) [6], the generator coordinate method [7],
and the projected hartree-fock bogoliubov model [8].

The main target of all the approaches mentioned above
is the calculation of the 0νββ nuclear matrix elements
(NMEs) that can be presented as a sum over the nu-
clear sates of the intermediate nucleus. In the case of
76Ge the intermediate nucleus is the odd-odd nucleus of
76As. One characteristic feature of most of the theoret-
ical approaches is the use of the closure approximation
[9], when the energies of the intermediate nuclear states
are replaced with a constant value, so called closure en-
ergy 〈E〉. The great advantage of the closure approxima-
tion is that it allows one to analytically sum up over all

the intermediate nuclear states by using the complete-
ness relation. The disadvantage of this approximation
is that the value of the closure energy is unknown and
there is no any good way to calculate it. Moreover, one
of the technical problems with the closure approximation
is that the terms in the sum over the nuclear intermedi-
ate states have no unique sign, and there are positive
and negative contributions of similar magnitudes in the
sum. Thus varying the closure energy, even within a
wide range of values, would not be able to adequately
represent the true value of the nuclear matrix element.
It should be noted though that at the current state of
nuclear theory we cannot provide reliable calculations of
many intermediate nuclear states, especially for odd-odd
nuclei, so the closure approximation still plays a leading
role in the 0νββ nuclear matrix element calculations.

In this paper, we summarize our recent progress in
developing a shell-model based method of calculation of
the 0νββNMEs beyond the closure approximation, the
mixed method [10, 11]. We apply the mixed method
to the calculation of the NMEs for 0νββ decay of 76Ge,
one of the most promising candidate for experimen-
tal observation of 0νββ decay. The most sensitive lim-
its on 0νββ decay half-lives have been obtained from
germanium-based experiments: the Heidelberg-Moscow
experiment [12], the International Germanium experi-
ment [13], and the GERDA-I experiment [14]. 76Ge is the
only isotope for which an observational claim has been
made (though it was not accepted by the double-beta
decay community) [15, 16]. GERDA-II [17] and MAJO-
RANA DEMONSTRATOR [18], the second generation
of the germanium-based experiments, are in progress.

In the mixed method the low lying nuclear states of the
intermediate nucleus are taken into account with their
exact energies, both the wave functions and the ener-
gies are calculated using a shell model approach and a
fine-tuned effective shell model Hamiltonian. For 76Ge
it is impossible, and as we will show below, there is no
need to calculate all the intermediate states because the
intermediate states with the higher energies can be ac-
counted in the closure approximation. Thus the mixed
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method has two free parameters: the cutoff parameter
N that separates the low lying states from the higher-
energy states, and the closure energy that is only used
for the contribution of the higher-energy states.

The advantage of the mixed method is that the sensi-
tivity of the mixed NMEs to the variation of the clo-
sure energy is significantly smaller than for the stan-
dard closure approximation (see e.g. Fig. 1 in [21]).
Also, the convergence properties of the NMEs as one in-
creases the value of the cutoff parameter N are incom-
parably better than if one considers only the low-lying
intermediate states up to N and does not include the
higher-energy states (see Fig. 4 below). Using the shell
model, one of the most successful microscopic nuclear
structure models, as the main tool of calculation brings
in all the problems and challenges usually associated with
the shell-model approach, namely the restricted single-
particle model space and the problem of getting a reliable
effective shell model Hamiltonian.

To calculate the NMEs of 76Ge we use NuShellX@MSU
shell-model code [19]. The model space is jj44, which
has as core 56Ni and the valence single-particle orbitals
f5/2, p3/2, p1/2, and g9/2. We use JUN45 shell model
Hamiltonian [20]. Based on our experience with different
nuclei, in order to achieve a reasonable accuracy for the
NMEs calculations one needs to calculate a very small
fraction of the intermediate states for each Jπ : about 20
states or 48Ca [10] and about 60 states for 82Se. For the
case of 76Ge we need only about 100 intermediate states
in order to reach the necessary convergence.

