
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Excited-state quantum phase transitions in the interacting
boson model: Spectral characteristics of 0^{+} states and

effective order parameter
Yu Zhang, Yan Zuo, Feng Pan, and J. P. Draayer

Phys. Rev. C 93, 044302 — Published  4 April 2016
DOI: 10.1103/PhysRevC.93.044302

http://dx.doi.org/10.1103/PhysRevC.93.044302


Excited-state quantum phase transitions in the interacting boson model:

spectral characteristics of 0+ states and the effective order parameter

Yu Zhang,1 Yan Zuo,1 Feng Pan,1, 2 and J. P. Draayer2

1Department of Physics, Liaoning Normal University, Dalian 116029, P. R. China
2Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

(Dated: March 21, 2016)

The spectral characteristics of the Lπ = 0+ excited-states in the interacting boson model are systematically
investigated. It is found that various types of excited-state quantum phase transitions may widely occur in the
model as functions of the excitation energy, which indicates that the phase diagram of the interacting boson
model can be dynamically extended along the direction of the excitation energy. It has also been justified that
the d-boson occupation probability ρ(E) is qualified to be taken as the effective order parameter to identify these
excited-state quantum phase transitions. In addition, the underlying relation between the excite-state quantum
phase transition and the chaotic dynamics is also stated.
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I. INTRODUCTION

Quantum phase transition (QPT) is an interesting and im-
portant subject for many subfields. The quantum phase tran-
sition is not of the usual thermodynamic type, but related to
changes in the shape of the ground state at zero temperature,
which is thus also called the shape phase transition or ground-
state QPT (GSQPT). In theory, algebraic approaches provide
convenient ways to investigate the QPTs in mesoscopic sys-
tems. The best examples may be the interacting boson model
(IBM) [1] for nuclear structure and the vibron model (VM) [2]
for molecules and atomic clusters. Recent reviews on the
GSQPTs in nuclei are given in [3–5].

More recently, considerable attention has been given to the
so-called excited-state quantum phase transition (ESQPT) [6–
19]. Unlike GSQPT, an ESQPT can occur not only with
variation of the control parameters of a model Hamiltonian,
but also with the increasing of the excitation energy. In
short, ESQPTs may occur in excited states [14]. Most of
the studies of ESQPTs currently focus on the theoretical
side and were carried in two-level boson or fermion mod-
els with pairing interactions [14]. Typical examples are the
U(5)-SO(6) ESQPT [9–11] in the IBM and the U(2)-SO(3)
ESQPT [15, 16] in the two dimensional limit of the VM.
ESQPTs in other many-body quantum systems have also
been investigated, such as those in the Lipkin-Meshkov-Glick
(LMG) model [20, 21], the Jaynes-Cummings model [22, 23],
the Dicke model [22–24], and the kicked-top model [25].
Generally, ESQPTs emerge in the systems with a large num-
ber of particles. A basic feature of the ESQPT, such as the
U(5)-SO(6) ESQPT, is that there exists a separatrix, which
divides the excited states into two sets [16]. Some effective
order parameters may show sudden changes around the sepa-
ratrix [16]. In addition, the separatrix in spectra may extend
from the ground state energy to much higher excitation en-
ergy. It seems that the GSQPT can propagate from the ground
state to excited states [9], which thus indicates a deep relation
between the GSQPT and ESQPT.

The IBM [1] provides an ideal theoretical framework to
investigate the GSQPTs in different transitional regions [4].

OP

SU(3) SU(3)SO(6)

U(5)

S

FIG. 1: (Color online) Phase diagram in the IBM parameter space,
where S represents the region with βe = 0 corresponding to the spher-
ical, P represents the region with βe > 0 corresponding to the prolate,
and O represents the region with βe < 0 corresponding to the oblate.
In addition, the dashed lines denote the critical points of the first-
order QPTs, while the solid dot in the center represents the triple
point.

There may exist three typical GSQPTs in the IBM if only up to
two-body interactions are taken into consideration, namely the
U(5)-SO(6) GSQPT, the U(5)-SU(3) GSQPT, and the SU(3)-
SU(3) GSQPT. These GSQPTs have been widely discussed
both in the theory and in experiment. But only the U(5)-
SO(6) ESQPT was previously emphasized in the IBM [9–
11, 14]. In this work, we make a systematic analysis of the
spectral evolutions in different transitional regions to figure
out whether or not the main features appearing in the U(5)-
SO(6) ESQPT [14] also emerge in other transitional regions
of the IBM. It should be mentioned that all numerical calcu-
lations are carried out by using the IBAR code [26], which
makes a large-N calculation in the IBM possible.
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II. THE MODEL HAMILTONIAN AND THE

ASSOCIATED GSQPTS

A Hamiltonian in the IBM framework is constructed from
two kinds of boson operators; s-boson with Jπ = 0+ and d-
boson with Jπ = 2+ [1]. Specifically, we consider the IBM
consistent-Q Hamiltonian [27]

Ĥ(η , χ) = ε
[

(1−η)n̂d −
η

4N
Q̂χ · Q̂χ

]

