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Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic inter-
actions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte
Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local
potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-
to-next-to-leading order (N2LO). Chiral EFT naturally predicts consistent many-body forces. In
this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are
included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the
equation of state of neutron matter and for the energies and radii of neutron drops. In particular,
we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present
local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.

PACS numbers: 21.60.Ka, 21.30.x, 21.65.Cd, 26.60.c

I. INTRODUCTION

Chiral EFT provides a systematic expansion for nu-
clear forces based on the symmetries of QCD [1–3]. At a
given order in the power counting, nuclear forces include
contributions from pion exchanges and from shorter-
range interactions. Chiral EFT enables calculations with
controlled theoretical uncertainties, a consistent descrip-
tion of electroweak interactions, and the matching to lat-
tice QCD. In addition to NN interactions, which are the
dominant contribution to nuclear forces, chiral EFT nat-
urally predicts consistent many-body interactions, where
the leading 3N forces enter at N2LO [4, 5]. It has been
shown that 3N forces are key for the properties of neu-
tron and nuclear matter [6–14]. A better understanding
of 3N forces is a major frontier in nuclear physics.

In addition to systematic chiral EFT interactions, re-
liable many-body methods are needed. For strongly in-
teracting systems, QMC methods provide some of the
most accurate solutions [15, 16]. These include Green’s
function Monte Carlo (GFMC) [17–19] and AFDMC [20]
methods, for a recent review see Ref. [21]. In continuum
QMC calculations, the central object is the many-body
propagator, which is of the form

G(R,R′; δτ) = 〈R|e−δτĤ |R′〉 . (1)

Here, R = (r1, s1, r2, s2, . . . , rN , sN ) is the configuration
vector of all N particles, including the single-particle co-
ordinates and spins ri, si (and other quantum numbers),

δτ is a step in the imaginary-time evolution, and Ĥ is
the Hamiltonian.
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In nuclear GFMC calculations all possible spin-isospin
nucleon states need to be explicitly accounted for, which
makes this method unsuitable for accurate neutron mat-
ter studies due to an unfavorable scaling behavior. In
contrast to GFMC, AFDMC rewrites the Green’s func-
tion by applying a Hubbard-Stratonovich transformation
using auxiliary fields, which changes the scaling behavior
favorably at the cost of additional integrations over aux-
iliary fields. We thus make use of the AFDMC method
to study neutron matter.

The trial wave function ψT in AFDMC is usually cho-
sen to be of the form

ψT (R) =

∏
i<j

fJ(rij)

ΦA(R) , (2)

where inter-particle correlations are included through
the Jastrow factor fJ(rij) and ΦA is the noninteracting
ground state given by a Slater determinant

ΦA(R) = A

[∏
i

φαi(ri, si)

]
, (3)

where αi labels single-particle states (plane waves for
neutron matter and Hartree-Fock orbitals for neutron
drops [22]).

For the evaluation of the propagator, it is necessary
to be able to separate all momentum dependences as

a quadratic
∑N
i=1 p

2
i term. This can be done for local

interactions, where the propagator for the momentum-
dependent part is a Gaussian integral that can be evalu-
ated analytically, while the interaction part can be easily
obtained from the configuration vector (for more details
see Ref. [21]). Chiral EFT interactions are naturally for-
mulated in momentum space and usually contain several
sources of nonlocality.

Recently, local chiral NN potentials have been con-
structed up to N2LO and have been used to calculate
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FIG. 1. Contributions to 3N forces at N2LO. These include a
two-pion-exchange part given by the couplings c1, c3, and c4,
a one-pion-exchange–contact interaction given by cD, and a
3N contact interaction given by cE .

the energy of neutron matter and light nuclei using con-
tinuum QMC methods [23–25]. Following the same strat-
egy, a minimally nonlocal NN potential was developed in
Ref. [26] with explicit ∆ degrees of freedom. Monte Carlo
methods have also been used to study neutron matter
based on lattice techniques [27] and with momentum-
space QMC approaches [28, 29].

For a complete calculation at N2LO, it is necessary to
include 3N forces. In Sec. II, we present local chiral 3N
forces at N2LO, which are consistent with the local NN
interactions of Refs. [23, 24]. The general expressions for
the local 3N forces are given in Appendix A. We study in
detail the regulator dependence of the leading two-pion-
exchange 3N energy contributions at the Hartree-Fock
level in Sec. III and in AFDMC in Sec. IV. This shows
that present local regulators lead to less repulsion from
3N forces compared to using the usual nonlocal regu-
lators. We present results for the equation of state of
neutron matter in Sec. IV and for the energies and radii
of neutron drops in Sec. V. Finally, we summarize and
give an outlook.

