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Background: The Giant Pairing Vibration (GPV), a correlated two-nucleon mode in the second shell above
the Fermi surface, has long been predicted and expected to be strongly populated in two-nucleon transfer cross
sections similar to those of the normal Pairing Vibration (PV). Recent experiments have provided evidence for
this mode in 14,15C, but despite sensitive studies, it has not been definitively identified either in Sn or Pb nuclei
where pairing correlations are known to play a crucial role.

Purpose: Our aim is test whether features inherent to the mixing of bound and unbound levels might account
for this and to study the effect in a simple and intuitively clear approach.

Method: We study the mixing of unbound levels in a set of toy models that capture the essential physics of the
GPV, along with a more realistic calculation including Distorted Waves Born Approximation (DWBA) transfer
amplitudes.

Results: The calculated (relative) cross section to populate a simulated GPV state is effectively low, compared
to the case of bound levels with no-widths

Conclusions: The mixing turns out to be only a minor contributor to the weak population. Rather, the main
reason is the melting of the GPV peak due to the width it acquires from the low orbital angular momentum single
particle states playing a dominant role in two-nucleon transfer amplitudes. This effect, in addition to a severe
Q-value mismatch, may account for the elusive nature of this mode in (t, p) and (p, t) reactions.

PACS numbers: 27.20.+n, 21.10.Tg, 23.20.Lv

I. INTRODUCTION

Pair correlations in nuclear motion play a key role in
our understanding of the excitation spectra of even-A
nuclei, odd-even mass differences, rotational moments of
inertia, and a variety of other phenomena [1].

The Hamiltonian describing the motion of independent
particles coupled by pairing forces is in second quantiza-
tion

H =
∑
j

ej(a
†
jaj + a†

j̄
aj̄)−G

∑
j,k

a†ja
†
j̄
akak̄ (1)

where the single-particle energies, measured from the
Fermi surface, are denoted by ej , and the single-particle

creation operators by a†j .
It has been predicted that there should be a concentra-

tion of strength, with L=0 character, in the high-energy
region (10-15 MeV) of the pair-transfer spectrum. This
is called the Giant Pairing Vibration (GPV) and is un-
derstood microscopically as the coherent superposition of
2p (addition mode) or 2h (removal mode) states in the
next major shell 2~ω above (below) the Fermi surface
[2]. It is analogous to the well-known pairing vibrational
mode [3–5] which involves spin-zero-coupled pair excita-
tions across a single major shell gap. The nature of the
GPV is schematically illustrated in Fig. 1, that shows

∗ Present address: Department of Physics, University of Chicago,
929 57th St, Chicago, IL 60637, USA

the solution of the dispersion relation obtained from an
RPA approximation of the Hamiltonian in Eq. 1 [2]

2

G
= F (E) =

∑
j

(2j + 1)

E − 2ej
(2)

The two bunches of vertical lines represent the unper-
turbed energy of a pair of particles placed in a given
potential. The GPV is the collective state relative to the
second major shell. It is analogous to the giant reso-
nances of nuclear shapes which involve the coherent su-
perposition of ph intrinsic excitations.

As in the case of the low-lying PV, the GPV should
be populated through pair-transfer reactions, like (t,p) or
(p,t), but despite efforts so far it has never been identified
[6, 7] with these reactions.

Very recently Ref. [8] reported on an experiment to
investigate the GPV mode, using heavy-ion-induced two-
neutron transfer reactions on light nuclei. They studied
the reactions 12C(18O,16O)14C and 13C(18O,16O)15C at
84 MeV incident laboratory energy. “Bump-like” struc-
tures in the excitation energy spectra were identified as
the GPV states in 14C and 15C nuclei at excitation en-
ergies of ≈ 20 MeV. The L=0 nature of these structures
and the extracted transfer probabilities appear consistent
with the GPV population. It remains as an intriguing
puzzle the fact that this mode has not been observed in
heavier systems like Sn and Pb isotopes, where the col-
lective effects are expected to be much stronger and for
which the low-lying pair excitations are well described by
pairing rotations in the Sn’s and by pairing fluctuations
near the critical point in the Pb’s [1, 9].
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As it is well known from the theory of 2-nucleon trans-
fer reactions, there is an optimum Q-window for the
transfer to occur [10, 11]. In fact, Refs. [11–13] have
suggested the use of 6He and 11Li projectiles for which
the 2n-transfer reaction Q-value is better matched than
in the case of (t,p). Data on 6He on 208Pb exists [14]
but the signal of the GPV could be masked by the large
probability for break-up of 6He into 4He +2n. More sen-
sitive experiments using these weakly bound projectiles
should be pursued.