, (1)

where Q̂χ = (d†s+ s†d̃)(2)+ χ(d†d̃)(2) is the quadrupole op-
erator, η and χ are the control parameters with η ∈ [0,1] and
χ ∈ [−

√
7/2,

√
7/2], and ε is a scale factor, which will be set

as 1 for convenience. It can be proven that the Hamiltonian is
in the U(5) DS when η = 0; it is in the O(6) DS when η = 1

and χ = 0; it is in the SU(3) DS when η = 1 and χ =−
√

7
2 ; it

is in the SU(3) DS when η = 1 and χ =
√

7
2 . To identify the

GSQPTs in the IBM, one may calculate the expectation value
of the Hamiltonian (1) in the coherent state defined as [1]

|β ,γ,N〉 =
1

√

N!(1+β 2)N
[s† +β cosγ d

†
0

+
1√
2

β sinγ(d†
2 + d

†
−2)]

N |0〉 , (2)

which provides the scaled potential surface in the large-N
limit with

Vs(β ,γ) =
1
N
〈β ,γ,N|H|β ,γ,N〉|N→∞

= (1−η)
β 2

1+β 2 −
η

4(1+β 2)2

× [4β 2 − 4

√

2
7

χβ 3cos3γ +
2
7

χ2β 4] . (3)

To illustrate types and orders of the QPTs, one should min-
imize the potential function (3) by varying β and γ for given
η and χ . The optimal values are denoted as βe and γe, with
which one can get the ground state energy per boson defined
as Eg =Vs(η ,χ ,βe,γe). It can be found that the γ-dependence
in (3) yields either γe = 0◦ or γe = 60◦, but the case of γe = 60◦

can be equivalently described by substituting γe = 0◦ and
βe = −βe. We henceforth set γ = 0◦ in the following for
convenience, and only study its β -dependence. Here, βe = 0,
βe > 0, and βe < 0 represent the spherical, prolate, and oblate
deformations, respectively. βe can thus serve as the order pa-
rameter to be used to identify the different shape phases and
the associated GSQPTs [28]. On the other hand, one can also
identify the GSQPTs and their orders from the ground state

energy Eg. For the second-order QPT, Eg and ∂Eg

∂x
are con-

tinuous, but ∂ 2Eg

∂x2 is not, where x represents the corresponding
control parameter. For the first-order QPT, it requires that Eg

is continuous, but ∂Eg

∂x
is not [28]. Based on these criteria, one

can prove that the system may experience the first-order QPTs
in two directions with variation of the control parameters η
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FIG. 2: (Color online) (a) The excitation-energy spectrum of the low-
est 40 τ = 0 levels obtained from the U(5)-SO(6) Hamiltonian (1)
with χ = 0 and N = 100. (b) The effective order parameter ρ defined
in (5) as a function of the excitation energy for three typical η values.

and χ [29]. Specifically, the critical point of the first-order
QPTs occurring along the η direction are given as

ηc =
14

28+ χ2 (4)

with χ ∈ [−
√

7/2,
√

7/2] and those along the χ direction are
given as χc = 0 with η ∈ (0.5,1]. In addition, the U(5)-SO(6)
GSQPT occurring at the critical point ηc = 0.5 (also called
the triple point [29]) is the unique second-order transition [1]
in the IBM described by (1). The two-dimensional parame-
ter space of the IBM described by (1) can be mapped onto a
symmetric triangle [29] called the extended Casten triangle as
shown in Fig. 1, which may cover all types of GSQPTs in the
IBM described by a Hamiltonian with up to two-body terms.

In the following, we will focus on the potential ESQPTs
appearing in the U(5)-SO(6), the U(5)-SU(3), and the SU(3)-
SU(3) legs, as well as those appearing inside the extended
Casten triangle shown in Fig. 1.

III. THE DIFFERENT TYPES OF ESQPTs

A. the U(5)-SO(6) ESQPT
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FIG. 3: (Color online) (a) The excitation-energy spectrum of the lowest 124 L = 0 levels obtained from the U(5)-SO(6) Hamiltonian (1) with
χ = 0 and N = 100. (b) The corresponding potential derived from (3) with χ = 0, where γ = 0◦ is always assumed.

As discussed previously, the second-order GSQPT may oc-
cur in the U(5)-SO(6) transitional region. Meanwhile, a typi-
cal ESQPT has also been identified from the excitation spec-
trum within the U(5)-SO(6) transitional region [11, 14]. To
illustrate the U(5)-SO(6) ESQPT, the first 40 excited levels
with τ = 0 are obtained from the U(5)-SO(6) Hamiltonian (1)
with χ = 0 and N = 100 and the results are shown as func-
tions of the control parameter η in Fig. 2. Here, τ denotes the
d-boson seniority number. Hence, τ = 0 indicates Lπ = 0+.
To identify the ESQPT, we calculate the d-boson occupation
probability for each state, which is defined as