In this paper we extend the analysis of the results
recently published in short Rapid Communication [21].
It contains an extended analysis of the method used, it
presents 9 new figures and 4 new tables that are used
to extend and clarify the results presented in Ref. [21].
In particular, we present I-pair decompositions for both
light and heavy neutrino exchange NMEs that were re-
cently used as a starting point to propose a new method
of calculating these matrix elements [22], and was re-
cently used to make better estimates of the NMEs uncer-
tainties [23]. We also present the new way of calculation
of the closure energies that can be used for the pure clo-
sure approaches, we argue that using our optimal closure

energies with the standard closure approximation one can
get the most accurate NMEs. We calculated the optimal
closure energies for the 0νββ decays of 48Ca, 82Se, and
76Ge isotopes. The effective Hamiltonian JUN45 was ex-
tensively validated and discussed in Ref. [20]. Here we
add to those observables studied in Ref. [20] the neu-
tron and proton occupancies in 76Ge and 76Se, and the
Gamow-Teller strength in 76Ge.

II. THE NUCLEAR MATRIX ELEMENT

Assuming the light-neutrino-exchange mechanism, the
decay rate of a 0νββ decay process can be written as [1]

1

T1/2
= G0ν |M0ν |2

(

〈mββ〉

me

)2

, (1)

where G0ν is the phase-space factor [24], M0ν is the nu-
clear matrix element, me is the electron mass, and 〈mββ〉
is the effective neutrino mass, which depends on the neu-
trino masses mk and the elements of neutrino mixing
matrix Uek [1],
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The NME M0ν is usually presented as a sum of three
terms: Gamow-Teller (M0ν

GT ), Fermi (M0ν
F ), and Tensor

(M0ν
T ) NMEs (see, for example, Refs. [10], [11], and [25]),

M0ν = M0ν
GT −

(

gV
gA

)2

M0ν
F +M0ν

T . (3)

Here we use gA = 1.254, for comparison with older results
(using the modern gA = 1.269 would decrease the NME
by less than 0.5% [11]), and gV = 1.
In the case of 0νββ decay of 76Ge, the matrix elements

can be presented as an amplitude for the transitional
process where the ground state |i〉 of the initial nucleus
76Ge changes into an intermediate state |κ〉 of the nucleus
76As and then to the ground state |f〉 of the final nucleus
76Se:

M0ν
α =

∑

κ

∑

1234

〈13|Oα|24〉〈f |ĉ
†
3ĉ4|κ〉〈κ|ĉ

†
1ĉ2|i〉. (4)

Here the sum over κ spans all the intermediate states |κ〉,
indices 1 − 4 correspond to the single-particle quantum
numbers, the label α describes different terms in the total
NME (3): Gamow-Teller (α = GT ), Fermi (α = F ), and
Tensor (α = T ). The operators Oα carry all the details
of a 0νββ decay process, they explicitly depend on the
intermediate-state energy Eκ,

Oα = Oα(E0 + Eκ), (5)

through the energy denominators in perturbation the-
ory. The actual form of the Oα operators can be found
in Ref. [10]. Here, we would like only to emphasize
the energy dependence of these operators. The constant
E0 =

[

Egs(
76As)− Egs(

76Ge)
]

+Qββ/2 ≈ 1.943 MeV.
Exact calculation of the NMEs (4) can be problem-

atic due to the sum over a large number of intermediate
states. One way to proceed in this situation is to restrict
this sum by a state cutoff parameter N

M0ν
α (N) =

∑

κ≤N

〈13|Oα|24〉〈f |ĉ
†
3ĉ4|κ〉〈κ|ĉ

†
1ĉ2|i〉, (6)
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FIG. 1: (Color online) Theoretical (t) and experi-
mental (x) neutron occupancies of the p orbitals, f5/2
orbital (f), and g9/2 orbital (g) for 76Ge and 76Se.
Data is taken from Ref. [27]
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FIG. 2: (Color online) Same as Fig. 1 for proton
occupancies. Data is taken from Ref. [28]

here and below the sum over the repeated indexes 1,2,3,
and 4 is assumed. In this running nonclosure approach,
the NMEs defined by Eq. (6) depend on the cutoff pa-
rameterN , they reach the exact values (4) whenN → ∞:
M0ν

α ≡ M0ν
α (∞). Success of the running nonlcosure

approach is defined by the convergence properties of
M0ν

α (N) as a function of N .
Another way to proceed in this situation is to use the

closure approximation. In the closure approximation the
energies of intermediate states are replaced by a constant
value as