While the role of the Q-value mismatch is, of course,
very relevant, the question we wish to address in this
paper is: what is the possible role of mixing of bound
and unbound levels in rendering the GPV difficult to
observe? To this end we will study and illustrate the
often unexpected, and even counter-intuitive, effects of
mixing of unbound states using a set of toy models that
embody the essential physics. We will show a number
of calculations as a function of the number (fraction) of
unbound levels, of the mixing matrix elements, of the
unperturbed energies, the initial widths, and the inter-
action strengths. These will show several characteristic
and robust features. Following this we will show results
from a more realistic (yet still schematic) calculation that
brings together several of these elements. At the end, we
will bring in aspects of 2-nucleon transfer cross sections,
especially the dependence on single-particle orbital angu-
lar momenta, that must be convoluted with the coherence
of the mixed wave functions to produce estimates for the
final cross sections.

!!GPV ~ 2!!0 !"G ~
65MeV
A1/3

F(E)	


2/G	


FIG. 1. Schematic of the dispersion relation, Eq. 2, showing
the appearance of the collective GPV state and its estimated
energy.

Much of the formalism for mixing of bound and un-
bound levels has been elegantly worked out in papers

by von Brentano, Weidenmuller and collaborators [15]
which we have relied on extensively. In the next sec-
tion, we describe the toy calculations and illustrate the
results. In the following section we discuss a more real-
istic calculation and relate it to expected cross sections
for exciting the GPV, incorporating estimates of relative
form factors for transferring pairs with different angular
momenta, from the DWBA. The final section summarizes
our conclusions, the main point being that the GPV is
indeed greatly diluted in strength but not, in fact, due
to mixing.

II. CALCULATIONS WITH TOY MODELS

The paring hamiltonian introduced in Eq. (1) corre-
sponds to a NxN matrix of the form:

 e1 V12 V13 ...
V12 e2 V23 ...
V13 V23 e3 ...
... ... ... ...


Much of the essential physics is easily illustrated in

Fig. 2, with a schematic 2 x 2 calculation in which one
of the initial states has a width. Here we start with two
unperturbed levels, separated by 0.4 MeV, positioned at
10 and 10.4 MeV, that mix with an interaction strength 1

of 1 MeV. The calculations show the behavior as a func-
tion of varying the initial width for the upper level. On
the lower panel in Fig. 2 are the perturbed energies as
a function of the initial width of the upper level, and
the top panel shows the analogous results for the final
widths. The results indicate that, relative to the cal-
culation with no widths (extreme left of the panel), the
energy of the lower level rises as the width of the initial
level increases. The top panel shows the sharing of the
initial width between the two final levels. Notice that,
as the initial width grows, the two levels asymptotically
approach the initial unperturbed spacing.

As we will see more generally below, there are three
characteristic effects of mixing involving unbound levels
with widths. First, as with bound levels, the energies
repel. Secondly, the larger the widths involved, the less
the levels repel. Hence, the final, perturbed, levels are
closer together than they would be if there were no widths
involved. That is, the lowest level rises relative to the
bound situation. This, in fact, was one of the motivations
for the present study, namely that, due to this effect,
the GPV might lie higher than expected. Thirdly, the
final widths are closer together in magnitude than the
initial widths. von Brentano [16] has referred to this
as level repulsion and width attraction. These effects

1 Throughout the paper we will refer to this attractive (negative)
mixing matrix element as V . See also discussion in Section III.
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should make it more difficult to observe the GPV, but it
remains to be seen how this translates into the expected
collectivity of the GPV and, in turn, into expected cross
section.

Next we will discuss the behavior illustrated on Fig.
2 in the more general context of multi-state mixing and
show that the conclusions above are robust. We will also
encounter some interesting general results and limiting
cases.

FIG. 2. Results for the mixing of 2 states as a function of
the width of the upper level.

A. Threshold behavior

The above conclusions are robust as long as all levels
involved are unbound before and after mixing. However,
if the lowest level(s) is pushed below threshold (becomes
bound) then, by definition, it cannot have a width and
this must be imposed on the calculations. This is best
done by embodying a penetration factor into the matrix
elements as described in [15]. We will now briefly describe
how this modifies the results although, for simplicity, in
the rest of this paper we will place all initial levels suffi-
ciently high in energy in our schematic calculations that
this effect does not come into play.