ρ =
〈0+|n̂d |0+〉

N
, (5)

of which the results with τ = 0 as functions of the excitation
energy for three typical η values are also shown in Fig. 2.
This quantity is expected to serve as the effective order pa-
rameter [14, 16, 28] to identify the ESQPTs in the IBM. As
clearly seen from Fig. 2(a), one can find a separatrix signal-
ing the high density of levels, which form a smooth flow with
a "shock wave" propagating from ground state (at the critical
point ηc = 0.5) to the top of the spectrum (at η = 1) [9]. More
importantly, this separatrix divides the energy levels into two
sets: one with the U(5) character (the left-hand side) and the
other with the SO(6) character (the right-hand side), which
thus indicates an ESQPT from the SO(6)-like dynamics to the
U(5)-like dynamics with the increasing of the excitation en-
ergy. For convenience, this type of ESQPT is denoted as the
U(5)-SO(6) ESQPT since it appears in the U(5)-SO(6) tran-
sitional region as shown in Fig. 2. In the large-N limit, the
separatrix is defined (see Fig. 3(b)) as the difference between
the value of the energy functional (3) with χ = 0 evaluated at
the local maximum (β = 0) and that at the global minimum

(β = βe) [15, 16]. Specifically, it is given as

f a
η =

{

0 , 0 ≤ η ≤ ηc ,
4η2−4η+1

4η , ηc < η ≤ 1 .
(6)

It is clear that the separatrix for N = 100 can be well described
by (6) as shown in panel (a) of Fig. 2. The results in turn in-
dicate that the potential structure in (3) not only reflects the
characteristic of the ground state, but also provides the infor-
mation of the excited states in the IBM even in finite-N cases,
which is taken as the basic assumption in the following to de-
fine the separatrix functions and the associated spectral pat-
terns in the model. On the other hand, one can find in Fig. 2(b)
that the effective order parameter ρ(E) for a given η shows a
linear decrement with the increasing of the excitation energy
at the beginning and then turns into a linear increment around
the separatrix point, which confirms that the ESQPT indeed
occurs around the separatrix. Meanwhile, the results also jus-
tify that ρ(E) is qualified to be taken as the effective order
parameter to identify the U(5)-SO(6) ESQPT [14, 16].

However, the states with τ = 0 may often hide in the states
with the angular momentum L = 0 since angular momentum
is relatively easier to be identified in a realistic situation. To
detect the U(5)-SO(6) ESQPT in the L = 0 spectrum, the first
124 excited levels with L = 0 obtained from the same U(5)-
SO(6) transitional Hamiltonian are shown in Fig. 3. To em-
phasize the relation between the U(5)-SO(6) GSQPT and the
U(5)-SO(6) ESQPT, the potential evolution in the U(5)-SO(6)
transitional region is also shown. As shown in Fig. 3(a), in-
stead of the "shock wave" shown in Fig. 2, a bunching pat-
tern may develop along the line describe by f a

η , which is a
consequence of the unbroken SO(5) dynamical symmetry of
the system according to the analysis given in [9]. It means
that the U(5)-SO(6) ESQPT phenomenon remains even in the
L = 0 spectrum. It should be noted that the bunching pattern
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FIG. 4: (Color online) (a) The effective order parameter ρ(E) for
L = 0 obtained from the U(5)-SO(6) Hamiltonian with N = 100 and
η = 0.9 as a function of the excitation energy, where the dashed line
denotes the local minima of ρ(E). (b) The same as in (a) but for
the results at η = 0.65. (c) The same as in (a) but for the results at
η = 0.4.

constituted by the L = 0 levels shown in Fig. 3 may appear
from η = ηc to η = 1 if all the 884 L = 0 levels for N = 100
are taken into account. In addition, as shown in Fig. 3(b),
the ESQPT may appear only when η > ηc since only the po-
tential with η > ηc can involve the levels below the separa-
trix denoted by f a

η . In the mean-field perspective, the levels
below the separatrix should be more heavily affected by the
middle hump of the potential with η > ηc in comparison to
those above the separatrix, which may partly answer the origin
of the difference in between the SO(6)-like and the U(5)-like
spectrum divided by f a

η in the ESQPT.
To further test the validity of the effective order parame-

ter ρ(E) in the L = 0 spectrum, the calculated ρ(E) curves
as functions of the excitation energy for three typical η val-
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FIG. 5: (Color online) (a) ρ(E) in the U(5) limit for L = 0 and
N = 100 as a function of the excitation energy. (b) The same as in (a)
but for ρ(E) in the SO(6) limit, where (σ ,τ) denotes the result cor-
responding to a given SO(6) irrep with m = 0, 1, 2.... (c) The same
as in (b) but for ρ(E) in the SU(3) limit, where (λ ,µ) represents the
results corresponding to a given SU(3) irrep.

ues are given in Fig. 4. One can observe in Fig. 4 that the
order parameter ρ(E) generally shows a fluctuating behavior
as changing of the excitation energy, but the local minima de-
noted by the dashed line in each case just coincide with those
with τ = 0, such as those shown in Fig. 2(b). Specifically, the
results shown in Fig. 4(a) display a typical behavior of ρ(E)
in the SO(6)-like spectrum and those shown in Fig. 4(c) show
a typical behavior of ρ(E) in the U(5)-like spectrum. In con-
trast, the behavior of ρ(E) shown in Fig. 4(b) indicates that an
ESQPT may occur around E = 0.04 when η = 0.65, which is
actually consistent with the results shown in Fig. 2(b). It thus
confirms that ρ(E) is still qualified to be taken as the effective
order parameter to identify the occurrence of the U(5)-SO(6)
ESQPT in the L = 0 spectrum.
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FIG. 6: (Color online) The same as in Fig. 3 but for the low-lying L = 0 spectrum obtained from the U(5)-SU(3) Hamiltonian from (1) with

N = 100 and χ =−
√

7
2 , as well as the typical potential structure in the transitional region derived from (3) with χ =−

√
7

2 .

