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Recent work has provided the means to rigorously determine properties of super-hadronic mat-
ter from experimental data through the application of broad scale modeling of high-energy nuclear
collisions within a Bayesian framework. These studies have provided unprecedented statistical in-
ferences about the physics underlying nuclear collisions by virtue of simultaneously considering a
wide range of model parameters and experimental observables. Notably, this approach has been
used to constrain both the QCD equation of state and the shear viscosity above the quark-hadron
transition. Although the inferences themselves have a clear meaning, the complex nature of the rela-
tionships between model parameters and observables have remained relatively obscure. We present
here a novel extension of the standard Bayesian Markov Chain Monte Carlo approach that allows
for the quantitative determination of how inferences of model parameters are driven by experimen-
tal measurements and their uncertainties. This technique is then applied in the context of heavy
ion collisions in order to explore previous results in greater depth. The resulting relationships are
useful for identifying model weaknesses, prioritizing future experimental measurements, and most
importantly: developing an intuition for the role that different observables play in constraining our
understanding of the underlying physics.
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I. INTRODUCTION

Relativistic nuclear collisions provide a unique opportunity to create and study matter at temperatures and energy
densities well above the boundary where hadronic degrees of freedom become irrelevant and are replaced with quark
and gluon degrees of freedom. Whereas the energy density inside a hadron might be on the order of 100 MeV/fm3,
high-energy nuclear collisions produce mesoscopic regions where the average energy density can exceed 10 GeV/fm3.
Unfortunately, they are far from ideal environments for extracting the properties of super-hadronic matter. Only the
asymptotic momenta of outgoing particles are experimentally accessible, so three-dimensional models of the dynamics
are essential for interpreting results and forming rigorous conclusions about either the nature and properties of
the matter or about the evolution itself. One serious limitation is that the exact nature of the initial deposition
and dispersion of energy, momentum, charge, and baryon number in heavy-ion collisions is currently only partially
understood. Nearly any experimental measurement will be sensitive to these initial conditions as well as to combined
contributions from the proceeding stages of rapid expansion and cooling through partially equilibrated QGP and
hadronic phases. This entangles contributions from the various components of the underlying physics and obscures
the interpretation of many experimental results.

The development of models that can reliably mimic the various complexities of heavy-ion collisions has been a key
focus of the field and a necessary step towards condensing experimental results into quantitative statements about
the underlying physics. Unfortunately, determining physical quantities like the shear and bulk viscosities of QGP is
non-trivial even with high quality models in place. Experimental data can be largely described using these models but
the conclusions drawn depend strongly on the validity of the initial state model and other model assumptions. This
problem is only confounded by the computational complexity of typical heavy-ion collision models which, in many
cases, makes a full exploration of model parameter space prohibitively expensive and, in turn, encourages simplifying
assumptions.

The situation of dealing with very complicated models that map high dimensional parameter spaces to rich heteroge-
nous observational data sets is a common one. It is faced in disparate fields of science such as biology, econometrics,
and cosmology. The common solution to this problem is to apply a Bayesian inference approach where a posterior
distribution over model parameters can be mapped out based on their consistency with a set of observables using a
Markov Chain Monte Carlo (MCMC) or a related approach [1, 2]. This allows for quantitative conclusions about the
underlying parameters to be made given the validity of the model and prior assumptions.

A primary difficulty that has historically limited the applicability of a Bayesian approach in heavy-ion physics has
been the large number of model evaluations necessary to accurately map out a high dimensional posterior distribution.
This, coupled with the already computationally expensive nature of the simulations, makes a direct application of
an MCMC approach essentially impossible with currently available hardware. Recent progress in methodology has
overcome this difficulty through the use of Gaussian process emulators which can be trained to accurately reproduce
the results of actual simulated models. The reduced computational load has opened the door to quantitative analyses
of model parameters which has allowed for systematic constraints of the nuclear equation of state and of the QGP
shear viscosity [3, 4] and details of the initial state [5].

Stating the single point in the multidimensional parameter space that maximizes the likelihood disregards the
uncertainty with which the number is stated. In contrast, an MCMC exploration of parameter space provides not
only the uncertainties for each parameter, but the covariances with other parameters along with the complete shape
of the posterior likelihood. The methods of [3] indeed provide the complete likelihood distribution, and are now
extracting the field’s first rigorous quantitative conclusions from heavy-ion collisions at the highest energies.

Although the Bayesian approach has proved fruitful in nuclear physics, progress in understanding the complexities
of generated posterior distributions and how they are driven by the experimental data has been slow. It is relatively
straightforward to understand how parameters drive observables through varying them and seeing what changes. Go-
ing in the opposite direction, seeing how the measurements drive the inferences about parameters, is more challenging
for several reasons. For example, changing a certain parameter might readily alter a given observable, but there may
exist some combination of other parameters that can compensate without affecting the remaining observables. Even
an observable which does not seem to directly depend on a given parameter, might help constrain other parameters,
which then helps constrain the first parameter. In deciding which observables to either measure or to better measure,
one would like to know how the width of the posterior likelihood distribution is affected by reducing the uncertainty
of a given observable. These relations are critical to gaining insight into understanding not only the degree to which
model parameters are being constrained, but how and why. Here, we present a new set of techniques for addressing
all of these questions and then apply the techniques to the 14-parameter analysis first presented in [4]. This analysis
represents the field’s first quantitative evaluation of much of the field’s heuristic understanding about which observ-
ables are truly responsible for addressing the community’s most basic questions about the bulk properties of nuclear
matter and about the evolution of a high-energy heavy-ion collision.