II. CHIRAL 3N FORCES IN COORDINATE
SPACE

In chiral EFT, the leading 3N forces at N2LO have
three contributions: a two-pion-exchange part given by
the couplings c1, c3, and c4, a one-pion-exchange–contact
interaction given by cD, and a 3N contact interaction
given by cE [4, 5]. We show the N2LO 3N contributions
diagrammatically in Fig. 1. The ci couplings are deter-
mined by pion-nucleon or NN scattering, while cD and
cE have to be fit to properties of A > 2 systems.

Because we want to include 3N forces in AFDMC
calculations in coordinate space, we have to use local
coordinate-space expressions of the N2LO 3N forces, as
was similarly done in Refs. [30, 31]. To achieve this, we
first Fourier transform the momentum-space expressions
of the N2LO 3N forces. We begin with the 3N contact
interaction VE . In momentum space, this contribution
vanishes in neutron matter due to the Pauli principle,
when a regulator that is symmetric in the particle labels
is used, see Ref. [6]. Because a local regulator does not
fulfill this requirement, the VE term will contribute. In
this case, the regulator induces a finite range that mixes

3N partial waves. After Fourier transformation, we find
in neutron matter (with τ i · τ k = 1)

V ijkE =
cE

2f4πΛχ

∑
π(ijk)

δ(rij)δ(rkj) , (4)

where we sum over all permutations π(ijk) of the three
particles i, j, and k, rij = ri − rj , fπ = 92.4 MeV is the
pion decay constant, and we use Λχ = 700 MeV. The
expressions for general isospin and details on the Fourier
transformation are provided in Appendix A.

As for the VE term, the one-pion-exchange–contact in-
teraction VD vanishes in momentum space for neutron
matter due to the spin-isospin structure, if a symmetric
regulator is used [6]. In coordinate space, the VD term
also contributes and after Fourier transformation we have
two parts (see Appendix A):

V ijkD =
gA

24f4π

cD
Λχ

∑
π(ijk)

[
m2
π

4π
δ(rij)Xik(rkj)

− σi · σk δ(rij)δ(rkj)
]
, (5)

where gA = 1.267 is the axial coupling, mπ = 138.03 MeV
is the averaged pion mass, and the function Xik(r) is
given by

Xik(r) =
[
Sik(r)T (r) + σi · σk

]
Y (r) , (6)

with the tensor operator Sik(r) = 3σi ·r̂σk ·r̂−σi ·σk, the
function T (r) = 1+3/(mπr)+3/(mπr)

2, and the Yukawa
function Y (r) = e−mπr/r. Here, r̂ is the unit vector in
the direction of r and r is the magnitude. There are two
contributions from VD, because one-pion exchange con-
tains a long-range part as well as a delta-function part.
The latter needs to be included to maintain the Gold-
stone boson nature of the pion.

We emphasize that there is an ambiguity in performing
the Fourier transformation for the VD term, depending on
the choice of the initial spin-isospin structure. This leads
either to terms δ(rij)Xik(rkj) or δ(rij)Xkj(rkj) with dif-
ferent spin indices in the X function. The two expres-
sions are the same due to the δ function, but lead to
different results after regularization. Therefore, the dif-
ferences from choosing different structures are a regula-
tor effect and should be of higher order, as mentioned in
Ref. [31]. These differences will vanish in the limit of in-
finite momentum cutoff. Because we will not include the
VD term in our calculations in this paper, this effect will
not influence the results here. The different VD terms
will be studied in Ref. [32].

We now turn to the two-pion-exchange contributions
VC in neutron matter (see Appendix A). For the part
proportional to c1, we find

V ijkC,c1
=

c1m
4
πg

2
A

2f4π(4π)2

∑
π(ijk)

σi · r̂ij σk · r̂kj

× U(rij)Y (rij)U(rkj)Y (rkj) , (7)
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with the function U(r) = 1 + 1/(mπr). This contribu-
tion is similar to the long-range (LR) S-wave part of the
Illinois 3N forces, see Ref. [33].

