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Strength distributions for isoscalar giant resonances with multipolarity L <2 have been deter-
mined in ?*Mg from “instrumental background-free” inelastic scattering of 386-MeV « particles at
extremely forward angles, including 0°. The isoscalar E0, F1, and E2 strengths are observed to
be 57+7%, 111.1f%(')2‘9%7 and 148.6+7.3%, respectively, of their energy-weighted sum rules in the
excitation energy range of 6 to 35 MeV. The isoscalar giant monopole (ISGMR) and quadrupole
(ISGQR) resonances exhibit a prominent K-splitting which is consistent with microscopic theory
for a prolate-deformed ground state of **Mg. For the ISGQR it is due to splitting of the three K
components, whereas for the ISGMR it is due to its coupling to the K=0 component of the ISGQR.
Deformation effects on the isoscalar giant dipole resonance are less pronounced, however.

PACS numbers: 24.30.Cz, 21.65.Ef, 25.55.Ci, 27.60.+]

I. INTRODUCTION

Giant resonances (GRs) are the high-frequency collec-
tive excitations of finite nuclear systems [1]. Understand-
ing the strength distributions of these GRs in a wide
range of atomic nuclei yields valuable information about
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the finite nuclei as well as about the bulk nuclear mat-
ter [2, 3]. The isoscalar monopole and dipole modes are
the “compressional modes” and are especially important
because their resonance energies are directly related to
the nuclear incompressibility [4]. In this context, inves-
tigating the “compressional modes” in a wide variety of
nuclei is crucial.

Giant resonances being collective excitations, their
strength distributions depend strongly on the nuclear
shape [2]. Splitting of the isovector giant dipole reso-
nance (IVGDR) strength due to ground-state deforma-
tion is a well established effect, attributed to different
frequencies of oscillation along the major and minor axes
[5]. Deformation effects on isoscalar giant monopole and
giant quadrupole resonances (ISGMR and ISGQR) have
been observed in some rare earth nuclei [6-9] and in fis-
sion decay of 23®U [10]. These are understood in terms
of K-splitting: microscopic calculations based on quasi-
particle random-phase approximation (QRPA) [11], for
example, predict K-splitting of the multipole strength
even in light deformed nuclei such as ?*Mg [12, 13].

Identification of full giant-resonance strengths in the
lighter-mass nuclei (A < 60) has generally been a chal-



lenge due to fragmentation of the strength [14-22], sig-
nificant overlap of giant resonance strengths for L <2,
uncertainties in the extraction of the strength distribu-
tions, and overlap of the multipole strength with other
direct processes (knock-out/quasi-free processes, for ex-
ample). The light nuclei, in particular the deformed ones
such as 22Mg and 28Si, provide a vital testing ground for
the aforementioned QRPA and deformed Hartree-Fock-
Bogoliubov (HFB) calculations [12, 13].

Recently, we reported evidence for the splitting of IS-
GMR strength in 24Mg. This was the first time that such
a splitting had been observed in a light-mass nucleus, in-
deed in any nucleus other than the well-deformed Sm
nuclei and #**U [23]. Owing to directional symmetry,
monopole strength cannot split itself, but the observed
“splitting” results from the mixing of ISGMR and the
K=0 component of the ISGQR. The ISGQR and the
isoscalar giant dipole resonance (ISGDR), on the other
hand, increase in width due to the K-splitting and, for
the ISGDR, also to mixing with the high-energy octupole
resonance (HEOR) [7, 24]. While HFB+QRPA calcula-
tions [11] are, in general, consistent with the experimen-
tal data for deformed nuclei in the rare-earth region, pre-
vious measurements on Mg [25-28], had not shown any
discernible K-splitting.

In this paper, we report ISGMR, ISGDR and ISGQR
strength distributions in the prolate-deformed light-mass
nucleus ?*Mg, as obtained from “instrumental back-
ground free” 386-MeV inelastic a-scattering at extremely
forward angles, including 0°. A consistent picture of K-
splitting in ISGMR and ISGQR strength distributions
due to ground-state deformation emerges; the effect of
ground-state deformation on ISGDR is, however, less
pronounced.