In the next two sections we review the model, data and techniques used to generate our previous results in [3, 4],
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presenting a wider range of results from the projections of the MCMC procedure than were presented in [4]. In Sec. IV
we present techniques for determining linear relations between observables and parameters and between uncertainties
in observables and widths of the posterior distribution in parameter space. We apply these techniques to the heavy-ion
analysis described in Sec.s II and III, and focus on the ramifications for extracting the equation of state and viscosity.
Results are summarized and an outlook is presented in the final section.

II. MODEL AND DATA OVERVIEW

The details of the model are expounded in more detail in [3, 4], but we will briefly review the basics and focus
on describing the 14 parameters varied in this analysis along with the set of observables. Our model consists of the
generation of an initial state which is then fed into a 2-dimensional hydrodynamics simulation followed by transition
to a microscopic simulation, known as a hadronic cascade, at a transition temperature of T0 = 165 MeV. An assumed
symmetry based on an invariance to boosts along the beam axis makes it possible to approximate three-dimensional
treatment with a two-dimensional model that discretizes the two transverse coordinates.

Ten model parameters are used to vary the initial state at a time τ0 = 0.8 fm/c, two are used to determine the
equation of state in the hydrodynamic stage, and the last two are used to determine the shear viscosity and its
temperature dependence in the hydrodynamic stage. The shear viscosity is parameterized as

η

s
=
(η
s

)
0

+ η′ ln
T

T0
(1)

where (η/s)0 is the viscosity at T0 and η′ describes the temperature dependence. These two parameters will be
featured in this paper due to their relatively intuitive meaning and relationship with common observables. Two
parameters also encapsulate the equation of state. The speed of sound, cs, as a function of the energy density, ε, is
described as

c2s(ε) = c2s(εh) +

(
1

3
− c2s(εh)

)
X0x+ x2

X0x+ x2 +X ′2
, (2)

X0 = X ′Γcs(εh)
√

12, x ≡ ln(ε/εh),

where εh and cs(εh) are the energy density and speed of sound of a hadron gas at the transition temperature, T0 = 165
MeV. These quantities are calculated by considering a gas of non-interacting hadrons using the masses and spins of
particles from the Particle Data Group [6]. All resonances with masses below 2 GeV/c2 were included. With this
prescription, the equation of state is continuous at T0. The parameter Γ describe the behavior of cs just above T0
and the parameter X ′ provides a scale at which the speed of sound approaches 1/3. Increasing X ′ lowers the speed
of sound mainly at high energy density or temperature, and increasing Γ increases the speed of sound, mainly just
above T0. This is illustrated with 5 equations of state in Fig. 1.

Five of the ten initial state parameters apply only to the description of RHIC (Relativistic Heavy Ion Collider at
Brookhaven National Laboratory) data. Only data from Au+Au collisions at 100A GeV + 100A GeV is considered.
The other five described the initial state for Pb+Pb collisions at 1.38A TeV + 1.38A TeV from the LHC (Large
Hadron Collider at CERN). The initial transverse energy density profile that instantiates the hydrodynamics has the
form [3]

ε(x, y) = fwnεwn(x, y) + (1− fwn)εsat(x, y), (3)

where the parameter fwn describes the weighting between two other parameterized forms, εwn which is the wounded
nucleon form [7], and εsat, which describes a form more in line with some ideas of saturation, similarly to [8].

εwn(x, y) = Zε
(dE⊥/dy)ppσnn

2σsat.
TA(x, y) (1− exp(−TB(x, y)σsat)) , (4)

+Zε
(dE/dy)ppσnn

2σsat.
TB(x, y) (1− exp(−TA(x, y)σsat)) ,

εsat(x, y) = Zε
(dE/dy)ppσnn

σsat.
Tmin(x, y) (1− exp(−Tmax(x, y)σsat)) , (5)

Tmin ≡
2TATB
TA + TB

, Tmax ≡ (TA + TB)/2.

Here TA and TB are the areal densities, the projections of the baryon density of a Au or Pb nucleus onto the transverse
plane, and have dimensions of number per area. In the wounded nucleon model, each nucleon that comes within the
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FIG. 1. (Color online) Equations of state, speed of sound vs. energy density, are shown for five sets of parameters. The solid
black line is for a default case where both equation-of-state parameters X ′ and Γ from Eq. (2) are chosen from the center of
the prior distribution given in Table I. The red dashed lines describe the cases where X ′ is unchanged from the default, but
Γ is at the minimum/maximum of the prior distribution. This parameter most strongly affects the speed of sound just above
εh ≈ 0.5 GeV/fm3. The case where Γ is set at the default values and X ′ is varied is represented by the blue dotted lines.
The parameter X ′ varies the scale at which the speed of sound approaches 1/3 asymptotically. Stiffer equations of state are
attained by either raising Γ or lowering X ′.

nucleon-nucleon cross section, σnn = 42 mb at RHIC energies and 73 mb at LHC energies, of one of the other
nucleons, known as a participant, contributes to the energy density. If the parameter σsat is set equal to the nucleon-
nucleon cross section then each nucleon can only contribute once and additional collisions do not increase the energy
density. Relaxing σsat < σnn allows the particle to contribute multiple times. As σsat approaches zero the form gives
binary scaling and the resulting energy density is proportional to TATB . In the saturated form, the energy density is
principally determined by the smaller of the two areal densities. Thus, if one nucleon overlaps 5 other nucleons, the
energy density will be only slightly less than if it overlapped 10.