We consider again the 2 x 2 case, Figure 3 illustrates
the results of a calculation for two levels initially sepa-
rated by 1 MeV and with the upper one having an initial
width of 1.4 MeV. As the mixing increases the lower level
decreases in energy. It also obtains an increasing width,
however, as the perturbed energy of the lower level ap-
proaches threshold (becomes bound) its width must de-
crease to zero.

While the energy of an unperturbed GPV may well be
fairly near threshold it is highly unlikely that this effect
would play a frequent role in different mass regions, with
different shells, and different pairing regimes. Therefore,
while stressing that care must be taken in cases where it
could play a role, the remainder of our calculations will
be carried out well above threshold where this effect can
be ignored.

FIG. 3. Results for the mixing of 2 states to illustrate the
threshold effect on the widths. See also Fig. 2 of [15].

B. More levels

Here we will explore the behavior of the mixing cal-
culations as a function of the initial widths and the in-
teraction strengths for cases with different numbers of
unperturbed levels with widths. Let us start with a 4x4
calculation to illustrate a general result.

Consider Fig. 4 whose panels show the energy levels
with 1 (bottom-right), 2 (bottom-left), 3 (top-right) and
4 (top-left) levels with widths. In each panel, the unper-
turbed energies are spaced 1 MeV apart at 10,11,12, and
13 MeV. The interaction strength is 1 MeV between all
pairs of levels. For the cases with 1,2 or 3 levels with
initial widths, the lowest level has no initial width and
the other higher levels are successively given widths. For
example, for the lower left panel, the levels with initial
widths are the second and third levels, and for the up-
per right panel, the second, third and fourth levels have
initial widths.

A generic behavior appears to emerge. The bottom-
right panel in Fig 4, with one level with a width, shows
a very similar pattern as Fig. 2 for the 2 x 2 case: the
final energies of the two levels approach each other, and
the unperturbed energies, as the width of the upper level



4

increases. The upper two levels largely function as spec-
tators.

The panels for which 2 and 3 levels have initial widths
shows an interesting behavior. In each case, the high-
est level with an initial width is ”attracted” to the lower
level, and the other two levels are again largely specta-
tors. That is, a behavior similar to that in Fig. 2 shows
up in the lowest level and in the highest one that has a
initial width.

Note that the effect of the widths decreases the more
levels having initial widths. This leads to the following
interesting and unexpected result: if all levels have iden-
tical initial widths one obtains the same results as for the
case with no widths, as seen clearly in the top-left panel.
The reason is embedded in the idea that the mixing leads
to width attraction. That is, the widths after mixing are
closer than before. But if all the levels have identical
initial widths, the mixing cannot change them and hence
cannot have any effect at all.
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FIG. 4. Results for the mixing of 4 states for different
numbers of levels with initial widths. Top-left: 4 levels with
widths, top-right: 3 levels, bottom-left: 2 levels, and bottom-
right: 1 level. See also text for details.

Mixing calculations with degenerate levels show unique
features [17]. In particular, in the simplest case of N
bound degenerate levels mixing pairwise with identical
matrix elements V, one level is lowered by (N-1)V and
all the others rise by V. Here we investigate what happens
when some (n) levels are unbound. Figure 5 shows results
for a set of N=6 degenerate levels, as a function of the
initial widths, for one (top panel) , two (middle panel) ,
and three (bottom panel) levels with initial widths. The
6 levels are at an energy of 11 MeV and mix with a V=1
MeV matrix element. The far left of each panel corre-
sponds to the bound state case and shows the maximum
separation of the perturbed levels. As the initial widths
increase the lowest two levels approach each other as we
have seen (The other levels remained pinned at their val-
ues for the bound state case).

Interestingly, as the number of levels with initial

widths, n, starts to increase, the lowest two perturbed
levels are forced closer and closer together, and increas-
ingly so as the initial widths increase. For n = 3, they
become degenerate at some value of the initial width and
remain so thereafter. This trend does not continue when
more than half the levels have initial widths but rather
reverses. That is, the calculations with 2 and 4 levels
with initial widths are identical, as are those with 1 and
5 or 0 and 6. The closest approach is always when half
the levels have widths.