II. EXPERIMENTAL PROCEDURES

Inelastic scattering of 386-MeV « particles was mea-
sured at the Ring Cyclotron Facility of the Research Cen-
ter for Nuclear Physics (RCNP), Osaka University. A
self-supporting foil (0.7 mg/cm?) of enriched (> 99%)
24Mg was employed as target. Inelastically scattered
« particles were momentum analyzed with the high-
resolution magnetic spectrometer “Grand Raiden” [29].
The horizontal and vertical positions of the « parti-
cles were measured using the focal-plane detector system
composed of two position-sensitive multiwire-drift cham-
bers (MWDCs) and two plastic scintillators [7].

Data for elastic scattering and inelastic scattering to
the low-lying states were taken in the angular range of
3.5° to 26.5°. Giant-resonance measurements were per-
formed at the very forward angles of the spectrometer
(from 0° to 10.4°). Using the ray-tracing technique, the
angular width of 1.8° for each central angle was divided
into five equal regions during off-line data analysis. The
angular resolution of the MWDCs, including the nomi-
nal broadening of scattering angle due to the emittance
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FIG. 1: (Color online) In top panel, a two-dimensional scatter
plot of pulse height from first plastic scintillator detector ver-
sus excitation energy (Fg) at an averaged angle, 04,,=0.7°.
In bottom panel, a two-dimensional scatter plot of 0.1, versus
E, (see text).
T T T T T ]
1000 @ )
g "WWWWM
iz 100 3
< 1
5
Q2
© 10
1000 ¢
3 :
% C
£ 100
5
o}
O
10
PR [N YR T TN TN [N N TN SN N [N SN ST SN S NN TN SO SO N SN SO W
10 15 20 25 30
Excitation Energy (MeV)

FIG. 2: (a) Excitation-energy spectrum at an averaged spec-
trometer angle, favg = 0.7° before subtracting the instrumen-
tal background (gray hatched region). (b) Excitation-energy
spectrum after subtracting the instrumental background.

of the *He?* beam and the multiple Coulomb-scattering
effects, was about 0.15°.

Measurements were made for two magnetic-field set-
tings of the Grand Raiden spectrometer, resulting in
spectra covering excitation energies of about 4 to 27 MeV
and 24 to 50 MeV (the low-FE, and the high-E, spectra,
respectively). Data were also taken with a 2C target at
each setting of the angle and magnetic field of the spec-



trometer, providing precise energy calibrations. Energy
losses of the incident beam and outgoing « particles were
taken into account in creating the final excitation-energy
spectra. The high-F, spectrum connects smoothly, and
without any normalization, with the low-FE, spectrum,
as discussed in Ref. [23].

The MWDCs and scintillators enabled us to make par-
ticle identification and to reconstruct the trajectories of
scattered particles. Fig. 1(a) shows a typical particle
identification plot at an averaged angle, 04,,=0.7°. The
« particles are observed to be well separated from other
particles arriving at the focal plane. Fig. 1(b) shows
a typical two-dimensional scatter plot of the scattering
angle, 01,1, versus the excitation energy, F,. Different
discrete states of Mg are clearly visible below E,=20
MeV. The excitation energies of these discrete states
overlapped very well at different spectrometer angles in
the range of 0° to 10.4°, establishing precise energy cal-
ibration. Impurities of 'H, 2C and 'O in the target
were identified with the help of kinematics. Scattering
events from these impurity nuclei were observed to be
clearly separated from 2*Mg except for a few energy and
angular bins.