The parameter Zε represents the energy per unit rapidity per nucleon collision in a dilute reaction relative to
the measurement of a pp collision, and both forms satisfy the constraint that for a diffuse overlap of nucleons, i.e.
TA, TB � σpp the energy density scales as binary collisions, ε(x, y) → σpp(dE/dy)ppTATB with Zε ≈ 1. However,
because this is the energy density at τ0 = 0.8 fm/c, and not the final energy, and because the energy density includes
longitudinal motion, it differs from the measured transverse energy, and Zε was allowed to vary over a small range
near unity. For our purposes (dE/dy)pp was set to 2.69 and 6.0 GeV for the two beam energies, though this number
is somewhat arbitrary because it is multiplied by Zε. Finally, the fifth parameter describes the initial transverse flow,
which is assumed to have the form

T0i
T00

= F0
−∂iT00

2T00
τ, (6)

where Tαβ is the stress-energy tensor. For a traceless stress energy tensor, which would be expected for non-interacting
gluon fields or collision-less massless particles or for conformal hydrodynamics, and also assuming boost invariance,
F0 would go to unity [9]. The final parameter adjusted the initial anisotropy of the stress-energy tensor,

Txx = Tyy = P (1 + τ ′xx), Tzz = P (1− 2τ ′xx). (7)

This form is traceless (1/3)
∑
i=1,2,3 Tii = P and describes the initial shear, which in the Israel Stewart form of

hydrodynamics is a dynamical variable which relaxes toward the Navier Stokes value. Parameters are summarized in
Table I.

The model is used to produce a set of 30 observables that correspond to experimental measurements performed
at RHIC and the LHC. These encompass distilled information describing spectra, elliptic flow, and femtoscopic
correlations in central and mid-central collisions. These observables were chosen because they all have been shown to
characterize features of thermalized bulk matter. Fifteen of the observables correspond to Au+Au collisions at RHIC
while the other fifteen correspond to Pb+Pb collisions at the LHC. Observables were taken from two centrality classes,
the top 0− 5% centrality cut and the set of collisions in the 20− 30% centrality cut. It was felt that additional data
with centrality between these values would be redundant because of the smooth behavior of the observations with
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Parameter Min, Max (RHIC/LHC values) Description

Γ -0.9, 2.0 Equation of State

X ′ 0.5, 5.0 Equation of State

(η/s)0 0.02, 0.5 Viscosity at T0

η′ 0.0, 3.0 Temperature dependence of viscosity

Zε 0.8 / 0.7, 1.25 / 1.4 Energy normalization ratio

σsat(mb) 22 / 38, 44 / 76 Saturation cross section

fwn 0.0 / 0.0, 1.0 / 1.0 Weight of wounded-nucleon parameterization

F0 0.2 / 0.2, 1.0 / 1.0 Initial transverse flow

τ ′xx 0.0 / 0.0, 1.0 / 1.0 Initial anisotropy of stress-energy tensor

TABLE I. Fourteen model parameters

centrality. Further, it would be difficult to assign uncertainties for observables from more peripheral collisions due to
the difficulty in justifying hydrodynamic treatments for systems whose size is not larger than a thermal wavelength,
and where a significant fraction of the transverse profile is in the corona, which does not fully thermalize.

Three classes of measurements were considered. The first and most basic is spectra and yields. These were distilled
to four numbers for each centrality. Three were the mean transverse momenta, pt, for pions, kaons and protons. The
average was taken over a finite range of pt, limited at the low end by experimental constraints and cut off at the high
end to minimize the effects of jets which are non-thermal features outside of this analysis. The fourth measurement
was the multiplicity of pions within the same pt range. Because chemical equilibrium was assumed, rather than
parameterized, and because baryon annihilation was not included, the yields of kaons and protons were not included.
In [3] it was shown that model runs that had the same 〈pt〉 had the same spectral shapes, so no resolving power was
lost by considering only one number to characterize the spectra. Those spectra with the same 〈pt〉 as the data also
provided good descriptions of the experimental spectral shapes [3, 4].

The second class of observables is comprised of femtoscopic radii extracted from two-pion correlations at small
relative momentum. Extracting these radii has long been a staple of the field [10]. The gaussian radii are functions
of momentum, and describe the size and shape of the outgoing phase space cloud of the given momentum. The
three radii, Rout, Rside and Rlong, describe the transverse dimension parallel to the momentum, the transverse size
perpendicular to the momentum and the size along the beam axis respectively. For this analysis, the radii were
averaged over the various bins in transverse momentum, so that three observables encapsulated the data for each
centrality class.