We now explore this situation as a function of the total
number N of initial levels. In Fig. 6 we show results for
the mixing of N degenerate levels (at 11MeV) and a mix-
ing strength V=1 MeV, when half, n = N/2, of the levels
have initial widths. The figure shows results for N = 2,
4, and 6 degenerate levels. The magnitude of the initial
widths varies along the abscissa. At the far left, when
these widths vanish, the lowest levels are lowered by ((N-
1)V) 1, 3, and 5 MeV, respectively, and the other levels
rise by (V) 1 MeV. As the initial widths increase the per-
turbed levels approach each other and become degenerate
again when the initial width W = NV. The recovered de-
generacy occurs at the average perturbed energy of the
upper and lower energy groups,

E = E0 − (N − 1)V = E0 + V −W ;

C. Coherence and collectivity

Aside from the energies and widths, an important con-
sideration in the observability of the GPV is the coher-
ence in the mixed wave functions. This is expected to
enhance the observed cross sections as the different am-
plitudes for the two-particle transfer operator have the
same sign and add coherently. As a measure of the col-
lectivity, we then look at the transfer operator, realiz-
ing that a realistic estimate should take into account the
kinematic features of the two nucleon transfer cross sec-
tions to 0+ states, by considering a DWBA calculation.

Given a set of single particle orbits |n`j〉 ≡ |j〉, the
wave function of the GPV state can be written:

|GPV 〉 =
∑
j

αj |j2〉;

The matrix element for the transfer of a pair of L=0
neutrons to the GPV in nucleus |A0+2 > from the ground
state of |A0 > is

〈GPV |T |A0〉 =
∑
j

αj〈j2|T |0〉;

and the cross section

σ(GPV ) ∝ 〈GPV |T |A0〉2 = (
∑
j

αj)
2σsp;
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FIG. 5. Results for the mixing of 6 degenerate levels. The
lowest two states are shown as a function of the number of
levels with width, top: 1 level with width, middle: 2 levels,
and bottom: 3 levels. The other 4 levels remain at 12 MeV.
The dashed line indicates the unperturbed energy.

FIG. 6. Results for the NxN mixing case for N/2 levels with
widths. Blue: 2 levels, magenta: 4 levels and red: 6 levels.
As in Fig. 5, the unperturbed energy is at 11 MeV (dashed
line).

with the further assumption that the single particle ma-
trix elements are all approximately equal, 〈j2|T |0〉2 ≈
σsp. As we will discuss later, this simplification is not
always realistic.

In general, for mixing of unbound states, the ampli-
tudes αj will be complex xj + iyj

TABLE I. j2 levels used in the realistic calculations

Level Energy (MeV) Width (MeV)

s1/2 14.6 8

d3/2 15.4 2.6

d5/2 15.9 1.6

g9/2 18.0 0.45

g7/2 19.5 1.5

i11/2 22.0 0.2

h11/2 23.6 3.2

j15/2 24.5 0.2

σ(GPV ) = ((
∑
j

xj)
2 + (

∑
j

yj)
2)σsp;

The limiting case of N degenerate levels provide an
estimate of the maximum collectivity. With all levels
bound, we have xj ≈ 1√

N
and thus

σ(GPV ) ≈ Nσsp;

If the mixing involves unbound levels, and for example

xj ≈
√

1
N − δ2 and yj ≈ δ, then again

σ(GPV ) ≈ Nσsp;

suggesting that collective effects in the wave function of
the GPV do not seem to depend strongly on the mixing
with unbound levels.

Rather, and as discussed earlier, the two-nucleon trans-
fer cross sections to 0+ states depend not only on the
coherence of the wave functions but on the specific am-
plitudes for transfer of angular momentum zero-coupled
pairs for different single-particle states. Basically, this re-
flects the relative amplitudes for the 1S0, 2n amplitude,
in the configurations |(n`j)2, L = 0〉 [18]. These ampli-
tudes depend strongly on the orbital angular momentum
`, and the transfer probability could drop by order(s) of
magnitude for each increase ∆` = 2. Hence the bare
cross section at the first maximum of the angular distri-
butions for, say, two nucleons in an i13/2 orbit, will be
about 4 orders of magnitude less than that for the trans-
fer of two s1/2 particles. This effect is likely to be more
important in the final cross sections than the detailed
collectivity of the final states. The selectivity of different
two-particle transfer reactions, such as (t,p), (18O,16O),
and (14C,12C), with respect to detailed microscopic con-
figurations in initial and final target states has recently
been investigated in Ref. [19].

III. “REALISTIC CALCULATIONS”

We will now explore these effects in a semi-realistic cal-
culation. For this we consider a GPV arising from the
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2~ω shell on top of the doubly-magic nucleus 132Sn. We
do not intend to suggest this case as a potential experi-
ment, the reason for our choice is based on the fact that
the neutron single particle levels involved correspond to
those of 208Pb above the N =126 gap, which give rise
to the well know low-lying PV in the Pb isotopes. The
2~ω levels considered are listed in Table 1. The ener-
gies and widths have been calculated with the computer
code GAMOW [20], and because they are unbound for
the 132Sn core their ordering is different than in 208Pb.
The matrix diagonalization follows from the methods dis-
cussed above using a constant pairing force of the form
G
√

2j1 + 1
√

2j2 + 1 and G ≈ 20 MeV/A.