The vertical-position spectrum obtained in the double-
focusing mode of the spectrometer was exploited to elim-
inate the instrumental background [7, 30]. Fig. 2(a)
shows typical instrumental background (gray-hatched re-
gion) and excitation-energy spectrum before the back-
ground subtraction at an averaged spectrometer angle of
Oave = 0.7°. The excitation-energy spectrum after sub-
tracting this instrumental background is depicted in Fig.
2(b). The instrumental background is almost constant
over the entire excitation-energy spectrum and consti-
tutes a maximum of around 20% of the total spectrum
at spectrometer position of 0°, decreasing rapidly with
increasing angles.

IIT. DATA ANALYSIS

The excitation spectra for inelastic-scattering cross
sections were divided into energy bins of different sizes.
For E, from 4 to 20 MeV, the size of the energy bin
was chosen to accommodate the discrete peaks. Because
the discrete structure of the strength distribution dimin-
ishes for £, >21 MeV (see Fig. 2), the bin size in this
energy domain was chosen to be 1 MeV to reduce sta-
tistical fluctuations. Laboratory angular distribution for
each excitation-energy bin was converted to the center-of-
mass frame using the standard Jacobian and relativistic
kinematics. Typical angular distributions are shown in
Fig. 3. The experimental angular distributions thus ob-
tained consist of contributions from various multipoles; a
multipole-decomposition analysis (MDA) was, therefore,
carried out to extract the ISGMR, ISGDR, and ISGQR
strengths. In the MDA process, the experimental double-
differential cross sections are expressed as linear com-
binations of calculated DWBA double-differential cross

TABLE I: Optical-model parameters obtained by fitting the
elastic-scattering data. Also listed is the B(E2) value for the
1.368-MeV 27 state in ?*Mg from Ref. [35].

\Y W Ry ar Re B(E2)
(MeV) (MeV) fm fm fm e?b?
33.1 36.1 3.87 0.778 3.04 0.0432

sections for different multipoles as:

d2 O'CXP(9 E ) 6 d2 O,DVVBA (9 E )
c.m.> x — Ez L c.m.; x
dQdE ;“L( ) dQdE

(1)
where az(E,) is EWSR fraction for the L' multipole,
dQUEWBA

and —d=m—(0c.m., £z) is the calculated DWBA cross

section corresponding to 100% EWSR for the L mul-
tipole. The ar(E,) are determined using the x? mini-
mization technique, with the uncertainties estimated by
changing the magnitude of the one component ay,(E,),
until refitting by varying the other components resulted
in an increase in the x? by 1 [7, 25, 27].

The DWBA calculations were performed employing
the “hybrid” optical-model potential (OMP) proposed
by Satchler and Khoa [31]. In this procedure, the real
part of the OMP is generated by single-folding with a
density-dependent Gaussian a-nucleon interaction [32].
A Woods-Saxon potential is used for the imaginary term
of the OMP. Therefore, the total a-nucleus ground-state
potential is given by:

U(r) = =V(r) —iW /{1 +exp[(r — Rr)/ar]} ~ (2)

where V(r) is the real single-folding potential obtained
using computer code SDOLFIN by folding the ground-
state density with the density-dependent a-nucleon in-
teraction. W is the depth of the Woods-Saxon type
imaginary part of the potential, with the radius R; and
diffuseness a;. The imaginary potential parameters (W,
Ry, and ay), together with the depth of the real part, V|
are obtained by fitting the elastic-scattering cross sec-
tions using the computer code PTOLEMY [33, 34]. The
best fit to the elastic cross-section data (normalized to
the Rutherford cross section) obtained from minimiza-
tion of x? is shown in Fig. 4 (a). The OMP parameters
thus determined are presented in Table I.