The final observable was v2, which characterizes the anisotropic transverse flow which is driven by the elliptical
shape of the initial transverse profile. The anisotropy, v2 ≡ 〈cos 2φ〉 in its simplest definition, was only considered in
the 20-30% centrality bin. This bin was chosen because the model used smooth profiles, generated from the average
aerial profiles for a given impact parameter, and neglected the lumpy conditions which one would expect from the
finite number of scatterers in a Au or Pb nucleus. Even though this bin is probably the least affected by lumps, the
experimental value was reduced by a factor of 0.91 to more fairly compare to the model [4]. The next major analysis
planned by this group will incorporate fluctuating initial conditions, and in addition to more accurately calculating v2,
could also address the higher components v3, v4 · · · , which are mainly driven by fluctuations. Because v2 rises nearly
linearly with transverse momentum, the value of v2 was averaged over pt, with the values weighted by pt, so that
bins with higher pt were relatively more important. The linear weighting was motivated by performing a principal
component analysis of the binned values to find the combination that best captured the variability in the model runs.
Table II summarizes the 30 observables in this analysis.

III. MARKOV CHAIN MONTE CARLO PROCEDURE AND RESULTS

The standard approach to determining the likely regions of parameters, ~x, from comparing model values, ~yM (~x),
to experimental values, ~yexp, is through MCMC, which provides a sampling of parameters ~x that are chosen weighted
proportional to the likelihood. For this study the likelihood is chosen to have a simple Gaussian form,

L(~x) ∼ exp

{
−
∑
a

(yM,a(~x)− y(exp)a )2

2σ2
a

}
. (8)

The uncertainties incorporate both experimental uncertainties and the shortcomings of the model. For instance, if
the equation of state and viscosity were perfectly described, and if the initial state was parameterized most correctly,



6

observable exp. value pt weighting centrality collaboration

v2,π+π− 8.14% ave. over 11 pt bins from 160 MeV/c to 1 GeV/c 20-30% STAR [11]

Rout 5.28 fm ave. over 4 pt bins from 150-500 MeV/c 0-5% STAR [12]

Rside 4.81 fm ave. over 4 pt bins from 150-500 MeV/c 0-5% STAR [12]

Rlong 5.47 fm ave. over 4 pt bins from 150-500 MeV/c 0-5% STAR [12]

Rout 4.27 fm ave. over 4 pt bins from 150-500 MeV/c 20-30% STAR [12]

Rside 3.99 fm ave. over 4 pt bins from 150-500 MeV/c 20-30% STAR [12]

Rlong 4.53 fm ave. over 4 pt bins from 150-500 MeV/c 20-30% STAR [12]

〈pt〉π+π− 494.4 MeV 0.2 GeV/c < pt < 1.2 GeV/c 0-5% PHENIX [13]

〈pt〉K+K− 796 MeV 0.4 GeV/c < pt < 1.6 GeV/c 0-5% PHENIX [13]

〈pt〉pp̄ 1.135 GeV 0.6 GeV/c < pt < 2.0 GeV/c 0-5% PHENIX [13]

〈pt〉π+π− 487.5 MeV 0.2 GeV/c < pt < 1.2 GeV/c 20-30% PHENIX [13]

〈pt〉K+K− 792 MeV 0.4 GeV/c < pt < 1.6 GeV/c 20-30% PHENIX [13]

〈pt〉pp̄ 1.111 GeV 0.6 GeV/c < pt < 2.0 GeV/c 20-30% PHENIX [13]

π+π− yield 422 0.2 GeV/c < pt < 1.2 GeV/c 0-5% PHENIX [13]

π+π− yield 188.7 0.2 GeV/c < pt < 1.2 GeV/c 20-30% PHENIX [13]

v2,π+π− 9.56% ave. over 11 pt bins from 0.15 to 1.2 GeV/c 20-30% ALICE [14]

Rout 5.46 fm ave. over 7 pt bins from 200 to 900 MeV/c 0-5% ALICE [15]

Rside 5.32 fm ave. over 7 pt bins from 200 to 900 MeV/c 0-5% ALICE [15]

Rlong 5.72 fm ave. over 7 pt bins from 200 to 900 MeV/c 0-5% ALICE [15]

Rout 4.07 fm ave. over 7 pt bins from 200 to 900 MeV/c 20-30% ALICE [15]

Rside 4.12 fm ave. over 7 pt bins from 200 to 900 MeV/c 20-30% ALICE [15]

Rlong 4.41 fm ave. over 7 pt bins from 200 to 900 MeV/c 20-30% ALICE [12]

〈pt〉π+π− 459.1 MeV 0.1 GeV/c < pt < 1.2 GeV/c 0-5% ALICE [16]

〈pt〉K+K− 775 MeV 0.2 GeV/c < pt < 1.6 GeV/c 0-5% ALICE [16]

〈pt〉pp̄ 1.137 GeV 0.2 GeV/c < pt < 2.0 GeV/c 0-5% ALICE [16]

〈pt〉π+π− 455 MeV 0.1 GeV/c < pt < 1.2 GeV/c 20-30% ALICE [16]

〈pt〉K+K− 758 MeV 0.2 GeV/c < pt < 1.6 GeV/c 20-30% ALICE [16]

〈pt〉pp̄ 1.110 MeV 0.2 GeV/c < pt < 2.0 GeV/c 20-30% ALICE [16]

π+π− yield 1258 0.2 GeV/c < pt < 1.2 GeV/c 0-5% ALICE [16]

π+π− yield 523 0.2 GeV/c < pt < 1.2 GeV/c 20-30% ALICE [16]

TABLE II. Observables used to compare models to data from RHIC (STAR and PHENIX collaborations) and from ALICE (at
the LHC). To account for non-flow correlations, the value of v2 was reduced by 9% from the experimental values to account for
the approximation of smooth initial conditions.

the model uncertainty describes how accurately one would expect to reproduce the final-state observables given the
missing physics in the model and the uncertainties in the measurements. In this study, which uses the same model

output as in [4], the total uncertainties σa were all set to 6% of the experimental value y
(exp)
a . A more accurate

determination of the uncertainty would require detailed model studies to estimate the impact of missing physics, and
a more detailed understanding of experimental uncertainties. It would not be surprising to find that a few of these
observables are understood with slightly better uncertainty or that some are somewhat more uncertain. Such an
improvement should involve input from both the experimental and modeling communities. In [3] the analysis was
repeated with uncertainties changed by a factor of two and the widths of the resulting posterior distributions only
increased by ≈ 20%.

