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We study the convergence of bound-state quadrupole moments in finite harmonic oscillator spaces.
We derive an expression for the infrared extrapolation for the quadrupole moment of a nucleus and
benchmark our results using different model interactions for the deuteron. We find good agreement
between the analytically derived and numerically obtained convergence behavior. We also derive an
extrapolation formula for electric quadrupole transitions and find good agreement with the numerical
calculation of a simple system.

I. INTRODUCTION

The numerical calculation of observables of strongly interacting systems requires frequently the use of truncated
Hilbert spaces. For example, lattice quantum chromodynamics (QCD) simulations are usually carried out in a finite
volume with periodic boundary conditions. Nuclear structure calculations employ frequently the spherical harmonic
oscillator (HO) basis as it preserves rotational symmetry and facilitates a straightforward way of separating out
the center-of-mass motion, see, e.g., Refs. [1, 2]. Such calculations require clearly a quantitative and qualitative
understanding of the corrections due to the involved Hilbert space truncation, and in lattice QCD the general form
of these corrections were derived for a number of observables by Lüscher approximately 30 years ago [3]. For nuclear
structure calculations in the HO basis it was only recently understood that the truncated HO can be thought of as
imposing long-range, hard-wall boundary conditions with an additional short distance regulator [4]. Specifically, it
was found that a HO basis consisting of N oscillator shells with oscillator length b has an ultraviolett (UV) cutoff [5]

Λ ≈
√

2N/b , (1)

while the infrared (IR) cutoff and therefore the spatial extent of the basis is approximately [6, 7]

L ≈
√

2Nb . (2)

Relations (1) and (2) are leading-order approximations and valid for N � 1. A more precise expression for an HO in
three dimensions was derived in Ref. [8]

L =
√

2(Nmax + 3/2 + 2)b . (3)

Here, b =
√

~/(µΩ), µ, and Ω denote the oscillator length, the reduced mass and the oscillator frequency, respectively.
We note that Eq. (3) is specific to a two-body system in relative coordinates (or a single particle in three dimensions).
Precise values for the IR length scale L were also derived for many-body product spaces [9], and no-core shell model
spaces [10].

Coon et al. [11] found that ground-state energies converge exponentially with the IR length L. This convergence
can be understood as follows [4]. The finite extent L of the oscillator basis in position space imposes a Dirichlet
boundary condition of the bound-state wave function at r = L. The exponential convergence in L is thus directly
related to the exponential fall-off of bound-state wave functions in position space. These insights led to theoretically
founded IR extrapolation formulas [4, 12] for bound-state energies

EL = E∞ + a0e
−2k∞L , (4)

and radii

〈r̂2〉L ≈ 〈r̂
2〉∞ −

[
c0(k∞L)3 + c1k∞L

]
e−2k∞L . (5)

Here a0, k∞, E∞, and c0, c1, and 〈r̂2〉∞ are determined by fitting to numerical data in many-body systems.
In both cases (as well as for the quadrupole moment extrapolation derived below) the e−2k∞L term comes from the

universal long-range behavior of the radial wave function, Rl(r). The spherical Hankel functions, hl(±ikr), are the
negative-energy solutions in the free region, and imposing a Dirichlet boundary condition at r = L gives a solution of
the form

Rl(r) = hl(ikLr) + Chl(−ikLr) , (6)
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where C = e−2kLL in leading order for kLL� 1. Here and in what follows, kL denotes the momentum of the system
bounded by a hard wall at r = L, k∞ denotes the momentum of the system bounded only by the asymptotic boundary
condition at r →∞, and k denotes the momentum of an unspecified system.
In this work, we derive an IR extrapolation formula for the quadrupole moment