As a comparison, the behaviors of ρ(E) with L = 0 as func-
tions of the excitation energy in the U(5), the SO(6), and the
SU(3) limits are shown in Fig. 5. One can find from Fig. 5(a)
that ρ(E) in the U(5) limit shows a linear increment, which is
similar to the behavior of the dashed line shown in Fig. 4(c).
In contrast, the results in Fig. 5(b) show that ρ(E) in the SO(6)
limit presents a fluctuating behavior, which is similar to that
given in Fig. 4(a). It further confirms that the ESQPT shown
in Fig. 4 is just the transition from the SO(6)-like spectrum
to the U(5)-like spectrum. Notably, the fluctuational behav-
ior of ρ(E) in the U(5)-like spectrum as shown in Fig. 4(c) is
completely different from that in the SO(6) limit. In addition,
the results shown in Fig. 5(c) indicate that ρ(E) in the SU(3)
limit may present another fluctuating behavior different from
that in the SO(6) limit. Although the feature of ρ(E) in each
limit will be more or less altered by adding some terms with
different symmetry perturbatively, the qualitative characteris-
tic of ρ(E) is solely determined by the dominant symmetry in
the IBM. Therefore, in principle, the type of the spectrum and
the corresponding ESQPT can be recognized from the behav-
ior of ρ(E).

B. the U(5)-SU(3) ESQPT

Unlike the U(5)-SO(6) case, the U(5)-SU(3) GSQPT is
proven to be the first-order transition [1]. To check the spec-
tral characteristics in this transitional region, the lowest 124
levels with L = 0 as functions of the control parameter η ob-
tained from the U(5)-SU(3) transitional Hamiltonian from (1)
with χ = −

√
7/2 and N = 100 are show in Fig. 6(a). Simi-

larly, we can define the separatrix function in the U(5)-SU(3)
transitional region as the difference between the value of the
energy function (3) with χ = −

√
7/2 evaluated at β = 0 and

that at βe. It is formally given as

f b
η =

{

0 , 0 ≤ η ≤ ηc ,
β̃ 2(16η+9ηβ̃ 2+4

√
2ηβ̃−8β̃ 2−8)

8(1+β̃ 2)2 , ηc < η ≤ 1 ,
(7)

with β̃ being determined by the equation

η =
4β̃ 2 + 4

β̃ 2 + 3
√

2β̃ + 8−
√

2β̃ 3
. (8)

The definition of f b
η is also illustrated in the right panel of

Fig. 6, in which the potential evolution in the U(5)-SU(3) tran-
sitional region is clearly shown. It can be observed from the
left panel of Fig. 6 that the spectrum in the U(5)-SU(3) tran-
sitional region can be clearly divided into two sets by the sep-
aratrix f b

η , which starts from the ground state energy at the
critical point η = ηc to the top of the spectrum at η > ηc

(even at η = 1 if all the 884 L = 0 excited levels for N = 100
are taken into account). Specifically, the energy levels above
the separatrix show relatively high local level densities, while
those below the separatrix present a lot of level crossing and
relatively low local level densities. It is thus expected that a
new type of ESQPT may occur around the separatrix with the
increasing of the excitation energy. Similar to the U(5)-SO(6)
ESQPT, the potential evolution shown in the right panel of
Fig. 6 indicates that this new type of ESQPT may appear only
when η > ηc [14].

To further reveal the potential ESQPT, the effective or-
der parameter ρ(E) is also applied to indicate the ESQPT
signal in this transitional region. Similarly, ρ(E) curves as
functions of the excitation energy for three typical η values
are provided in Fig. 7. One can observe from panels (a)
and (c) that the fluctuational behavior of ρ(E) of the SU(3)-
like spectrum (η = 0.9) and that of the U(5)-like spectrum
(η = 0.4) are completely different, which are highlighted by
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FIG. 7: (Color online) (a) ρ(E) for L = 0 obtained from the U(5)-
SU(3) Hamiltonian with N = 100 and η = 0.9 as a function of the
excitation energy, where the dashed line denotes the local minima of
ρ(E). (b) The same as in (a) but for the results at η = 0.6. (c) The
same as in (a) but for the results at η = 0.4.