Due to the infeasibility of performing millions of full model runs, the MCMC procedure implemented an emulator
in the place of the full model [2, 3]. The emulator uses an interpolation algorithm to determine the observables from
1200 full-model runs. The first 1000 parameter sets for the full-model runs uniformly covered the 14-dimensional
space according to latin hyper-cube sampling. The last 200 parameter sets were chosen to be consistent with the
likelihood as calculated from the earlier runs and to provide better coverage in the likely region. To improve efficiency,
the emulator calculates principal components rather than each observable. In this way, those linear combinations of
observables that stay constant throughout the model runs can be neglected. Thus, rather than evaluating all 30
observables, only 14 principal components were analyzed for this study. Even that number could be reduced because
the last several components only varied by a few percent of one value of the experimental uncertainty.
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FIG. 2. (Color online) One- and two-dimensional posterior likelihood projections from the MCMC procedure. The one-
dimensional projections (along the diagonal) illustrate the degree to which an individual parameter is constrained by comparing
to data, whereas the off-diagonal elements illustrate how some linear combinations of two parameters might be either poorly
or well constrained. The colored boundaries delineate one-, two- and three-sigma regions, where n-sigma refers to likelihoods

of e−n
2/2 of the maximum likelihood. The ranges for each parameter are listed in Table I.

The MCMC procedure was performed with several million random steps according to the Metropolis algorithm.
This provides a sampling of the posterior distribution displayed in Fig. 2. In addition to projections onto one
dimension of the parameter space, the off-diagonal plots show two-dimensional projections. When the elliptic shapes
of the two-dimensional projections lie at an angle, it shows that a specific linear combination of parameters may be
well constrained, whereas the orthogonal combination may be poorly constrained. For example, the region of high
likelihood for the projection onto the plane of two equation of state parameters, one can see that if one increases
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FIG. 3. (Color online) Posterior likelihood distributions for the shear viscosity parameters generated using RHIC and LHC
data separately (a & b) and together (c). We can see that the viscosity at T0 is well constrained by RHIC data alone but that
there is very little constraint of its temperature dependence without the LHC data. This is consistent with the fact that LHC
data probe higher temperatures. Combining the datasets clearly constrains the data better than a single data set. Panels (d-e)
show corresponding information for the two equation of state parameters. In this case it is clear that LHC data provide the
bulk of the resolving power. Again, this is expected because the equation of state is fixed at T0 = 165 MeV, and LHC collisions
probe regimes further into the region where the equation of state differs across the parameter space. One can also see that the
high degree of covariance in both figures (c) and (f), especially for the covariance between the two equation-of-state parameters
in (f). This shows that even though neither parameter is particularly well constrained, there is a linear combination that is well
constrained, while the orthogonal linear combination is poorly constrained. Limits for each parameter are provided in Table I.

Γ and X ′ by similar percentages that the likelihood changes little. Similarly, for the two viscosity parameters one
finds that one can find a good match with (η/s)0 ≈ 0.2 with a modest temperature dependence, η′. One can also
match with lower values of (η/s)0 if the viscosity then rises with temperature. Another instance where the posterior
is off-diagonal is in the projection of (η/s)0 and fwn. The resulting covariance corroborates the arguments that were
put forward in [8].

IV. SENSITIVITY STUDIES

The principal goal of this paper is to present various methods for understanding the role certain observables, or
sets of observables, play in constraining the posterior likelihood of given parameters, or sets of parameters. The
most straight-forward method to determine the sensitivity is to perform the analysis both with and without a given
observable, or set of observables. An example of this is illustrated in Fig. 3. The two-dimensional posterior likelihood
projection for the two viscosity parameters, (η/s)0 and η′, are redisplayed along with projections where either RHIC
data or LHC data are ignored. This makes it clear that the LHC data is especially important for constraining the
temperature dependence of the viscosity, η′.

However, the method of repeating the statistical analysis without a given observable can be onerous. If one wishes
to study the sensitivity to NY = 30 observables, one would repeat the MCMC procedure NY times. Here, we present
methods for finding three simple measures of the sensitivity using the output from a single MCMC trace. That
information would be of the form of a list of values, α = 1 · · ·NMCMC, where NMCMC might be of the order of one
million. For each point one would have the parametes xα,i and the observables yα,a.