〈r′| Q̂ |r〉 = e

√
π

5 r
2Y20(θ, φ)δ(3)(r− r′) , (7)

and take the deuteron as an example. For the deuteron, r is the relative coordinate. While computing the deuteron’s
quadrupole moment poses no challenge in HO model spaces, it is already challenging to compute converged quadrupole
moments in p-shell nuclei, see Refs. [13–15] for examples. This motivates us to study the IR convergence for bound-
state expectation values of the quadrupole moment and for E2 transition matrix elements between bound states.
This paper is organized as follows. We derive an extrapolation formula for the deuteron’s quadrupole moment and

study our result for a toy model and a realistic nucleon-nucleon interaction. We then generalize the extrapolation
formula to the general case where the bound-state wave functions mixes partial waves with orbital angular momenta
l and l + 2, respectively, or where the bound-state has a finite l > 0. Finally, we also derive an IR extrapolation
formula for E2 transition matrix elements between bound states. We conclude with a summary.

II. DERIVATION

A. Deuteron

The deuteron is a spin-1 state

|Ψ〉 = |Ψ0〉+ η |Ψ2〉 , (8)

superposed of an S-state Ψ0 and a D-state Ψ2. The d-state amplitude is denoted by η. Without loss of generality
we focus on the state with maximum Jz = 1 spin projection. The wave function for a state with orbital angular
momentum l is

Ψl(r, θ, φ) = Rl(r)
∑
m,ms

C1,1
l,m;1,msYl,m(θ, φ)χs,ms . (9)

Here Rl(r) denotes the solution to the radial Schrödinger equation. The orbital angular momentum, represented by
the spherical harmonics Ylm(θ, φ), and spin, represented by the spinor χs,ms , are coupled to a total angular momentum
J = 1 by means of the Clebsch-Gordan coefficient C1,1

l,m;1,ms [16].
For the computation of the IR correction of the quadrupole moment we follow closely the corresponding derivation

made in Ref. [12] for the radius squared. In a finite oscillator basis with IR length scale L, the expectation value of
the quadrupole moment (7) will differ from the infinite-space result, and

QL = Q∞ + ∆QL . (10)

Here

∆QL = 〈ΨL|Q̂|ΨL〉
〈ΨL|ΨL〉

− 〈Ψ∞|Q̂|Ψ∞〉
〈Ψ∞|Ψ∞〉

, (11)

defines the expressions for QL and Q∞ such that any L-independent terms will cancel in Eq. (11). The wave functions
ΨL and Ψ∞ are the deuteron wave functions in the finite and infinite oscillator spaces, respectively.

Using Eqs. (8) and (9), four terms enter the expectation value in the first term of Eq. (11), and

〈ΨL|Q̂|ΨL〉 = e

√
π

5

L∫
0

π∫
0

2π∫
0

drr2dθ sin θdφ
[
RL,0Y ∗00χ

†
1 + ηRL,2

∑
m,ms

C1,1
2,m;1,msY

∗
2mχ

†
ms

]

×r2Y20

[
RL,0Y00χ1 + ηRL,2

∑
m,ms

C1,1
2,m;1,msY2mχms

]
.

(12)
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The expectation value in the second term on the right-hand side of Eq. (11) is found by replacing L by ∞. The S-S
term is zero, so we have only to consider the remaining S-D mixing terms and the D-D term. Our interest is in the
L-dependence of the quadrupole moment which is contained entirely in the radial integrations carried out in the first
term on the right-hand side of Eq. (11)

L∫
0

drr4RL,0(r)RL,2(r) , (13)

and
L∫

0

drr4RL,2(r)RL,2(r) . (14)

We assume that the nuclear potential vanishes beyond r = R and split the radial integration into two parts. In
general, ∫ L

0
drr4RL,l1(r)RL,l2(r) =

∫ R

0
drr4RL,l1(r)RL,l2(r) +

∫ L

R

drr4RL,l1(r)RL,l2(r) . (15)

The interior region, between 0 and R, depends primarily on the details of the interaction. Around E∞ one assumes
that the radial wave function RL,l in L-space can be expanded in terms of the radial wave function in infinite space
R∞,l and a correction term, e.g. by using the linear energy method [17]. The resulting L-dependence from the
integration over the interior region scales as O(L0)e−2kL [12] and therefore does not contribute to the dominant
correction terms [the polynomial in kL at O(e−2kL)]. We therefore concentrate on the second region between R and
L, and consider the integrals