The part proportional to c3 is given by

V ijkC,c3
=
c3g

2
A

36f4π

∑
π(ijk)

×
[
m4
π

(4π)2
Xij(rij)Xkj(rkj)−

m2
π

4π
Xik(rij)δ(rkj)

− m2
π

4π
Xik(rkj)δ(rij) + σi · σkδ(rij) δ(rkj)

]
.

(8)

Thus, in coordinate space, for the c3 part of the VC
term, there are four contributions due to a long-range
and short-range part in each pion exchange. The
first term ∼ Xij(rij)Xkj(rkj) is a long-range two-pion-
exchange contribution similar to the anticommutator
part of the P -wave two-pion-exchange interaction of
Ref. [33]. In addition, there is also a short-range (SR)
term ∼ δ(rij)δ(rkj) which is similar to VE but spin-
dependent, and two intermediate-range (IR) terms ∼
Xik(rij)δ(rkj) +Xik(rkj)δ(rij) similar to VD. Note that
although the spin-isospin structure is similar to the Ur-
bana IX force and in general to the two-pion-exchange
part of the Illinois forces, the spatial functions are quite
different. Finally, the coordinate-space expression for the
c4 part of VC is given in Appendix A. This does not con-
tribute in neutron matter for general regulators due to
the isospin structure.

For a many-body system, the total 3N interactions are

then given by V3N =
∑
i<j<k V

ijk
3N , with i, j, k = 1, . . . , A.

Moreover, in the AFDMC calculation V ijk3N is rewritten
as a sum over cyclic permutations only.

In order to regularize the local 3N forces consistently
with the NN forces of Refs. [23, 24], we replace the δ
functions by smeared-out delta functions of the form

δ(r) → δR3N(r) =
1

πΓ
(
3/4
)
R3

3N

e−(r/R3N)4 , (9)

where R3N is the three-body cutoff. For the long-range
pion-exchange contributions, we multiply the Yukawa
functions with the long-range regulator flong of Refs. [23,
24], given by

Y (r) → Y (r)
(

1− e−(r/R3N)4
)
. (10)

To be consistent with the NN cutoff R0 = 1.0 − 1.2 fm,
we will also vary the 3N cutoff in this range, R3N = 1.0−
1.2 fm. We have checked that the IR and SR parts of VC
as well as the VE and VD contributions in neutron matter
vanish for R3N → 0 (for infinite momentum cutoffs), and
are therefore regulator effects.

In the following, we include all terms of VC (the c1 and
c3 parts for neutron matter), with the ci couplings given
by the NN interactions used [23, 24]. Results including
the shorter-range contributions VD and VE , which require
fits of cD and cE , will be studied in Ref. [32].
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FIG. 2. (Color online) Contributions to the neutron-matter
energy per particle E/N as a function of density n at the
Hartree-Fock level. The black band shows the energy ob-
tained using a nonlocal regulator, as in Ref. [34], with a 3N
cutoff 400 − 500 MeV. The blue band corresponds to the LR
part of the two-pion-exchange interaction VC with the local
regulator used here, the red band to the SR part of VC , and
the green band to the IR of VC . For these bands, the cutoff
in the local regulator is varied with R3N = 1.0 − 1.2 fm. The
dashed-dotted line corresponds to the results for VC using
the local momentum-space regulator of Ref. [31] with a cutoff
Λ3N = 500 MeV. This shows that these local 3N forces pro-
vide less repulsion at the Hartree-Fock level than with nonlo-
cal regulators. The dashed lines show the results for VC with
the local regulator and small R3N = 0.5 fm.

III. HARTREE-FOCK CALCULATION FOR
NEUTRON MATTER

We calculate the 3N contributions from the VC part
to neutron matter first at the Hartree-Fock (HF) level.
This includes all interactions of Eqs. (7) and (8). Details
on the HF calculation can be found in Refs. [34].

In Fig. 2 we show the contributions to the neutron-
matter energy per particle E/N as a function of den-
sity n. The blue band corresponds to the LR part of the
two-pion-exchange interaction VC with the local regula-
tor used here, the red band to the SR part of VC , and the
green band to the IR of VC . For these bands, the cutoff in
the local regulator is varied between R3N = 1.0− 1.2 fm.
The dashed lines show the results for VC with the local
regulator and R3N = 0.5 fm. In addition, the black band
shows the energy obtained using a nonlocal regulator, as
in Ref. [34], with a cutoff 400− 500 MeV.