the dashed lines connecting the local minima of ρ(E) in the
two cases. Specifically, the dashed line in the SU(3)-like spec-
trum presents a monotonic decrement but that in the U(5)-
like spectrum shows a monotonic increment, which is actu-
ally consistent in the main characteristic of ρ(E) in the corre-
sponding limiting cases shown in Fig. 5. It is more interesting
to see from Fig. 7(b) that the fluctuational behavior of ρ(E)
at η = 0.6 displays the combined features of that shown in
Fig. 7(a) and Fig. 7(c), and shows a transition around the sep-
aratrix point with E = 0.075. The phenomenon is quite similar
to that occurring in the U(5)-SO(6) case shown in Fig. 4. One
can thus conclude that the ESQPT indeed occurs in the U(5)-
SU(3) transitional region (the U(5)-SU(3) ESQPT). Mean-
while, the results also justify the validity of the effective order
parameter ρ(E) in the U(5)-SU(3) ESQPT. It should be noted

that one may find exactly the same spectral feature in the U(5)-
SU(3) transitional region just by replacing χ with −χ .

On the other hand, it has been revealed that there exists a
chaotic region within the U(5)-SU(3) transitional region [30–
33], where the spectral statistics with a fixed angular momen-
tum such as L = 0 indicate strong chaos [33]. The range of the
chaotic region may lie between the critical point and the SU(3)
limit, where the U(5)-SU(3) ESQPT also occurs as shown in
Fig. 6. Therefore, the spectrum at a ESQPT point in the U(5)-
SU(3) region, such as that at η = 0.6 shown in Fig. 6, may
contain both U(5)-like levels and SU(3)-like levels. Thus, one
may conclude that the chaotic behavior of the spectrum in the
U(5)-SU(3) transitional region might be due to the spectrum
involving these two different types of excited states simulta-
neously. Although the similar situation may also occur in the
U(5)-SO(6) ESQPT region, the level statistics in the whole
U(5)-SO(6) region is always regular just due to the common
SO(5) sub-symmetry [30–32].

D. the SU(3)-SO(6) ESQPT

Based on the Hamiltonian (1) with η = 1, it can be proven
that the SO(6) limit may exactly coincide with the critical
point of the SU(3)-SU(3)GSQPT [34], but there is no GSQPT
in the SU(3)-SO(6) transitional region corresponding to χ ∈
[−

√
7/2, 0] or SU(3)-SO(6) transitional region correspond-

ing to χ ∈ [0,
√

7/2] [1]. However, it has been known for
many years that there exists a chaotic region in the SU(3)-
SO(6) transitional region [30, 31, 33, 35], which in turn sug-
gests that there may exist the SU(3)-SO(6) ESQPTs occur-
ring in this transitional region according to the previous anal-
ysis. In order to verify the ESQPTs, the lowest 124 levels with
L = 0 as functions of the control parameter χ obtained from
(1) with η = 1 are shown in Fig. 8, in which the potential evo-
lution in this transitional region is also shown. Similarly, one
can define a separatrix function f c

χ in the SU(3)-SO(6) transi-
tional region as the difference between the value of the energy
function (3) with η = 1 evaluated at the global minimum (βe)
and that at the local minimum, which is given as

f c
χ =

−χ
√

14+ χ2

14
, −

√
7

2
≤ χ ≤ 0. (9)

It is clear that the spectral pattern in the SU(3)-SU(3) tran-
sitional region with χ ∈ [−

√
7/2,

√
7/2] are exactly symmet-

ric by changing χ to −χ [29, 34] as shown in the left panel
of Fig. 8. More importantly, there indeed exists noticeable
change in the level density along the separatrix starting from
the ground state energy in the SO(6) limit to the top of the
spectrum, which just indicates the occurrence of the ESQPT in
the SU(3)-SO(6) region. The same level density change also
occurs in the SU(3)-SO(6) transitional region corresponding

to χ ∈ [0,
√

7
2 ], in which the separatrix f c

−χ shown in Fig. 8
can be derived from (9) by changing χ to −χ . In addition,
the potential evolution shown in the right panel of Fig. 8 in-
dicates that the ESQPTs should begin from the SO(6) limit
corresponding to f c

χ = f c
−χ = 0.

To figure out the type of the ESQPT in the SU(3)-SO(6)
transitional region, ρ(E) curves as functions of the excitation
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FIG. 8: (Color online) The same as in Fig. 3 but for the low-lying L = 0 spectrum obtained from the SU(3)-SU(3) Hamiltonian obtained from
(1) with η = 1 and N = 100, as well as the typical potential structure in this transitional region derived from (3) with η = 1.
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FIG. 9: (Color online) (a) ρ(E) for L = 0 as a function of the excitation energy obtained from the SU(3)-SU(3) Hamiltonian with N = 100 at
χ =−0.6, where the dashed line denotes the local maxima of ρ(E). (b) The same as in (a) but for the results at χ =−0.2. (c) The same as in
(a) but for the results at χ = 0.