L∫
R

drr4RL,0(r)RL,2(r) , (16)

and
L∫
R

drr4RL,2(r)RL,2(r) , (17)

in the region free from the potential. Here, the radial wave functions are

RL,0(r) = h0(ikLr) + C0h0(−ikLr)

= −e
−kLr

kLr
+ C0

ekLr

kLr
, (18)

with

C0 = − h0(ikLL)
h0(−ikLL) = e−2kLL , (19)

and

RL,2(r) = h2(ikLr) + C2h2(−ikLr)

= e−kLr

(kLr)3

[
(kLr)2 + 3kLr + 3

]
− C2

ekLr

(kLr)3

[
(kLr)2 − 3kLr + 3

]
, (20)

with

C2 = − h2(ikLL)
h2(−ikLL) = e−2kLL (kLL)2 + 3kLL+ 3

(kLL)2 − 3kLL+ 3 . (21)

The coefficients C0 and C2 are chosen such that the wave function vanishes at r = L.
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Finally, we sum the S-S and S-D terms and expand in powers of e−2kL. We consider the leading order (LO) term,
Q∞, and the next-to-leading order (NLO) term which contains a polynomial in kL times e−2kL. We restrict our
analysis to the highest powers of kL and arrive at

QL = Q∞ − a(k∞L)3
(

1 + d

k∞L

)
e−2k∞L , (22)

with corrections of order O(k∞Le−2k∞L). Here Q∞, a, d, and k∞ can be treated as fit parameters. Note that to LO,
kL ≈ k∞, where (in the two-nucleon system)

kL = k∞ − γ2
∞e
−2k∞L +O(e−4k∞L) , (23)

and γ∞ is the asymptotic normalization coefficient [12]. The LO term is all we need to determine the polynomial at
O(e−2k∞L) for QL.

B. Generalized angular momentum states

We can apply this reasoning to a system with an arbitrary mixture of l states, i.e.

|Ψ〉 = |Ψl1〉+ η |Ψl2〉 . (24)

For simplicity we limit ourselves to LO and consider only the asymptotic form

hl(ρ)→ i

ρ
e−i(ρ−

lπ
2 ) , (25)

of the spherical Hankel functions at large ρ. As before, if we consider ±iρ (where ρ = kr) solutions and enforce the
boundary condition at r = L, we have for the radial behavior

RL,l(kLr) = − 1
kLr

eiπl/2 (e−kLr − e−2kLLekLr
)
. (26)

Computing the quadrupole moment expectation value again gives four terms. But when we consider the radial
integrations

L∫
R

drr4R∗L,l1(r)RL,l1(r) , (27)

L∫
R

drr4R∗L,l1(l2)(r)RL,l2(l1)(r) , (28)

L∫
R

drr4R∗L,l2(r)RL,l2(r) , (29)

the l dependence is either cancelled [as in Eq. (27) and Eq. (29)] or attributed to a phase [as in Eq. (28)], and they
sum to give similar results. Limiting ourselves to LO, we find

QL = Q∞ − a(k∞L)3e−2k∞L . (30)

We see that the general case agrees in LO with the particular case (22) for the deuteron. Furthermore, Eq. (30) also
applies to quadrupole expectation values of bound-states with finite orbital angular momentum l > 0 but no mixing
of partial waves. This makes Eq. (30) the main result of this Subsection. It is more general (though less precise) than
(22). Higher-order corrections depend on orbital angular momenta involved in the particular case under consideration.
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C. Electric quadrupole transitions

The quadrupole moment operator also describes electric quadrupole (E2) transitions. If we consider a simple model
where the initial state is a pure D-wave state and the final state is a pure S-wave state, the amplitude for such a
transition is

A = 〈Ψ0|Q̂|Ψ2〉 . (31)

As before, computing such an amplitude in a truncated basis effectively imposes a Dirichlet boundary condition on
the wave functions. Likewise, we can describe the amplitude in the truncated basis (AL) as the amplitude in the
infinite basis (A∞) plus a correction term.