The HF energy in neutron matter for the local VC are
in total ≈ 3 MeV at saturation density n0 = 0.16 fm−3.
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FIG. 3. (Color online) Contributions to the energy per par-
ticle E/N at saturation density as a function of the cutoff
R3N. The lines show the LR, SR, and IR parts of the two-
pion-exchange interaction VC with the local regulator used
here, calculated at the Hartree-Fock level. The bands are the
contributions of the corresponding 3N parts to the AFDMC
energies for a variation of the NN cutoff R0 = 1.0 − 1.2 fm,
see also Fig. 4.

This is only about half of the VC contribution using the
nonlocal regulator. The shorter-range (IR and SR) con-
tributions, which are regulator effects, are small and with
opposite sign. If we lower the coordinate-space cutoff,
R3N = 0.5 fm (dashed lines), we find that the IR and
SR parts almost vanish, as expected, and that the total
HF energy is 5.5 MeV for the local VC , which agrees well
with the momentum-space result. We also note that the
momentum-space result is very close to the infinite-cutoff
result at the HF level. Thus, the smaller 3N energies for
the local 3N forces are due to the local regulators used.

To check this, we have performed a HF calculation of
VC using the local momentum-space regulator of Ref. [31]
with a cutoff of Λ3N = 500 MeV. This is given by the
dashed-dotted line in Fig. 2. At saturation density, we
find an energy per particle of 3.8 MeV, which is com-
parable to the result for the local 3N forces used here.
This supports the above conclusion that 3N forces with
local regulators provide less repulsion at the HF level
compared to the usual nonlocal regulators. It may be
possible that the VD and VE parts, which contribute to
neutron matter for local regulators, make up part of these
differences. This will be explored further in Ref. [32].

We show the VC contributions to the energy per par-
ticle E/N at saturation density as a function of the 3N
cutoff R3N in Fig. 3. The lines show the LR, SR, and
IR parts for the local regulator used here, calculated at
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FIG. 4. (Color online) Variation of the AFDMC energy per
particle at saturation density as a function of the 3N cutoff
R3N for an NN cutoff 1.0 fm (black lines in the upper part)
and 1.2 fm (red lines in the lower part). The horizontal lines
correspond to the NN-only energy. The squares are for the c1
and LR c3 part of VC , the crosses include also the SR c3 part
of VC , and the circles include all parts of VC .

the HF level. For all 3N cutoffs, the SR and IR parts
are small and of opposite sign, while the major contri-
bution of VC comes from the LR parts. The SR and IR
parts vanish for small coordinate-space (high momentum-
space) cutoffs, as expected. The LR part increases up to
the infinite-cutoff result at the HF level. In the cutoff
range R3N = 1.0− 1.2 fm, the total contribution of VC is
≈ 3 MeV, and thus only about half of infinite-cutoff re-
sult. This is what we also found in Fig. 2. We emphasize
that the cutoff dependence from 400−500 MeV to infinte
momentum-space cutoff is small for nonlocal regulators
and these densities.

IV. QMC CALCULATION FOR NEUTRON
MATTER

Next, we investigate 3N forces in neutron matter us-
ing the AFDMC method, similarly to Refs. [23, 24]. In
Fig. 3, in addition to the HF results, we show the contri-
butions of the LR, SR, and IR parts of VC to the AFDMC
energy, where the bands are from varying the NN cutoff
R0 = 1.0 − 1.2 fm. For the SR part, the AFDMC en-
ergies agree well with the HF energies, so that HF is a
good approximation for this contribution. For the IR
part, for large coordinate-space cutoffs, the agreement
between HF and AFDMC results is good but worsens for
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FIG. 5. (Color online) Dependence of the AFDMC energy per
particle at saturation density as a function of the 3N cutoff
R3N on different long-range regulators. Results are shown for
an NN cutoff R0 = 1.2 fm. The long-range regulator is given
by

[
1 − e−(r/R3N)n1 ]n2 with different parameters n1 and n2.

smaller cutoffs. The uncertainty (from NN cutoff varia-
tion) grows and the energy decreases significantly com-
pared to the HF result. For the LR parts, the AFDMC
energies are about 70−80% of the HF energies for higher
cutoffs, which suggests that the LR N2LO 3N contribu-
tions beyond HF are important. When lowering the 3N
cutoff, the energy increases up to a plateau. Further
lowering the cutoff, the system collapses and the energy
rapidly decreases. In addition, the uncertainty grows.