A comment regarding our choice of a constant matrix
element is in order. For bound states the 1/A depen-
dence reflects the decrease of the matrix element of a
short range force with the wave functions overlap, and
thus the volume. For the unbound states considered here,
the A scaling may not follow and a proper treatment of
the two-particle resonant states [21, 22] may actually de-
crease the matrix elements. In those conditions, we ex-
pect to have less mixing and reduced collectivity of the
GPV, and in this sense, our results can be considered as
a best case scenario.

As an example of the results of these calculations, the
real parts of the amplitudes of the 3 lowest states are
shown in Fig. 7. The coherent effect of the GPV (low-
est state) is clearly seen as all the components have the
same sign, while the other states have both positive and
negative contributions. Note also that the GPV wave
function does not change much with the inclusion of the
realistic level widths considered in this example. The
GPV is found at an excitation energy of ≈ 10 MeV and
a width of ≈ 3.3 MeV.

Once the amplitudes have been determined we use
them together with DWBA calculations (using the code
DWUCK4 [23]) to estimate the cross-section for the reac-
tion 132Sn(t,p) at ELab= 20 MeV populating the GPV in
134Sn . The calculations were made with standard optical
model for tritons [24] and protons [25], and a form-factor
for two-neutron transfer in a j2 configuration [23] for the
levels in Table I.

The final result is summarized in Fig. 8 that compares
the cross-section as a function of excitation energy for
the semi-realistic calculations, to that of the case with
no-widths, first folded with a detector resolution of 200
keV and second assuming an overall damping width of
800 keV.

An inspection of these results confirms our qualitative
expectations anticipated in previous sections, namely the
fact that the introduction of level widths does not much
affect the lowering (and collectivity) of the GPV state.
The biggest effect could be associated with the width of
the GPV, treated properly in the formalism above, that
causes a “dilution” of the strength into the background
of uncorrelated 0+ states, due to the role of low ` or-
bitals: the s1/2 in our example, and possibly p1/2, and

p3/2 in 14,15C [8], which carry much of the 1S0 strength

FIG. 7. Wave functions of the lowest 3 states (red, blue
and green respectively) obtained from the diagonalization of
a pairing force and the levels in Table I. Top: Levels with
no-width and Bottom: with width.

but acquire large widths because of their low centrifugal
barrier. That is, the most important contributions to the
two nucleon transfer cross section are from the same low-
spin orbits that acquire large widths when unbound so
that any peak structure is severely diluted.

In Ref. [26] the GPV was analyzed within a shell-
model formalism in the complex energy plane. In agree-
ment with our results, it was concluded that because of
the proper treatment of the continuum the GPV may be
too wide to be observed. In contrast, they also find the
GPV at higher energy than previously predicted, which
could be related to our choice of a constant matrix ele-
ment discussed above.

We finally note that, while the Q-value mismatch for
the (t, p) reaction will affect the overall cross-section, our
conclusions relate to the relative values of the cases con-
sidered here.

IV. CONCLUSION

As a result of toy model calculations of the mixing of
unbound levels we find that, contrary to initial expec-
tations, mixing plays only a small role in lowering these
cross sections. More important appears to be the melt-
ing of the GPV peak due to the large widths associated
with unbound low orbital angular momentum orbits and
the fact that these orbits dominate two-nucleon transfer
matrix elements. We included these effects in a semi-
realistic DWBA calculation of the 132Sn(t,p) reaction,
that confirm the model calculations. The “dilution” of
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FIG. 8. Expected relative cross-sections (in arbitrary units)
following our semi-realistic calculations (red line), compared
to the case of no-widths folded with a detector resolution of
200 keV (black) and a damping width of 800 keV (blue). For
reference, the 1-neutron and 2-neutron separation energies are
indicated with dashed lines

the 1S0 strength in addition to a severeQ-value mismatch
[11, 12], may account for the elusive nature of the GPV
mode in (t, p) and (p, t) reactions.

Following on the first positive results of Ref. [8], fur-
ther experimental work, along the lines suggested in Refs.
[11, 12], will be required to shed further light on this in-
triguing question of the population of the GPV. With
beams of 6He and 11Li becoming available at the ener-
gies and intensities required, the reactions (6He/11Li, α)
on Sn or Pb targets appear as the logical next step in
these studies.
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