AL = A∞ + ∆AL , (32)

where

AL ≡ 〈ΨL,0|Q̂|ΨL,2〉 , (33)
A∞ ≡ 〈Ψ∞,0|Q̂|Ψ∞,2〉 , (34)

and we seek to compute ∆AL. We note that the bound-state momentum kl depends on the state Ψl. With Ψl from
Eq. (9), and the radial wave functions from Eqs. (18) and (20) for ΨL,0 and ΨL,2, respectively, we can easily derive
an expression for AL. Essentially, we need to evaluate Eq. (16) for states with different angular momenta (or different
kl values). While the procedure is similar to the calculation of quadrupole moments, the result is somewhat more
complex. We obtain (written explicitly as a function of L)

AL = A∞ + a0

[
1 + a1

k2L
+O

(
1

(k2L)2

)]
e−2k2L , (35)

where terms of O[(k0 + k2)Le−(k0+k2)L] and higher have been dropped. Here, k0 and k2 represent the S- and D-wave
binding momenta, respectively (as k∞ previously represented the separation energy in the case of the deuteron), and
the constants a0 and a1 are fit parameters.
In general, E2 transitions might occur between any states of identical parities whose angular momenta differ by at

most two units. Employing the asymptotic form (25), we find that the transition between bound states with angular
momenta l1 and l2 and bound-state momenta k1 and k2, respectively extrapolates as

AL = A∞ + a0e
−2k<L . (36)

Here, k< ≡ min (k1, k2). A lower value of k yields a wave function with a longer tail outside the range of the potential.
The first correction term depends on this lower k value, because it is the state most affected by a boundary condition.
The general LO formula (36) is the main result of this Subsection. It captures the leading correction of (35) derived
for the deuteron, and can be applied to E2 transitions irrespective of the angular momenta involved. One might be
surprised that the LO formula (36) for E2 transitions differs from the LO formula (30) for expectation values by the
absence of the factor proportional to L3. Inspection shows that the limit k1 → k2 is interesting, because terms with
prefactors involving (k1 − k2)−3 become proportional to L3 in this limit.

III. RESULTS

A. Quadrupole moment in a square-well model

As a first test of our analysis, we use a toy model for the deuteron consisting of a square-well potential for the
central and a tensor interaction, V = Vsq + VT, with

Vsq = −V0Θ(R− r) , (37)

and

VT = αVsqS12 . (38)
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FIG. 1. (color online) Convergence of the quadrupole moment for the deuteron modeled by a simple square well potential as a
function of the infrared length L (given in units of the oscillator length b). The yellow circles are the data from the computation.
The thin, blue, solid line is the fit to Eq. (30). The thin, orange dashes are the fit to Eq. (22). The thick, blue, solid line is
Q∞ from the fit to Eq. (30). The thick, orange dashes are Q∞ from the fit to Eq. (22).

Here

S12 = ~Y2 · ~X2

=
∑
µ

(−1)µY2,µX2,−µ , (39)

consists of the rank-two tensor ~Y2 with components Y2µ, and

~X2µ ≡ (~σ × ~σ)(2)
µ

=
∑
ms,m′

s

C2,µ
1,ms;1,m′

s
σmsσm′

s
, (40)

is the rank-two spherical tensor obtained from coupling two spins.
We use units such that ~ = 1, µ = 1, and R = 1. For the model parameters we set V0 = 1.83 (in units of (µR2)−1),

and α = 0.5. This yields a d-state probability of about 4.1%, a ground-state energy of about E ≈ −0.41 (in units of
(µR2)−1), and a squared radius of about 〈r̂2〉 ≈ 0.36 (in units of R2).
We perform the diagonalization in the HO basis and compute the quadrupole moment for an increasing number N

of oscillator shells up to Nmax = 500 for accurate convergence. We choose Ω = 28 (in units of (µR2)−1) yielding an
oscillator length b = 1/

√
28 (in units of R) and L =

√
2(N + 3/2 + 2)b. The oscillator frequency is chosen such that

b� R (by an order of magnitude) to ensure UV convergence; the smallest length scale from the basis scales as b/
√
N

and is thus adequate for a numerical diagonalization. The results are shown in Fig. 1.