{

E0 + Eκ → 〈E〉,

Oα(E0 + Eκ) → Õα ≡ Oα(〈E〉),
(7)

where 〈E〉 is the closure energy. Values of 〈E〉 from Ref.
[26] are frequently used.
We introduce two forms of the closure approximation:

the closure (or pure closure) and the running closure ap-
proximations [11]. The running closure NMEs is pre-
sented similarly to the running nonclosure nuclear matrix
elements (6):

M0ν
α (N) =

∑

κ≤N

〈13|Õα|24〉〈f |ĉ
†
3ĉ4|κ〉〈κ|ĉ

†
1ĉ2|i〉. (8)

M0ν
α (N) depend on both the state cutoff parameter N

and on the closure energy 〈E〉, when N → ∞ the running
closure NMEs reach their closure values

M0ν
α ≡ M0ν

α (∞) = 〈13|Õα|24〉〈f |ĉ
†
3c4ĉ

†
1ĉ2|i〉, (9)

where we could remove the sum over intermediate states
in Eq. (8) using the completeness relation

∑

|κ〉〈κ| = Î.
Equation (9) presents the standard closure approxima-
tion – the simplest and commonly used method for
0νββ decay NMEs calculations. The closure NMEs (9)
depend on the closure energy 〈E〉 which is not known
and can not be calculated, which brings an uncertainty
of about 10% in the NMEs (see, for example, [10, 11, 25]).
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FIG. 3: (Color online) The running sum of the Gamow-Teller
strength in 76Ge: red line shows the calculated sum and the
blue line is based on the high-resolution charge-exchange data
[29].

In some cases, for example, the 0νββ decay of 48Ca, the
running nonclosure NMEs converge pretty fast and ma-
trix elements can be computed within the standard shell
model approach [10]. However the running nonclosure
approach cannot be directly used for the heavier cases,
such as 0νββ decay of 82Se and 76Ge, where only a few
hundred intermediate states can be calculated.
To resolve this problem the mixed (or just nonclosure)

method was introduced [10, 11]. The mixed NMEs are
presented as the following combination of the running
nonclosure, closure, and running closure NMEs

M̄0ν
α (N) = M0ν

α (N) +M0ν
α −M0ν

α (N). (10)

In the mixed method the intermediate states below
the cutoff parameter N are taken into account by the
first nonclosure term M0ν

α (N) and the states above
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FIG. 4: (Color online) Convergence of NMEs (light-neutrino
exchange) as a function of the cutoff parameter N calculated
with different approximations: mixed (black solid curve),
closure (red solid curve), running nonclosure (black dashed
curve), and running closure (blue dashed curve). All calcula-
tions were done with CD-Bonn SRC and 〈E〉 = 9.41 MeV [26].

the N are included within the closure approach by
[

M0ν
α −M0ν

α (N)
]

. It was shown that the mixed NMEs
(10) converge significantly faster than the running matrix
elements separately. It was also shown that the mixed
NMEs have much weaker dependence on the closure en-
ergy 〈E〉 compared with the closure NMEs [10, 11].
The nonclosure approach allows one to calculate the

0νββ decay NMEs for a fixed spin and parity Jπ of the
intermediate states |κ〉,

M0ν
α (J) =

∑

κ, Jκ=J

〈13|Oα|24〉〈f |ĉ
†
3ĉ4|κ〉〈κ|ĉ

†
1ĉ2|i〉, (11)

where the sum over κ spans all the intermediate states
with a given spin and parity Jπ . This J decomposition
can be obtained only within a nonclosure approach. An-
other way to decompose NMEs of a 0νββ decay process is
associated with the closure approximation. In this decou-
pling scheme the single-particle states |1〉 and |3〉 (proton
states) and the states |2〉 and |4〉 (neutron states) in the
two-body matrix elements 〈13|Oα|24〉 are coupled to cer-
tain common spin I

M0ν
α (I) =

∑

κ

〈13, I|Oα|I, 24〉〈f |ĉ
†
3ĉ4|κ〉〈κ|ĉ

†
1ĉ2|i〉, (12)

here the sum over intermediate states is not restricted
(for the details see Ref. [10]). The total matrix elements
can be obtained using any of these decoupling schemes
as

M0ν
α =

∑

J

M0ν
α (J) =

∑

I

M0ν
α (I). (13)

We also analyze the NMEs for the right-handed heavy-
neutrino-exchange mechanism, whose corresponding con-
tribution to the total decay rate can be written as

[

T 0ν
1/2

]−1

heavy
= G0ν |M0ν

N |2|ηNR|
2, (14)

where the heavy-neutrino-exchangematrix elementsM0ν
N

have a structure similar to that of the light-neutrino-
exchange NMEs, while the parameter ηNR depends on
the heavy-neutrino masses (for more details see, for ex-
ample, Ref. [4]). One difference between the heavy-
and the light-neutrino-exchange mechanisms is that the
heavy-neutrino-exchangeNMEs do not depend on the en-
ergy of intermediate states. Thus for the heavy-neutrino-
exchange mechanism the closure approach provides the
exact matrix elements.