The angular distribution for the 1.368-MeV 27 state
in 22Mg was calculated in the distorted-wave Born Ap-
proximation (DWBA) framework using the known B(E2)
value from the literature (also provided in Table I) and
the OMP parameters thus obtained. An excellent agree-
ment between the calculated and experimental angular
distributions for the 27 state, as shown in Fig. 4 (b),
establishes the appropriateness of the OMP parameters.
The collective isoscalar transition densities were taken
from Refs. [2, 36, 37]. Radial moments for ?*Mg were
obtained by numerical integration of the Fermi mass dis-
tribution assuming the mean charge radius, ¢=3.0453
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FIG. 3: (Color online) Typical angular distributions of inelastic « scattering from 2"Mg. The solid line (black) through the
data shows the sum of various multipole components obtained from MDA. The dash-dotted (red), dotted (blue), dash-double-
dotted (green), and dashed (pink) curves show contributions from L = 0, 1, 2, and 3, respectively, with the transferred angular
momentum L specified along with the curves. The mean F, value as well as the bin width I' are also shown for each case.

fm and diffuseness, a=0.523 fm [38]. Using the tran-
sition densities, the real term of the transition poten-
tial was obtained using computer code DOLFIN [39],
whereas the imaginary term of the transition poten-
tial was obtained from analytical differentiation of the
Woods-Saxon potential multiplied by the corresponding
deformation length. DWBA cross sections for each ex-
citation energy (FE,) were obtained for natural parities
of the multipolarities from L=0-6. EWSR fractions for
each multipolarity (ar) are determined using the MDA
technique. Results of MDA fits to angular distribution
data for typical energy bins are shown in Fig. 3 along
with the contributions from the L = 0, 1, 2, and 3 mul-
tipoles. The strength distributions are obtained from
the experimentally-determined EWSR fraction (ar) us-
ing the relations provided in Ref. [2]. Following this
procedure, B(FL) values were determined for several
discrete states in ?*Mg and compared with the values
reported in the literature, as discussed in Ref. [23]. A

close agreement with the previous results for most of the
cases further established the reliability of optical model
parameters and the MDA procedure.

Experimentally-determined ISGMR strength distribu-
tion in Mg is shown in Fig. 5. The distribution con-
sists of a clear two-peak structure: a narrow peak at
E, ~16 MeV, and a broad peak at F, ~24 MeV. A total
of 57+7% E0 EWSR is exhausted over the excitation-
energy region of 6 to 35 MeV. The two-peak structure is
in contrast with the broad ISGMR distributions reported
in previous works [25, 26] and is, in fact, very similar
to the ISGMR. distribution observed in '%*Sm [8], thus
strongly indicative of one resulting from the deformation
of the ground state. A comparison of the experimental
and theoretical strength distributions further establishes
that this structure corresponds to that of a deformed nu-
cleus.

The theoretical strength distributions were obtained
as a self-consistent solution of the deformed HFB and
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FIG. 4: (Color online) (a) Angular distribution of the ratio of
the differential cross sections for elastic scattering to Ruther-
ford scattering for 386-MeV « particles from 2*Mg. The solid
red line is the result of a “hybrid” optical-model fit to the
data. (b) Angular distribution of differential cross sections
for the 1.368 MeV 27 state in>*Mg. The solid red line shows
the result of the DWBA calculation (see text).

QRPA equations employing the Skyrme SkM* functional
[40]. Details of the calculation scheme can be found in
Refs. [11, 41]. In the present calculations, the smearing
width of 3 MeV was introduced to take into account the
spreading effects. The SkM* functional gives an intrinsic
quadrupole moment Qo = 54.0 efm?, which is consis-
tent with the measured B(E2) of the first 2 state listed
in Table I. In the energy region of 6 to 35 MeV, the
obtained IS monopole strength exhausts 83% of EWSR.
Thus, the theoretical strengths have been scaled down by
a factor 0.57/0.83 ~ 0.68 in Fig. 5 for comparison with
the experimental data. This mismatch between theoreti-
cal and experimental strengths is not too worrisome con-
sidering that the experimental strengths can have ~20%
systematic uncertainty resulting from the choice of the
OMPs used and the DWBA calculations, as has been
noted in previous works as well [2, 32, 42]. In addition to
the strengths obtained for the prolate-deformed ground
state, the strength distributions are obtained for a spher-
ical configuration for comparison. The prominent peak
around 16 MeV in the ISGMR strength distribution ap-
pears only when the ground state is deformed.