For the quadrupole extrapolation, we first extrapolate the energy (4) and obtain the bound-state momentum k∞
from E∞ ≡ −(~k∞)2/(2µ). The expression in Eq. (22) for the quadrupole extrapolation can be fit in several ways.
We will first consider only the dominant term, (k∞L)3, and fit to Eq. (30), treating a and Q∞ as fit parameters. The
extrapolated Q∞ value is within 1% of the maximum Q∞ value (Nmax = 500) when fitting to values of L as low as
L = 2.0. Even fitting to the data within a short range (3.0 ≤ L ≤ 3.5) provides an asymptotic value within a percent
of the value calculated by fitting to the largest L value. We also fit to Eq. (22), as shown in Fig. 1. Including the
extra fit parameter, d, does not impact the extrapolated value significantly, though it can influence the ranges of data
over which we can accurately fit.



7

20 25 30 35 40
L(fm)

0.265

0.270

0.275

Q
 (
e

fm
2

)

FIG. 2. (color online) Extrapolation of the deuteron quadrupole moment computed from a chiral potential. The yellow circles
are the data from the calculation. The thin, blue, solid line is the fit to Eq. (30). The thick, blue, solid line is Q∞ from the fit
to Eq. (30). The thin, red dashes are the fit to Eq. (22), and the thick, red dashes are Q∞ from the fit to Eq. (22).

Lmin(fm) Lmax(fm) Q
(30)
∞ (e · fm2) Q

(22)
∞ (e · fm2)

20 42.40 0.2750 0.2750
15 42.40 0.2750 0.2750
10 42.40 0.2750 0.2750
10 20 0.2768 0.2740
20 30 0.2750 0.2750

TABLE I. Lmin and Lmax (in fm) are the range over which the data is fit. Q(30)
∞ and Q(22)

∞ are the extrapolated quadrupole
moments (in e· fm2) when fitting the Eq. (30) and Eq. (22) respectively.

B. Realistic deuteron quadrupole moment

For an accurate model of the deuteron, we used the interaction from chiral effective field theory (EFT) as described
in Ref. [18]. For the quadrupole fits, we take the bound-state momentum k∞ from the known binding energy of the
deuteron for this interaction. Fits of the quadrupole moment to Eqs. (22) and (30) yield virtually identical results
and are shown in Fig. 2 and Table I.

To illustrate the robustness of the extrapolations, we employ different bound-state momenta, namely k∞ from
the separation energy, kE from a fit of the extrapolation (4) to the ground-state energy, and kQ from a fit of the
quadrupole extrapolation formulas (22) and (30), respectively, in the extrapolation formulas. While the values for the
bound-state momenta can differ by as much as 20%, the extrapolated quadrupole moments Q∞ differ by only about
1%.

Let us compare the differences between fitting to Eq. (22) and Eq. (30). Figure 3 shows that fitting to the more
precise Eq. (22) improves the convergence consistently. We note, however, that the difference in the extrapolated
values is almost negligible.

One might also try to extract higher-order corrections to the quadrupole moment that are smaller thanO((k∞L)2e−2k∞L).
These are terms proportional to (k∞L)me−2k∞L with m ≤ 1, and terms proportional to e−4k∞L. We define (with
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FIG. 3. Difference between the L-dependent quadrupole moment and its asymptotic value from an extrapolation based on
Eq. (30) (blue circles are data and the solid blue line is the fit) and from an extrapolation based on the more precise Eq. (22)
(orange squares are data and the dashed orange line is the fit).