III. NUCLEAR STRUCTURE CALCULATIONS

As we mentioned in the introduction, we use a shell
model approach to calculate the NMEs for 76Ge. The va-
lence space used here is jj44, which has as core 56Ni and
the active single-particle orbits f5/2, p3/2, p1/2, and g9/2.
A reliable effective shell model Hamiltonian is essential
for a good description of the nuclear structure relevant
for the calculation of the NMEs. We use JUN45 effective
shell model Hamiltonian [20]. Ref. [20] provides exten-
sive validation of the JUN45 Hamiltonian by comparing
with the experimental data observables such as g.s. and
excited states energies, B(E2) values, and magnetic mo-
ments. A significant experimental effort was dedicated to
containing the nuclear matrix elements by investigating
derived observables, such as neutron/proton occupation
probabilities [27, 28], pairing strength, and Gamow-Teller
strength [29]. Here we add to those observables studied
in Ref. [20] the neutron and proton occupancies in 76Se
and 76Ge, and the Gamow-Teller strength in 76Ge. For
the shell model calculations we use the NuShellX@MSU
shell-model code [19].
Fig. 1 shows the comparison between our calculated

neutron occupancies and the experimental results [27] for
the case of 76Se and 76Ge. The occupancies of p1/2 and
p3/2 orbital are summed up and denoted with (p). The
occupancies of f5/2 orbital (f) and of the gp/2 orbital (g)
are also shown. Fig. 2 shows the same comparison for
the proton occupancies. The data is taken from Ref. [28].
We find the agreement between the theoretical results
and the experimental data quite satisfactory.
The validation of the Gamow-Teller strength distribu-

tion is particularly relevant for a good description of dou-
ble beta decay rates. In the jj44 valence space the spin-
orbit partners orbitals f7/2 and g7/2 are missing, and
the Ikeda sum rule is not satisfied. This results in miss-
ing about half of the Gamow-Teller sum-rule, although
the loss is at higher energies and is not visible in the
low-energy data. A well known problem with the shell
model calculation of the Gamow-Teller strength is that
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the shell model overestimates it, and a quenching factor
for the Gamow-Teller operator is necessary to explain
the data. For a full major shell valence space, such as
as pf model space where all spin-orbit partner orbitals
are present, a quenching factor of about 0.74 is validated
by the data. In the jj44 valence space the violation of
the Ikea sum rule requires a modification of this quench-
ing factor. However, the small valence space distorts the
high energy strength to lower energy, and for a fine-tuned
Hamiltonian such as JUN45, the quenching factor need
not be changed too much from its standard value of 0.74.
In our case we use a quenching factor of 0.64 that was
shown to describe the 2νββ NME (see section IVB be-
low).
Fig. 3 presents the running Gamow-Teller strength

for 76Ge calculated with the JUN45 Hamiltonian and
using a quenching factor of 0.64. The horizontal axis
represents the excitation energy of the 1+ states in the
final nucleus 76As. The results are compared with the
high-resolution charge-exchange experimental data [29].
Although we found discrepancies in the GT strength of
individual states of this odd-odd nucleus, 76As, the over-
all theoretical Gamow-Teller strength running sum is in
reasonable good agreement with the data.