To study these effects more clearly, we show the vari-
ation of the total AFDMC energy per particle at sat-
uration density as a function of the 3N cutoff R3N for
an NN cutoff 1.0 fm (black lines in the upper part) and
1.2 fm (red lines in the lower part) in Fig. 4. The hor-
izontal lines correspond to the NN-only energies. The
squares include only the LR c1 and c3 part of VC , the
crosses include also the SR c3 part of VC , and the cir-
cles include all parts of VC . For the soft NN potential
(R0 = 1.2 fm), we find the plateau of the AFDMC en-
ergy to be at R3N = 1.2− 1.4 fm. If the cutoff is lowered,
the energy decreases and for R3N = 0.6 fm we find an
attractive 3N contribution.1 For the harder NN poten-
tial (R0 = 1.0 fm), the plateau is found for smaller 3N
cutoffs, R3N = 1.0− 1.2 fm.

1 This behavior is qualitatively similar to the overbinding given
by the Illinois 3N forces in pure neutron systems [35]. It would
be interesting to see if using a similar cutoff would avoid the
overbinding of neutron matter using Illinois forces.
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FIG. 6. (Color online) Energy per particle as a function of
density for neutron matter at N2LO, including NN forces and
the 3N VC interaction in AFDMC. Results are shown for an
NN cutoff R0 = 1.0 − 1.2 fm and R3N in the same range.

In general, the plateau is reached when R3N ∼ R0, and
the system collapses when R3N is significantly smaller
than R0. This can be understood because harder NN
potentials do not favor particles to be close and smaller
3N cutoffs are needed to overcome this repulsion. If we
want to decrease R3N in our calculations, we also need
to decrease R0. Therefore, R3N has to be chosen consis-
tently with R0 which justifies our cutoff range. Because
R0 < 1.0 fm is difficult for local NN potentials [24], we
also do not decrease the 3N cutoff below that limit and
use the range for R0 and R3N within 1.0− 1.2 fm.

Although the collapse of the system for lower 3N cut-
offs does not appear in the HF calculation, it is not an
artifact of the AFDMC method. It is due to the function
Xij(r), which includes terms ∼ 1/r3. If three particles
are in a small volume, this becomes very attractive, un-
less it gets regularized with a large enough R3N. These
cutoff values correspond to the position of the plateau.
In a HF calculation, which only includes low-momentum
states, this collapse will not appear.

We have investigated the AFDMC energies when
choosing different parameters in the long-range regula-
tor function. In Fig. 5 we show the dependence of the
AFDMC energy per particle at saturation density as a
function of the 3N cutoff R3N on different long-range reg-
ulators. Results are shown for an NN cutoff R0 = 1.2 fm.
The long-range regulator is given by

(
1− e−(r/R3N)n1

)n2

with different parameters n1 and n2. We find that the
general picture is independent of the choice of the expo-
nents in the regulator function. A consistent change of
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FIG. 7. (Color online) Comparison of the neutron-matter en-
ergy at N2LO based on the local chiral NN+3N potentials in
AFDMC (this work) with the N2LO calculation of Ref. [10]
based on the EGM N2LO potentials and using many-body
perturbation theory (MBPT), with the particle-particle (pp)
ladder results of Ref. [14] based on the EM N2LO poten-
tial, and with results based on the N2LOopt potential using
coupled-cluster (CC) theory [11] and self-consistent Green’s
function (SCGF) methods [13].

the short-range regulator has only a negligible effect on
the energy. For different functions, the position of the
plateau varies between 0.8 − 1.2 fm but the overall en-
ergies at the plateau are comparable, generally ranging
between 12.3− 12.5 MeV.

In Fig. 6 we present the final result of our AFDMC
simulations for the equation of state of neutron matter
at N2LO. We show the energy per particle as a function of
density including NN forces and the 3N VC interaction.
Results are shown for an NN cutoff R0 = 1.0 − 1.2 fm
and R3N in the same range. For the softer NN potential
(R0 = 1.2 fm, lower lines) we find the energy per particle
to be 12.3− 12.5 MeV at saturation density for different
3N cutoffs. The NN-only energy is 11.4 MeV and the
3N VC has an impact of ≈ 1 MeV. For the harder NN
potential (R0 = 1.0 fm, upper lines) we find an energy per
particle of 15.5− 15.6 MeV compared to 14.1 MeV for an
NN-only calculation. Here, the impact of the 3N VC is
≈ 1.5 MeV. The variation of the total energy with the 3N
cutoff is ≈ 0.2 MeV in our cutoff range and considerably
smaller than the variation with the NN cutoff, because
R3N range lies in the plateau described above.