Q(L) ≡ QL)

δQm = Qcalculated −Qm+1(L)
cm(k∞L)m , (41)

where

Qm(L) =
3∑

n=m
cn(k∞L)ne−2k∞L , (42)

is the data reproduced with the fit parameters (represented by cn and cm). If we plot δQ alongside what we expect
analytically, we ought to be able to establish trends for the higher order corrections. The results are shown in Fig. 4.
The overall slopes of the corrections match well with the predicted slope, and as each lower order of (k∞L) is included,
the data approaches the e−2k∞L line as expected, supporting the validity of our analysis.

C. Electric quadrupole transitions

To test our result (35) for E2 transitions, we employ a Hamiltonian with a Gaussian well potential

V (r) = −V0e
−( rR )2

, (43)

that is deep enough to contain a bound D-wave state as well as the ground S-wave state. As parameters we choose
R = 1 and V0 = 15 (in units of (µR2)−1). Recall that the bound-state momenta of the S- and D-states are k0 and
k2, respectively. Because k2 < k0, the dominant correction contains the exponential e−2k2L. Below, we consider three
different orders of the polynomial in k2L preceding the exponential e−2k2L that governs the correction term. From
Fig. 5 we can see that the data is more accurately described as increasing powers of 1/(k2L) are considered. However,
over large ranges of k2L, which we are able to take advantage of in the simple model presented here, the leading order
result can be sufficient to obtain accurate asymptotic values. Figure 5 highlights a small region where the differences
in the fitting can be seen. Lower and higher values of L do not show significant differences.
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FIG. 4. (color online) The yellow circles represent δQ1 as defined by Eq. (41). The blue triangles represent δQ0. The orange
crosses represent δQ−1. The red line is proportional to e−2k∞L.
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FIG. 5. (color online) Convergence of the E2 transition amplitude as a function of L for a simple Gaussian well model. The
yellow dots are the results of the numerical calculation. The thin, light blue dashes are the fit to the leading order result in
Eq. (35). The thick, red dashes correspond to a fit including the (1/k2L)2 term in Eq. (35). And the solid orange line includes
the (1/k2L)3 term in the fit.

The log-scale plot, shown in Fig. 6, reveals the differences between the fits and, more importantly, the improvement
as higher orders of (1/k2L) are included. Here, we plot the residual transition amplitude, i.e. the difference between
the values calculated in the truncated basis (Acalculated) and the values reproduced by the fit parameters (A∞ and
cn). We define

δAm = Acalculated −A∞∑0
n=m cn(k2L)n

, (44)

where m < 0, and we plot the result in Fig. 6 as a measure of how well the fit describes the data for different m
values. Little improvement comes from the m = −2 term due to its small coefficient. Most importantly, we can see
that the deviation of the data from the expected behavior happens at larger and larger L values as more terms in the
polynomial factor are included.
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FIG. 6. (color online) The residual transition amplitude from fitting to increasing powers of (1/k2L) in Eq. (35). The yellow
dots represent a leading order fit (m = 0), the light blue squares include also the (1/k2L) term (m = −1), the dark blue
diamonds include also the (1/k2L)2 term (m = −2), and the orange triangles include also the (1/k2L)3 term (m = −3). The
red, solid line represents e−2k2L where k2 is determined from a d-wave energy fit.

We note that the sudden drops shown in the Figures 4 and 6 are the result of the fitting line crossing the original
data, implying that the difference changes its sign. As higher-order terms are included in the fit, these dips tend to
move to increasing values of L.

IV. SUMMARY

We derived IR extrapolation formulas for bound-state quadrupole moments and for quadrupole transitions between
bound states in finite oscillator spaces. For two-body systems, the extrapolations are of the form (kL)ne−2kL with k
denoting a bound-state momentum, L the IR length of the oscillator basis, and an integer n. We successfully tested the
extrapolation formulas (and higher-order corrections) in simple potential models and for a realistic deuteron computed
with interactions from chiral EFT. It would be interesting to probe and use these formulas in ab initio computations
of finite nuclei. Our results for quadrupole transitions between bound states should also hold for transitions from
bound states into narrow states close to the threshold. It would also be interesting to work out extrapolation formulas
for transitions into arbitrary continuum states in the future.
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