IV. 0νββNME RESULTS

A. The convergence of the NME

First, we studied the convergence properties of the
0νββ decay NMEs of 76Ge. Figure 4 presents the to-
tal NME (3) as a function of the number-of-state cutoff
parameter N calculated within different approximations.
The red solid line that does not change with N shows the
closure NME defined by Eq. (9). The running closure (8)
and the running nonclosure (6) NMEs are presented by
the red dashed and black dashed curves correspondingly.
At large cutoff parameters N the running NMEs should
approach their limits, but it does not occur. N =100 is
the maximum number of states we are able to calculate
in 76As with an computational effort of about 500 000
CPU×h, there is still a significant difference between the
running closure and the pure closure values. The mixed
matrix elements defined by Eq. (10) have much better
convergence properties, they are presented by the solid
black curve on Fig. 4. This curve starts with the closure
value at N = 0 and then slowly increases with N and
flattens already after the first 50-60 states.
In the mixed method, the states above the cutoff pa-

rameter N are included in the closure approximation,
which makes the mixed NMEs dependent on the closure
energy 〈E〉. However this dependence is not strong. For
N = 0 (the closure approximation), it results in a 10%
uncertainty in the total NMEs [25]. When the cutoff
parameter increases, this dependence weakens relatively
rapidly. It was shown in [21] that it is sufficient to use
only the first 100 nuclear states for each Jπ of 76As to
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Closure energy <E> [MeV]
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3.6

3.8

4
pure closure, CD-Bonn SRC
mixed, CD-Bonn SRC
pure closure, AV18 SRC
mixed, AV18 SRC

FIG. 5: (Color online) Dependence of mixed and closure
NMEs for the 0νββ decay of 76Ge (light-neutrino exchange)
on the average closure energy 〈E〉. MNEs: closure with
CD-Bonn SRC (dashed black curve), mixed with CD-Bonn
SRC (solid black curve), closure with AV18 SRC (dashed red
curve), and mixed with AV18 SRC (solid red curve).

obtain the 0νββ decay NMEs of 76Ge within a 1% accu-
racy.
Figures 5 shows how the closure NMEs (the dashed

curves) and the mixed NMEs calculated with N = 100
(the solid curves) depend on the closure energy 〈E〉.
There are different ways how the short range correlations
(SRC) can be taken into account [25], the upper black
curves correspond to the CD-Bonn SRC parametrization
set and the lower red curves correspond to the AV18 SRC
parametrization set. Fig. 5 demonstrates that the mixed
NMEs have much weaker dependence on the closure en-
ergy than the pure closure NMEs. With the closure en-
ergy varying from 2 MeV to 10 MeV the mixed NMEs
change by about 2%, while the closure NMEs change by
12%. Such observation is consistent with the recent cal-
culations performed for the 0νββ decay processes of 48Ca
and 82Se [10, 11, 25].

B. The intermediate J and the I-pair

decomposition of the NME

The J decomposition [see Eq. (11)] was presented in
Fig. 2 of our recent work [21]. It shows that all the spins
J contribute coherently to the total NMEs. The contri-
bution of J = 1 was dominating, but it provides only
about 30% of the total value. Figure 6 here presents the
I decomposition [see Eq. (12)] of the nonclosure NMEs.
In Fig. 6 all the Gamow-Teller NMEs (with both par-
ities: positive and negative) are presented by blue ver-
tically shaded bars and all the Fermi matrix elements
(with both parities) are presented by black horizontally
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FIG. 6: (Color online) I decomposition, light-neutrino
exchange: contributions to the running nonclosure Gamow-
Teller (the blue vertically shaded bars) and Fermi (the black
horizontally shaded bars) matrix elements for the 0νββ decay
of 76Ge from the configurations when two initial neutrons
|24〉 (and two final protons |13〉) have certain total spin I ,
〈13, I |Oα|I, 24〉. The both parities are included and the
CD-Bonn SRC parametrization was used.

shaded bars. Also, all plotted Fermi matrix elements
were taken with opposite sign and multiplied by the fac-
tor (gV /gA)

2 ≃ 0.636, so if we neglect the Tensor NMEs
(which are actually small), then the total height of each
bar corresponds to the total NMEs calculated for each
spin I in Eq. (3). The situation with the I decomposi-
tion presented by Figure 6 is different compared to the J
decomposition. There are big contributions from I = 0
and I = 2 which cancel each other. Similar effects have
been observed in the shell-model analysis [10] for 48Ca
and in [11] for 82Se. Also this I decomposition cancel-
lation was recently discussed in [22], and it was used as
a basis for a new method to calculate the NME and to
related them to additional nuclear structure constraints
that could be obtained form pair transfer reactions [30].
Table I summarizes the results for the light neutrino-

exchange NMEs of 0νββ decay of 76Ge calculated within
different approximations. The mixed total matrix ele-
ment is about 7% percent greater than the total closure
NME. This increase is consistent with similar calcula-
tions [10, 11, 31].
It should be noted that the jj44 model space is incom-

plete because the f7/2 and g7/2 orbitals are missing. As
a result the Ikeda sum rule is not satisfied and some con-
tributions from the Gamow-Teller NME with Jπ = 6+

and 8+ and from the Fermi NME Jπ = 1− are miss-
ing. Looking at the J decomposition in Fig. 2 of [21], it
seems safe to suggest that the missing contributions are
not very large. However, this deficiency is reflected in
the two-neutrino NME, which requires a quenching fac-
tor of about 0.64, smaller than the usual 0.74, to describe