The first measure would simply describe how a given observable, ya, would change due to a change in a parameter

xi, while keeping all other parameters constant. Because y
(x̃)
M,a is not purely linear, one needs to choose over what

region the derivative is evaluated. Two choices of interest might be the prior or the posterior. Here, we use single
brackets, 〈· · · 〉, to denote an average of the prior, and double brackets, 〈〈 · · · 〉〉, to denote averages taken over the
posterior. For averages over the prior, one can use the lists from the points at which full-model runs were performed
for the purpose of training the emulator. If calculations were performed randomly throughout the prior, one could
consider the covariance 〈δyaδxi〉, where δya = ya − 〈ya〉 and δxi = xi − 〈xi〉. One can calculate the partial derivative
of ya with respect to any parameter by a simple matrix inversion,

〈δyaδxi〉 =
∑
j

〈
∂ya
∂xj

〉
〈δxjδxi〉 (9)〈

∂ya
∂xj

〉
= 〈δyaδxi〉〈δxδx〉−1ij .

Here, the brackets around ∂y/∂x note that this is the best slope for this region of parameters space, which in this
case is the prior. This expression matches the usual least-squares expression for the slope of a line in multidimensions.
Equation 9 can be easily altered to address how the slope looks when focused on the posterior region by making the
change 〈· · · 〉 → 〈〈· · · 〉〉.
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A. Response of extracted parameter values to changes in experimental measurement

Equation 9 shows how a specific model value, ya, changes when a specific parameter, xi, is varied. However,

describing how a small change in an experimental measurement, y
(exp)
a , affects the average value of a parameter,

〈〈xi〉〉, in the average posterior value is a different question. This involves understanding ∂〈〈xi〉〉/∂y(exp)a . Here we
consider a general expression for any posterior-averaged function of ~x, 〈〈f(~x)〉〉, which for this specific consideration
will be f(~x) = xi.

∂

∂y
(exp)
a

〈〈f(~x)〉〉 =
∂

∂y
(exp)
a

∫
d~x f(~x)L(~x)∫
d~x L(~x)

(10)

= 〈〈f(~x)
1

L
∂

∂y
(exp)
a

L〉〉 − 〈〈f(~x)〉〉〈〈 1

L
∂

∂y
(exp)
a

L〉〉.

Both terms on the right-hand-side of Eq. (10) can be calculated from the trace. By setting f = δxi = (xi − x̄i),
with x̄i ≡ 〈〈xi〉〉, the second term vanishes in this case, and if one has an expression for the likelihood, one need
only average δxi(1/L)∂L over the sampling of points from the MCMC trace to calculate the required result. One can
invoke the emulator to calculate y(~x), and thereby determine both L and ∂L.

For Gaussian likelihoods Eq. (10) becomes especially simple. In that case

L = exp

{
1

2
(ya − y(exp)a )Σ−1ab (yb − y(exp)b )

}
1

L
∂

∂y
(exp)
a

L = Σ−1ab (ya − y(exp)a ),

∂

∂y
(exp)
a

x̄i = Σ−1ab 〈〈δxiδyb〉〉, (11)

= Σ−1ab

〈〈
∂ya
∂xj

〉〉
Aji,

Aij ≡ 〈〈δxiδxj〉〉.

Here, δy can be relative to any point because 〈〈δx〉〉 = 0, and the derivative in the last line is the average slope for
the posterior region. Eq. (11) is straightforward to calculate from the output of the MCMC. For the case where Σ is
diagonal,

∂x̄i

∂y
(exp)
a

∣∣∣∣∣
y
(exp)
b 6=a

=
1

σ2
a

〈〈δyaδxi〉〉 (12)

To better quantify how a specific observable constrains a given parameter, one may multiple the expression for
∂x̄/∂y(exp) in Eq. (12) by the measure of how much ya changes throughout the prior, 〈δy2a〉1/2, because model values
of an observable must change within the range of the prior if that observable is to provide resolving power. Figure 4
displays this quantity for all observables. One can also see whether the change is positive or negative, which is not
obvious and may have an opposite sign compared to ∂y/∂x.

As examples of the sensitivity analysis one can look at the elliptic flow measured at RHIC and at the LHC. In Fig.
5 one can see that changing the measurement of v2 at RHIC strongly affects the extracted value of the viscosity at
T0, (η/s)0, but has little effect on the extracted temperature dependence, η′. In contrast, the measurement of v2 at
the LHC more strongly affects η′, while playing a more minor role in determining (η/s)0. Given the fact that the
LHC explores higher energy densities, this was expected. One can also see that the constraints on the viscosity were
driven by measurements of v2 and the multiplicities, whereas constraints on the two equation-of-state parameters
were driven by a wider variety of measurements.

B. Relation between experimental uncertainties and widths of posterior parameter distributions

We now consider how the uncertainty of a specified observable affects the width of the posterior parameter distri-
bution, i.e., calculate the derivative

∂

∂Σab
Aij = 〈〈δxiδxj

1

L
∂L
∂Σab

〉〉 − 〈〈δxiδxj〉〉〈〈
1

L
∂L
∂Σab

〉〉 , (13)
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FIG. 4. (Color online) Model responses of an observable with respect to a given parameter, 〈〈∂ya/∂xi〉〉/σa.

where the last step followed the steps from the previous subsection used to derive Eq. (10). This provides a similar
measure of how the parameters are resolved by specific observables, and to that end provides very similar usefulness

as the calculations of ∂x̄i/∂y
(exp)
a displayed in the right-hand side of Fig. ??. Whereas the previous measure described

how the mean of the posterior distribution for a given parameter, xi, changes when one changes a given observable,
the quantity in Eq. (13) provides an understanding of how changing the uncertainty for a given observable, σa, affects
the width of the posterior distribution for a given parameter. One expects the two measures to provide similar insight.