energy for three typical χ values are calculated, of which the
results are shown in Fig. 9. One can observe from Fig. 9(a)
and Fig. 9(c) that, in both the SU(3)-like spectrum (χ =−0.6)
and the SO(6) spectrum (χ = 0), ρ(E) fluctuates with the vari-
ation of E , but the main feature of the fluctuating behavior in
the two cases are completely different, which is highlighted
by the dashed lines connecting the local maxima of ρ(E).
Specifically, the dashed line in the SU(3)-like spectrum shows
a slight increasing, but it in the SO(6) spectrum increases with
the increasing of E significantly. The fluctuation amplitude of
ρ(E) in this case becomes much larger than that in the SU(3)-
like case within the same energy range, which actually agrees
with the results shown in Fig. 5. Hence, one can conclude
from Fig. 9(b) that the sudden increasing in the fluctuation
amplitude of ρ(E) around the separatrix point E = 0.054 is
just a signature of the SU(3)-SO(6) ESQPT. The same con-
clusion can apply to the SU(3)-SO(6) ESQPT since ρ(E) is
symmetric with respect to the replacement of χ with −χ . In

addition, the results in Fig. 9(b) also indicate that the separa-
trix defined in the large-N limit may not exactly coincide with
the real separatrix point of the ESQPT in finite-N cases due to
the finite-N effect [14].

E. the SU(3)-SO(6)-U(5) ESQPT

We have shown the ESQPTs appearing on the three legs of
the extended Casten triangle shown in Fig. 1. For the situ-
ations inside the extended Casten triangle, we take the case
with η = 0.8 to illustrate the possible ESQPTs in the transi-
tional region along the χ axis and the case with χ = −0.5 to
illustrate the ESQPTs in the transitional region along the η
axis.

Firstly, in order to observe the spectral distribution globally,
500 low-lying levels with L = 0 as functions of the control pa-
rameter χ obtained from (1) with η = 0.8, together with the
corresponding potential evolution, are shown in Fig. 10. For
a given potential surface, we can define two separatrix func-
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FIG. 10: (Color online) The spectrum of 500 low-lying levels with L = 0 obtained from the Hamiltonian (1) with η = 0.8 and N = 100, and
the typical potential structures in this case.

tions as shown in Fig. 10(b), in which f d1
χ is the difference

between its global minimum evaluated at β = βe and its local
minimum, while f d2

χ is the difference between its global min-
imum evaluated at β = βe and its local maximum evaluated at
β = 0. Specifically, the two separatrix functions at η = 0.8 as

functions of χ with χ ∈ [−
√

7
2 ,0] are given as

f d1
χ =

β̃ 3
a (−β̃a +

√

4+ 3
β̃ 2

a

+ β̃ 2
a )

10(1+ β̃ 2
a )

+
β̃ 3

b (β̃b +
√

4+ 3
β̃ 2

b

+ β̃ 2
b )

10(1+ β̃ 2
b )

(10)

and

f d2
χ =

β̃ 3
b (β̃b +

√

4+ 3
β̃ 2

b

+ β̃ 2
b )

10(1+ β̃ 2
b )

(11)

with β̃a and β̃b being the negative and positive solution of the
equation

χ =
3
√

14−
√

14β̃ 2

4β̃
−

√
14
4

√

3

β̃ 2
+ β̃ 2 + 4 . (12)

It should be mentioned that the two different separatrix func-
tions coexisting in an ESQPT was also observed from the
anharmonicity effect [16] in the U(2)-SU(3) ESQPT in the
VM by introducing the second-order Casimir operator of the
U(2). As shown in Fig. 10(a), the L = 0 spectrum for a given
χ can be divided by the two separatrix lines into three sets
when χ 6= 0 or two sets when χ = 0. It is thus expected
that there may be the ESQPT occurring across three differ-
ent spectral patterns when χ 6= 0. In addition, it is obvious

that the whole spectrum within χ ∈ [−
√

7/2,
√

7/2] is exactly
symmetric with respect to χ = 0 axis as shown in Fig. 10.
Thus, the separatrix functions are also symmetric with respect
to χ = 0 axis.

To identify the type of the possible ESQPT, ρ(E) curves
for two typical χ values as functions of the excitation en-
ergy are calculated, which are shown in Fig. 11. In addi-
tion, the spectrum corresponding to that shown in Fig. 10
with −0.6 ≤ χ ≤−0.4 is also shown on an expanded scale in
Fig. 11 in order to have a better view of how the spectrum is di-
vided by the two separatrix lines. As shown in Fig. 11(a), the
level pattern above each separatrix line is quite different from
that below the separatrix line, which hints that the ESQPTs
may occur around the separatrix. And indeed, the effective
order parameter ρ(E) shown in Fig. 11(b) further confirms
the emergence of the ESQPTs. Specifically, the results show
that the level pattern at χ = −0.5 may transform from the
SU(3)-like one (with small fluctuations in ρ(E)) to the SO(6)-
like one (with relatively large fluctuations in ρ(E)) around
the first separatrix point E = 0.08; with the increasing of E ,
the level pattern may transform to the U(5)-like one around
the second separatrix point E = 0.16. The two ESQPTs can
be highlighted by the dashed lines connecting either the lo-
cal maxima or the local minima of ρ(E). These two ESQPTs
are denoted together as the SU(3)-SO(6)-U(5) ESQPT. The
SU(3)-SO(6)-U(5) ESQPT may generally appear when χ < 0
as shown in Fig. 10(a). By replacing χ with −χ , one can de-
duce that the SU(3)-SO(6)-U(5) ESQPT may generally occur
when χ > 0. When χ = 0, one can observe from Fig. 11(c)
that the U(5)-SO(6) ESQPT may occur around the separatrix
point E = 0.11, which actually agrees with the corresponding
case shown in Fig. 2.