J=0 J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9
Spin of the intermediate states
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5
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15
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25
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35

40

GT+
F+
GT-
F-

FIG. 7: (Color online) J decomposition, heavy-neutrino
exchange: contributions of the intermediate states |κ〉 with
certain spin and parity Jπ to the Gamow-Teller (blue and red
colors) and Fermi (black and green colors) matrix elements
for the 0νββ decay of 76Ge. Inclined shaded bars correspond
to the contributions of the positive-parity states, while
horizontally and vertically shaded bars present the states
with a negative parity. All calculations were done with
CD-Bonn SRC.

the experimental data [32] (see also Table 2 in Ref. [33]).
Although the spin-isospin operators entering the 0νββ
decay NME are different from those in the pure Gamow-
Teller, some authors (see, e.g., Ref. [34]) advocate using
appropriate quenching factors for contributions coming
from different spins of the intermediate states. The most
important are those from Jπ = 1+ states, which repre-
sent about 30% of the total NMEs, and from Jπ = 2−

states [34], which represent about 15% of the total NMEs.
It would be interesting to investigate whether quench-
ing factors obtained from other processes, such as 2νββ
decay and charge-exchange reactions, quench the corre-
sponding contributions to the 0νββ decay NMEs. For
example, if one uses a quenching factor of 0.642 for the
contribution from the Jπ = 1+ states and 0.402 for the
contribution from the Jπ = 2− [34], one gets for the
CD-Bonn SRC an NME of 2.369 rather than 3.572 (see
Table I). One can view this as a lower limit NME in our
approach.

C. The optimal closure energy

Since we can calculate both the nonclosure NME and
the closure NME, it is possible to find such optimal values
for the closure energies at which the closure approach
provides the most accurate NMEs (see, e.g., the crossing
lines in Fig. 5):

M̄0ν = M0ν(〈E〉). (15)
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FIG. 8: (Color online) I decomposition: closure approx-
imation Gamow-Teller and Fermi matrix elements (both
parities) for the 0νββ decay of 76Ge, light-neutrino ex-
change. The calculation performed with the optimal
closure energy, 〈E〉 = 3.5 MeV. The results should be
compared with the matrix elements presented on Fig. 6.
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FIG. 9: (Color online) I decomposition: closure approx-
imation Gamow-Teller and Fermi matrix elements (both
parities) for the 0νββ decay of 76Ge, heavy-neutrino ex-
change.

TABLE I: NMEs for the 0νββ decay of 76Ge (light-neutrino
exchange) calculated within different approximations. All
calculations were done with CD-Bonn SRC parametrization
scheme, the average closure energy 〈E〉 = 9.41 MeV [26].

Closure Run.Closure Run.Nonclosure Mixed

M0ν
GT 2.95 2.50 2.70 3.15

M0ν
F −0.65 −0.58 −0.61 −0.67

M0ν
T −0.01 0.02 0.02 −0.01

M0ν
total 3.35 2.89 3.10 3.57

TABLE II: Optimal closure energies 〈E〉 (in MeV) calculated
for different isotopes and effective Hamiltonians. Effective
Hamiltonians considered are GXPF1A, FPD6, KB3G for Ca
and JUN45 for Ge and Se isotopes.