Equation (13) is fairly straight-forward to calculate, but can be a bit cumbersome. To find a simpler, though
approximate, expression we assume that the prior distribution of parameters is Gaussian even though the results
shown here all assumed hard cutoffs, and that y(~x) is linear, so that the posterior distribution is Gaussian. We also
use Gaussian likelihoods for comparing to experimental values. When comparing calculations with and without these



11

 d
N
π
/d
y(

R
H

IC
,0

-5
%

)
 <
p
t
>
π
(R

H
IC

,0
-5

%
)

 <
p
t
>
K

(R
H

IC
,0

-5
%

)
 <
p
t
>
p
(R

H
IC

,0
-5

%
)

 R
ou

t(
R

H
IC

,0
-5

%
)

 R
si

d
e(

R
H

IC
,0

-5
%

)
 R

lo
n
g(

R
H

IC
,0

-5
%

)
 d
N
π
/d
y(

R
H

IC
,2

0
-3

0
%

)
 <
p
t
>
π
(R

H
IC

,2
0

-3
0

%
)

 <
p
t
>
K

(R
H

IC
,2

0
-3

0
%

)
 <
p
t
>
p
(R

H
IC

,2
0

-3
0

%
)

 R
ou

t(
R

H
IC

,2
0

-3
0

%
)

 R
si

d
e(

R
H

IC
,2

0
-3

0
%

)
 R

lo
n
g(

R
H

IC
,2

0
-3

0
%

)
 v

2
(R

H
IC

,2
0

-3
0

%
)

 d
N
π
/d
y(

L
H

C
,0

-5
%

)
 <
p
t
>
π
(L

H
C

,0
-5

%
)

 <
p
t
>
K

(L
H

C
,0

-5
%

)
 <
p
t
>
p
(L

H
C

,0
-5

%
)

 R
ou

t(
L

H
C

,0
-5

%
)

 R
si

d
e(

L
H

C
,0

-5
%

)
 R

lo
n
g
(L

H
C

,0
-5

%
)

 d
N
π
/d
y(

L
H

C
,2

0
-3

0
%

)
 <
p
t
>
π
(L

H
C

,2
0

-3
0

%
)

 <
p
t
>
K

(L
H

C
,2

0
-3

0
%

)
 <
p
t
>
p
(L

H
C

,2
0

-3
0

%
)

 R
ou

t(
L

H
C

,2
0

-3
0

%
)

 R
si

d
e(

L
H

C
,2

0
-3

0
%

)
 R

lo
n
g(

L
H

C
,2

0
-3

0
%

)
 v

2
(L

H
C

,2
0

-3
0

%
)

-0.5

0.5
Zε (RHIC)

-0.5

0.5
Zε (LHC)

-0.5

0.5
σsat(RHIC)

-0.5

0.5
σsat(LHC)

-0.5

0.5
fwn(RHIC)

-0.5

0.5
fwn(LHC)

-0.5

0.5
τ′xx(RHIC)

-0.5

0.5
τ′xx(LHC)

-0.5

0.5
F0  (RHIC)

-0.5

0.5
F0  (LHC)

-0.5

0.5
(η/s)0

-0.5

0.5
η′

-0.5

0.5
EoS X′

-0.5

0.5
EoS Γ

(
〈〈
xi
〉〉
/ y (exp)

a )
〈
(δya )

2
〉1/2

FIG. 5. (Color online) The change of the inferred value of a parameter with respect to changes in a measurement, ∂〈〈xi〉〉/∂y(exp)
a ,

are scaled by the spread of model values throughout the prior, 〈δy2
a〉1/2. Larger absolute values point to measurements which

play important roles in constraining that parameter. The signs of the response are not always equal for the corresponding
derivatives in this plot and in Fig. 4.

approximations, results changed little.
With the approximations, the overall likelihood is then of a Gaussian form,

L ∼ exp

{
−|δx|2/2R2 −

〈〈
∂ya
∂xi

〉〉
Σ−1ab

〈〈
∂yb
∂xj

〉〉
δxiδxj

2

}
, (14)

δxi = xi − x̄i.

We have assumed that the parameters xi have all been scaled to have the same prior width R. These parameters thus
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become dimensionless. Further, in the neighborhood of the maximum likelihood we assume that y behaves linearly.
The width of the posterior, Aij , can be taken from the Gaussian form,

Aij =

∫
dNx exp{−A−1ij δxiδxj/2}δxiδxj∫

dNx exp{−A−1ij δxiδxj/2}
,

A−1ij ≡ δij/R
2 +

〈〈
∂ya
∂xi

〉〉
Σ−1ab

〈〈
∂yb
∂xj

〉〉
. (15)

Our stated goal is to find an expression describing how Aij responds to changes in Σab,

∂A

∂Σ−1ab
=

∂

∂Σ−1ab
(AA−1A) (16)

= 2
∂

∂Σ−1ab
A+A

(
∂

∂Σ−1ab
A−1

)
A

= −A
(

∂

∂Σ−1ab
A−1

)
A

∂

∂Σ−1ab
Ai` = −Aij

〈〈
∂ya
∂xj

〉〉〈〈
∂yb
∂xk

〉〉
Ak`. (17)

One can now insert the expression for ∂y/∂x given in Eq. (9) into Eq.s 15 and 17 to find the needed result. When
working with the hard cutoffs for priors rather than Gaussians, we scale all the parameters to have the same prior
width, 〈x2〉 = R2, in addition to being centered at zero, 〈x〉 = 0. If one uses the prior distribution to calculate ∂y/∂x,
then the response in Eq. (17) need not ever access the experimental value, and one does not need to perform the
MCMC.