To reveal the possible ESQPTs appearing in the transitional
region inside the extended Casten triangle along the η axis,
300 low-lying levels with L = 0 as functions of the control
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FIG. 11: (Color online) (a) The spectral pattern on an expanded
scale corresponding to the spectrum shown in Fig. 10 within χ ∈
[−0.6,−0.4]. (b) ρ(E) at (η,χ) = (0.8,−0,5) as a function of
the excitation energy, where the local maxima and minima are con-
nected by the dashed lines. (c) The same as in (b) but for ρ(E) at
(η,χ) = (0.8,0).

parameter η obtained from (1) with χ = −0.5, together with
the corresponding potential evolution, are shown in Fig. 12.
As shown in Fig. 12(a), the levels can also be divided into
three sets by the two separatrix lines for relatively larger η
values, with which the spectral pattern, especially its density,
in different set seems also different. The results indicate that
there may exist the ESQPTs occurring along the two sepa-
ratrix lines. The corresponding potential evolution shown in
Fig. 12(b) further indicates that the ESQPT in this case may
only appear when η > ηc. Similarly, the two separatrix func-
tions in this case can be defined according to the correspond-
ing potential structure shown in Fig. 12(b), which are formally
given as

f e1
η =

β̃ 3
c (−2

√
14+ 55β̃c+ 2

√
14β̃ 2

c )

2(1+ β̃ 2
c )(−56− 3

√
14β̃c − β̃ 2

c +
√

14β̃ 3
c )

− β̃ 3
d (−2

√
14+ 55β̃d + 2

√
14β̃ 2

d )

2(1+ β̃ 2
d )(−56− 3

√
14β̃d − β̃ 2

d +
√

14β̃ 3
d )

(13)

and

f e2
η =

β̃ 3
d (−2

√
14+ 55β̃d + 2

√
14β̃ 2

d )

2(1+ β̃ 2
d )(−56− 3

√
14β̃d − β̃ 2

d +
√

14β̃ 3
d )

(14)

with β̃c and β̃d representing the negative and positive solution
of the equation

η =
28+ 28β̃ 2

56+ 3
√

14β̃ + β̃ 2 −
√

14β̃ 3
. (15)

To figure out the type of these ESQPTs, the ρ(E) curves
for three typical η values as functions of the excitation energy
are shown in Fig. 13. As shown in Fig. 13(a), the behavior of
ρ(E) indicates that there is an SU(3)-SO(6) ESQPT occurring
in the spectrum at (χ , η) = (−0.5, 0.9) around E = 0.11. The
results shown in Fig. 13(b) indicate that the SU(3)-SO(6)-U(5)
ESQPT may occur in the spectrum at (χ , η) = (−0.5, 0.7).
One can thus conclude that the ESQPT in the spectrum shown
in Fig. 12(a) is either of the SU(3)-SO(6)-U(5) type or of
the SU(3)-SO(6) type. When η < ηc, the example shown in
Fig. 13(c) shows that there is no ESQPT occurring in this case.
In addition, the results also justify that ρ(E) is still qualified to
be taken as the effective order parameter inside the extended
Casten triangle.

From the mean-field perspective, the spectral pattern here
referred to as the U(5)-like, the SO(6)-like, or the SU(3)-like
means that the levels are confined within the corresponding
potential. For example, the SO(6)-like spectrum shown in
Fig. 12 refers to those with f e2

χ > E > f e1
χ , while the corre-

sponding potential indicates that this type of spectrum may
be affected by the prolate and the oblate minimum simulta-
neously just as that in the SO(6) limit. Most importantly, the
results shown in Fig. 13 indicate that the behavior of ρ(E)
within the SO(6)-like spectral pattern is indeed more like that
in the SO(6) limit in comparison to that in the U(5) or the
SU(3) limit. Similar argument also apply to the U(5)-like and
SU(3)-like spectra.
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FIG. 13: (Color online) (a) ρ(E) at (η,χ) = (0.9,−0,5) as a function of the excitation energy, where the local maxima of ρ(E) are connected
by the dashed line. (b) The same as in (a) but for the results at (η,χ) = (0.7,−0.5). (c) The same as in (a) but for the results at (η,χ) =
(0.4,−0.5), where the local minima of ρ(E) are connected by the dashed line.