GXPF1A FPD6 KB3G JUN45
44Ca 0.29 1.61 2.03 −
46Ca 0.05 1.59 2.37 −
48Ca 0.22 1.85 2.46 −
76Ge − − − 3.44
82Se − − − 3.65

One interesting observation is that the optimal energies
calculated for the 0νββ decay of 82Se [11] and 76Ge with
the same JUN45 effective Hamiltonian and the same jj44
model space practically coincide: they both equal about
〈E〉 ≈ 3.5 MeV, although the two cases describe quite
different nuclei. It would thus be interesting to find a
method to estimate the optimal closure energies rather
then using estimates from other methods, such as those

in Ref. [26]. Table II presents the optimal closure en-
ergies calculated for the fictitious 0νββ decays of 44Ca
and 46Ca and for the realistic 0νββ decays of 48Ca, 76Ge,
and 82Se (see also Fig. 3 in [21]). All calcium isotopes
were calculated in the pf model space using several re-
alistic Hamiltonians. The 76Ge and 82Se isotopes were
considered in the same jj44 model space and with the
same JUN45 Hamiltonian. The optimal closure energies
are significantly lower than the standard closure energies
(7.72 MeV for Ca, 9.41 MeV for Ge, and 10.08 MeV for
Se [26]), which explains the 7–10% growth in absolute
values of the nonclosure NMEs compared to the closure
values. We conjecture that the optimal energies depend
on the effective Hamiltonian and, possibly, on the model
space. We found the optimal closure energies for the
three Hamiltonians in the pf model space: GXPF1A [35],
FPD6 [36], and KB3G [37]. However, it seems that the
energies do not depend much on the specific nucleus: all
the calcium isotopes calculated with the same Hamilto-
nian and both the 76Ge and the 82Se isotopes calculated
with the same model space and with the same Hamil-
tonian give similar optimal closure energies. This opens
up an interesting opportunity: one could calculate the
optimal closure energy in a realistic model space with
an effective Hamiltonian for a nearby less computation-
ally demanding isotope (for example, 44Ca), after which
one could use it for a realistic case (for example, 48Ca).
This scheme offers a consistent way of “calculating” the
closure energies that has not been discussed before.

In the Table III we compare our results for the NMEs of
0νββ decay of 76Ge (light-neutrino exchange mechanism)
with the recent calculations. Table III presents matrix el-
ements obtained with: interacting shell model approach
(ISM) [38]; quasiparticle random phase approximation,
Tüebingen-Bratislava-Caltech group [(R)QRPA(TBC)]
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TABLE III: Comparison of the total NMEs for the 0νββ decay of 76Ge (light-neutrino exchange) calculated with different
approaches and with different SRC parametrizations schemes. gA = 1.254 is used for the axial-vector coupling constant.

ISM ISM QRPA(TBC) RQRPA(TBC) QRPA(J) QRPA IBM-2 EDF

SRC present [38] [39, 40] [39, 40] [41] [42] [6] [7]

M0ν
total, None 3.45 2.96

Miller-Spencer 2.72 2.30 4.68 3.33 3.77 3.83 5.42

CD-Bonn 3.57 6.32 5.44 6.16

AV18 3.37 5.81 4.97 5.98

UCOM 2.81 5.73 3.92 5.18 4.60

[39, 40]; quasiparticle random phase approximation,
Jyväskylä group [QRPA(J)] [41]; quasiparticle random
phase approximation, Holt and Engel [42]; interact-
ing boson model (IBM-2) [6]; and generator coordinate
method (EDF) [7]. The value gA = 1.254 is used in
most of the calculations, except for IBM-2, which uses
the axial-vector coupling constant gA = 1.269 [43].

D. The heavy neutrino-exchange NME

Figure 7 and Table IV summarize the results for our
heavy-neutrino exchange 0νββ decay of 76Ge. Compar-
ing the light and heavy neutrino-exchange NMEs (com-
pare Fig. 2 in [21] to Fig. 7 here) one can see that the
heavy neutrino-exchange NMEs do not vanish with the
large intermediate spins J . The heavy-neutrino poten-
tials have a strong short-range part, so the contributions
from the large neutrino momentum, which are responsi-
ble for the higher spin contributions, are not suppressed.

TABLE IV: Heavy neutrino-exchange NMEs of the
0νββ decay of 76Ge calculated with different SRC
parametrizations sets [25].