If one wishes to use the posterior distribution to calculate the derivatives, the form for the response simplifies

∂

∂Σ−1ab
Aij = −〈〈δxiδya〉〉〈〈δybδxj〉〉, (18)

which can also be transformed into an expression in terms of derivatives with respect to Σ,

∂

∂Σab
Aij =

∂Aij

∂Σ−1cd

∂Σ−1cd
∂Σab

∂Σ−1cd
∂Σab

=
∂

∂Σab

(
Σ−1ce ΣefΣ−1fd

)
= −Σ−1ca Σ−1bd ,

∂

∂Σab
Aij = Σ−1ac 〈〈δycδxi〉〉〈〈δydδxj〉〉Σ−1db . (19)

In this analysis the uncertainty matrix is diagonal, Σab = σ2
aδab, and Eq. (19) can be used to calculate the resolving

power for determining a single parameter xi due to a single parameter ya.

Ri;a ≡
σa

〈(δxi)2〉
∂

∂σa
Aii, (20)

=
σa

〈(δxi)2〉
Σ−1ac 〈〈δycδxi〉〉〈〈δydδxj〉〉Σ−1da .

Results for Ri;a are shown in Fig. 6.
Even when a specific parameter is not well constrained, a combination of that parameter with another might still

be well constrained. The two equation-of-state parameters are a good example, and the two viscosity parameters also
have a strong off-diagonal component to their likelihood projections. These two instances are shown in panels (c)
and (f) in Fig. 3. If one then wants to understand the contribution of a given observable in constraining the two-
dimensional projection, one needs to define a quantity which effectively measures the likely area of the two-dimensional
projection onto the parameters xi and xj . Here we use the determinant of the two-by-two matrix constructed from
the ij components of Aij .

Dij ≡ AiiAjj −AijAji, (21)

Rij;a ≡ σa
∂

∂σa
Dij = σa

{
Aii

∂

∂σa
Ajj +Ajj

∂

∂σa
Aii − 2Aij

∂

∂σa
Aji

}
. (22)
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FIG. 6. (Color online) The resolving power of a particular observable in determining a specific parameter, Ri;a defined in Eq.
(20), is displayed for all observables and parameters.

Dij would represent the product of the eigenvalues of the two-by-two matrix, or equivalently, the square of the area
covered by the projection. The way in which Dij changes with respect to a given uncertainty can then be calculated
with the help of Eq. (19). These sensitivities are illustrated in Fig. 7. This clearly demonstrates that the extracted
viscosity is strongly affected by the v2 measurements, and that multiplicities are also important. Other observables
are of secondary, but not negligible importance. For constraining the equation of state, femtoscopic radii seem to
provide the most resolving power, but all other observables contribute significantly. This underscores the importance
of simultaneously considering multiple classes of observables to constrain the parameter space.
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FIG. 7. (Color online) The resolving power for determining a pair of parameters, xi, xj , due to a specific observable ya as
defined by Rij;a in Eq. (22). The sensitivity for the two viscosity parameters is shown in the upper panel and that for the two
equation-of-state parameters is displayed in the lower panels. Information about the viscosity is most strongly determined by
measurements of v2 and the multiplicities. The equation of state is most strongly constrained by femtoscopic radii.

V. SUMMARY AND OUTLOOK

The results here are unprecedented for this field, and for the first time illustrate a systematic method for identifying
the critical links between parameters and observables. The links identified by the procedure mainly reinforced the
heuristically attained general knowledge of the field. For instance, it was indeed found that measurements of the
elliptic anisotropy provide strong constraints of the viscosity. Further, the expectation that RHIC data would play a
larger relative role in determining the viscosity near Tc, and that the LHC data would play a larger role in determining
the temperature dependence was confirmed. The relatively large role of the multiplicities was not necessarily expected,
nor was the fact that other observables provide non-negligible resolving power.

Whereas there was consensus within the field that v2 would be the most important observable to determine the
viscosity, the role of various observables in constraining the equation of state was very much in dispute. Figures 6, ??
and 7 all show that the femtoscopic source sizes provide the most resolving power. This validates ideas based on low
pressures leading to more elongated phase space distributions in the outward direction and that the longitudinal sizes
would increase if transverse expansion was slower, [10, 17, 18]. Additionally, source sizes played a role in measuring
the final entropy, which is also a measure of the equation of state [19]. The mean transverse momentum had long
ago been pointed out as being sensitive to the temperature, and therefore the equations of state, [20], and even v2
had been suggested as a means for extracting early pressure [21]. Therefore, it was not surprising to see the resolving
power for the equation of state in Fig. 7 spread across all observables.

The techniques presented here could play a pivotal role in determining the direction of future experiments. Before
embarking on an expensive experimental program to improve the measure of a specific observable, one could check
to see how that improvement might indeed better determine parameters of greatest interest. For example, one could
determine whether running an accelerator for a specific projectile target combination, or at a new beam energy, or
with higher statistics would best provide insight into better determining the equation of state. In many cases it would
behoove the community to pre-analyze a project with modern statistical techniques before investing the cost and
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manpower for the effort.
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