IV. POSSIBLE EXTENSION OF THE PHASE

DIAGRAM

Base on the discussions in Sec. III, it can be realized that
the ESQPTs in the IBM are much more abundant than previ-
ously recognized. The concept of phase for a given quantum
system, such as the shape phases of atomic nuclei, is tradition-
ally defined only for the ground state [1], but the properties
of the lowest-lying states are indeed heavily affected by the
ground state, which indicate that a specific phase can be also
applied for the lowest-lying states [14]. However, the emer-
gence of the ESQPTs identified in this work indicates that the
properties of excited states may evidently change around the
separatrix point with the increasing of the excitation energy.
If the afore mentioned U(5)-like, SO(6)-like, and SU(3)-like
(or SU(3)-like) excited states are roughly attributed to three
different dynamical phases, one can further extend the IBM
phase diagram as shown in Fig. 1 with the axis of the excita-

tion energy, which is schematically illustrated in Fig. 14. As
illustrated in Fig. 14, the possible new phase diagram is three-
dimensional with the bottom area being the original ground-
sate phase diagram shown in Fig. 1. The phase boundary
corresponding to (1) should be principally determined in the
large-N limit by the potential energy surface given in (3).

As mentioned previously, ESQPT may also occur with vari-
ation of the control parameters in the Hamiltonian [14]. To
further explore the phase diagram indicated in Fig. 14, we
choose the case with η = 0.8 and the case with χ = −0.5
as examples to illustrate the ESQPTs occurring with variation
of χ or η . Notably, the level patterns and the corresponding
potential structure in these two cases can be found in Fig. 10
and Fig. 12. Several typical 0+ levels and the effective or-
der parameter ρ as functions of χ or η are shown in Fig. 15.
As shown in Fig. 15(a), the energy levels of the 0+28 and 0+39
states in the η = 0.8 case evolve from the SU(3)-like to the
SO(6)-like, and then to the SU(3)-like with the increasing of
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FIG. 14: (Color online) The schematic phase diagram of the IBM
extended towards the excitation energy.

χ from negative to positive, which thus indicates an SU(3)-
SO(6)-SU(3) ESQPT. In contrast, the 0+1 ground state level
may evolve directly from the SU(3)-like to the SU(3)-like,
which just reflects the SU(3)-SU(3) GSQPT. Moreover, the
results shown in Fig. 15(b) indicate that the fluctuation behav-
ior of ρ(χ) for the excited states in the SO(6)-like region are
clearly different from that in the SU(3)-like or the SU(3)-like
region, which further confirms the occurrence of the SU(3)-
SO(6)-SU(3) ESQPT, while the linear behavior of ρ(χ) for
the ground state justifies the SU(3)-SU(3) GSQPT. As further
shown in Fig. 15(c), the 0+31 and 0+51 levels in the χ = −0.5
case may evolve from the U(5)-like to the SO(6)-like, and
then to the SU(3)-like, which indicates a U(5)-SO(6)-SU(3)
ESQPT occurring in this case. The behavior of ρ(η) shown in
Fig. 15(d) further confirms the occurrence of the U(5)-SO(6)-
SU(3) ESQPT, as well as the U(5)-SU(3) GSQPT. Here, the
ESQPT is classified according to the order of the spectral pat-
tern appearing with the increasing of the control parameter η
or χ . Anyway, it seems that the effective order parameter ρ is
still valid to identify the ESQPT with variation of the control
parameters.

As we know, the GSQPTs in the IBM have been experimen-
tally confirmed in nuclei [5] because the main features of the
phase transitions persist even for moderate N ∼ 10 as analyzed
by Iachello and Zamfir [28]. It would be interesting to check
whether the main features of the ESQPTs can even survive for
N ∼ 10, which is, however, not the topic of this work. In addi-
tion, the finite-N effects may also provide a certain correction
on the phase diagram.

V. SUMMARY

In summary, the ESQPTs in the IBM have been systemati-
cally investigated through analyzing the characteristics of the
L = 0 excited states. Specifically, it was confirmed that the

U(5)-SO(6) ESQPT previously recognized in the τ = 0 spec-
tra may emerge even in the L = 0 spectra, which thus provides
a paradigm to discuss the possible ESQPTs in other transi-
tional regions in the IBM. It is further observed that the sim-
ilar ESQPTs may emerge in the U(5)-SU(3) transitional re-
gion, the SU(3)-SU(3) transitional region, and even inside the
Extended Casten triangle. Particularly, the ESQPTs in some
cases, such as those shown in Fig. 10 and Fig. 12, may cross
three phases with different spectral patterns. The ESQPTs in
the IBM have been further justified by the evolutional behav-
ior of the effective order parameter ρ . In turn, the results sug-
gest that the IBM can provide a very convenient theoretical
framework to examine different types of ESQPT as it dose for
the GSQPT. In addition, the relation between the ESQPT and
the chaotic dynamics in the IBM has been stated, and a possi-
ble extension of the IBM phase diagram toward the excitation
energy has been also discussed briefly.

Currently, the most promising physical systems for find-
ing experimental evidences of ESQPTs are molecules [14, 16,
36–38]. Nevertheless, our analysis indicates that the IBM
involves much richer ESQPTs than previously recognized,
which may in turn offer some chances to search for ESQPTs
in nuclei. However, more detailed investigation is still needed.
Related work is in progress.
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