SRC, Approximation M0ν
GT M0ν

F M0ν
T M0ν

total

CD-Bonn, Closure 162 −62.6 −0.19 202

CD-Bonn, Run.Closure 147 −56.5 0.22 183

AV18, Closure 105 −52.1 −0.20 140

AV18, Run.Closure 95.8 −46.9 0.22 126

E. The I decomposition of the closure NME

Finally we calculated I decompositions of the closure
NMEs, Eq. (9), for the 0νββ decay of 76Ge at the opti-
mal closure energy calculated specifically for 76Ge, for
the JUN45 effective Hamiltonian and the jj44 model
space, 〈E〉 = 3.5 MeV. Figs. 8 and 9 present the ma-
trix elements calculated for the light-neutrino and heavy-

neutrino exchanges correspondingly. NMEs on these fig-
ures include both, positive and negative, and the Fermi
matrix elements were taken with the opposite sign and
multiplied by a factor of (gV /gA)

2, so that the total hight
of each bar corresponds to the total matrix element (3)
(if the tensor matrix element is neglected). Comparing
Fig. 6 and Fig. 8 we can see a good agreement between
the nonclosure and the closure approximations when the
optimal closure energy is used. It is important to note
that using optimal closure energy for the closure NMEs
provides good results not only for the total matrix ele-
ment but also for the individual MNEs, of different types
and different spins I.
One can also notice the strong cancellation between

the I = 0 and I = 2 contributions for the light neutrino-
exchange, which leads to a rather small NME. The lack
of I = 2 contribution that would reduce the larger I = 0
contribution could explain why some methods provide
relatively larger NMEs [23]. The analog pattern for the
heavy neutrino-exchange NME, Fig. 9, is similar but the
cancellation is less pronounced due to a strong I = 0
pairing component typical for short-range operators. In
this case one should wonder if a larger model space could
bring additional contributions to the I = 0 component
[23].

V. CONCLUSIONS AND OUTLOOK

In summary, we calculated the 0νββ decay NME of
76Ge using, for the first, time a realistic shell-model ap-
proach beyond closure approximation. For the calcu-
lation we used the realistic jj44 model space and the
JUN45 effective Hamiltonian that was fine tuned in the
region of 76Ge and 82Se. We investigated a new method,
which considers information from both closure and non-
closure approaches. This mixed method was carefully
tested on the fictitious cases of 44Ca and 46Ca where all
the intermediate sates can be calculated. Then the mixed
method was used to calculate the 0νββ decay NMEs of
48Ca, 82Se, and 76Ge isotopes, which was the first realis-
tic shell-model calculation of the 0νββ decay NMEs be-
yond closure approximation. We demonstrated that the
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NMEs calculated with the mixed method converge very
rapidly compared to the running nonclosure matrix ele-
ments and we found a 7-10% increase in the total NMEs
compared to the closure values.
For the light-neutrino-exchange mechanism we predict

M0ν = 3.5± 0.1, (16)

where the average value and the error were estimated
considering the total mixed NMEs calculated with CD-
Bonn and AV18 SRC parametrization sets (see Table
I in [21]). A more elaborate method of estimating the
error, which rely in part on our I-pair decomposition,
is presented in Ref. [23]. For the heavy-neutrino ex-
change NME we get with different SRC parametrization
sets (CD-Bonn and AV18 SRC):

M0ν
N = 202/140. (17)

We proposed a new method of calculating the optimal
closure energies with which the closure approach gives
the most accurate NMEs. We argue that these optimal
closure energies depend on the Hamiltonian and model
space and have a weak dependence on the actual isotopes.
This features can be used to determine the optimal clo-
sure energies using fictitious double-β decay of isotopes
that are easier to calculate in a given valence space. This
computational route offers the opportunity of estimating
the beyond-closure 0νββ NMEs without actually calcu-
lating the intermediate states.
We calculated for the first time a decomposition of the

shell-model NMEs in light and heavy neutrino-exchange

mechanisms for different spins of intermediate states. We
found that for the light-neutrino-exchange NMEs the
contribution of the Jπ = 1+ states is about 30% and that
of the Jπ = 2− states is about 15%. The shell-model J
decomposition that we obtained provides a unique op-
portunity to selectively quench different contributions to
the total NMEs, which, in the case of 76Ge, could lead
to a decrease in the total matrix elements by about 30%.
Although the QRPA approach can provide a J decompo-
sition, its methodology of choosing the gpp parameter to
describe the 2νββ half-life [31] could make the selective
quenching ambiguous.

We also presented I-pair decompositions for both light
and heavy neutrino exchange NMEs that were recently
used as a starting point to propose a new method of cal-
culating these matrix elements [22], and which could lead
to new venues of constraining the NME by pair trans-
fer experimental data. In addition, the different levels
of cancellation between I = 0 and I = 2 contributions
could shed new light on the origin of the discrepancies
between NME calculated with different methods [23].
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