The ISGDR strength distribution in 2*Mg is shown in
Fig. 6, and consists of a broad peak centered around 25-
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FIG. 5: (Color online) ISGMR strength distributions in **Mg.
The dash-dotted (blue) and solid (red) lines show microscopic
calculations for spherical and prolate ground-state deforma-
tion, respectively.

® Expt. Data

=~ | - Theory (Spherical)

E 100 - .~ Theory (K=0) .
- —--=- Theory (K=1)

& — Theory (Sum K=0 & 1)

|

2

o 50

7

&

@)

(D """""
2 | |l Mer e =

FIG. 6: (Color online) ISGDR strength distributions in **Mg.
The dotted (blue) line shows microscopic calculations for the
spherical ground state. The dash-dotted (magenta), dash-
double-dotted (green), and solid (red) lines show microscopic
calculations for prolate ground-state deformation for K=0, 1,
and sum of K=0 and 1, respectively.

MeV. A total of 111.171%°% EWSR is exhausted over
the excitation-energy region of 6 to 35 MeV. Unlike the
ISGMR, the deformation effects on ISGDR are not very
pronounced either in the experimental data or in the the-
oretical strength distributions (also shown in Fig. 6).
The rising strength at the highest excitation energies en-
ergies is, most likely, spurious, resulting from direct pro-
cesses (knock-out/quasi-free processes, for example) that
mimic the angular distributions of ISGDR [42].
Experimentally-determined ISGQR distribution in
24Mg is shown in Fig. 7. In contrast to the pronounced
peak observed in the heavier nuclei (A > 90), the ISGQR
distribution for 2*Mg is quite broad. Microscopic calcu-
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FIG. 7: (Color online) ISGQR strength distributions in **Mg.
The dotted (blue) line shows microscopic calculations for the
spherical ground state. The dash-dotted (magenta), dash-
double-dotted (green), dashed (orange), and solid (red) lines
show microscopic calculations for prolate ground-state defor-
mation for K=0, 1, 2, and sum of K=0 to 2, respectively.
The arrow indicates the peak position of K=0 component.

lations for ISGQR are compared with the experimental
data in the Fig. 7. The theory predicts a peak close
to 22 MeV, consistent with 654~1/3 MeV for a spheri-
cal ground state. Similar to ISGMR, the prolate ground
state of 2*Mg pushes the ISGQR peak to lower energies
with significant broadening due to K-splitting. Theoreti-
cal prediction of the division of the ISGQR strength into
individual components, K=0, 1, and 2, is also shown
in Fig. 7. The sum of these components in the energy
region 15-25 MeV is in reasonable agreement with the
data. Again, comparison of data with the spherical and
deformed ground-state microscopic calculations clearly
indicates that ISGQR strength fragmentation in 2*Mg

corresponds to a prolate-deformed ground state. A total
of 148+8% E2 EWSR is exhausted over the excitation-
energy region of 6 to 35 MeV.

The position of the K=0 peak of ISGQR coincides
with the narrow peak of the ISGMR strength distribu-
tion at around 16-MeV. This clearly shows that splitting
of ISGMR strength distribution is due to mixing with the
K =0 component of ISGQR; otherwise, monopole has no
directional projection and therefore the ISGMR, cannot
itself produce the splitting of the strength.

In summary, we have measured the isoscalar giant reso-
nance strength distributions for L <2 in the light nucleus
24Mg via small-angle inelastic scattering of o particles.
We observe a two-peak structure in the ISGMR, strength,
which is attributable to coupling to the K=0 compo-
nent of ISGQR due to ground-state deformation. The
observed strength distributions for ISGMR and ISGQR
are in good agreement with microscopic calculations for
a prolate-deformed ground state in Mg, and are in con-
trast with those expected for a spherical ground state.
This is the first time that the K-splitting of the ISGMR
and ISGQR has been observed in a very light nucleus.
The deformation effects on ISGDR are not clearly dis-
cernible in the present data.
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