We find the magnitude of the local 3N two-pion-
exchange VC forces to be at most about 1.5 MeV at sat-
uration density, which is is smaller than a typical con-
tribution of 4 MeV [6] in momentum space with nonlocal

regulators, including 2nd and 3rd order corrections. As
discussed above, this difference can already be seen on
the HF level and is most likely due to the present local
regulators. This was also observed in the coupled-cluster
calculations of Ref. [11] where a difference of 2 MeV was
found for the neutron-matter energy per particle when
choosing local versus nonlocal regulators with a similar
cutoff of 500 MeV. Following these findings, local versus
nonlocal regulators need to be further investigated.

In Fig. 7 we compare the neutron-matter energy
at N2LO based on the local chiral NN+3N potentials
in AFDMC (this work) with the N2LO calculation of
Ref. [10] based on the EGM N2LO potentials of Ref. [36]
and using many-body perturbation theory (MBPT), with
the particle-particle (pp) ladder results of Ref. [14] based
on the EM N2LO potential of Ref. [37], and with results
based on the N2LOopt potential of Ref. [38] using self-
consistent Green’s function (SCGF) methods [13] and
using coupled-cluster (CC) theory [11]. At saturation
density, the AFDMC energies are in general smaller than
the other results, mainly due to the smaller contributions
from local 3N forces. Furthermore, the density depen-
dence of the AFDMC band is flatter than for the other
calculations, which may be explained by differences in the
NN phase shift predictions. We would expect the results
to come closer when including chiral forces at next-to-
next-to-next-to-leading order (N3LO). A comparison of
AFDMC results with MBPT results using the same lo-
cal potential, as in Refs. [23, 24], will be presented in a
forthcoming paper.

V. NEUTRON DROPS

Neutron drops in external potentials provide useful
constraints for energy-density functionals and their ap-
plications to neutron-rich nuclei [22, 39]. They constitute
a simplified model of neutron-rich nuclei, where the ex-
ternal well simulates the effects of the core on the valence
neutrons. Their study is therefore a natural addition to
homogenous neutron matter.

We have performed AFDMC calculations for the ener-
gies and radii of neutron drops with N = 8, 20, 40, and
70 neutrons in a harmonic oscillator potential with an os-
cillator parameter ~ω = 10 MeV. For these calculations
we used the same cutoff in the NN and 3N interactions,
R0 = R3N = 1.0 − 1.2 fm. The results for the energies
and radii are tabulated in Tab. I and shown in Fig. 8.
We give the results at different orders in the chiral ex-
pansion, and at N2LO, for NN forces only, plus only the
LR c1 and c3 parts of VC , and including also the SR and
IR parts of VC . The bands in Fig. 8 are given by the
cutoff variation R0 = R3N = 1.0 − 1.2 fm. We generally
find a good order-by-order convergence of the energies
and radii. The band increases with neutron numbers, at
the level of N2LO+VC it is 1% for the energy of N = 8
neutron drops, 2% for N = 20, 5% for N = 40, and 7%
for N = 70. Furthermore, in systems with N > 20 and



7

L
O

N
L

O

N
2
L

O
 N

N

+
V

C
,L

R

+
V

C

P
o

tt
e
r 

e
t 

a
l.120

125

130

135

140

E
 [

M
e
V

]

L
O

N
L

O

N
2
L

O
 N

N

+
V

C
,L

R

+
V

C

P
o

tt
e
r 

e
t 

a
l.410

420

430

440

N=8 N=20

L
O

N
L

O

N
2
L

O
 N

N

+
V

C
,L

R

+
V

C

P
o
tt

e
r 

e
t 

a
l.2.3

2.4

2.5

2.6

2.7

r 
[f

m
]

L
O

N
L

O

N
2
L

O
 N

N

+
V

C
,L

R

+
V

C

2.8

2.9

3

3.1

3.2

N=8 N=20

FIG. 8. Energies and radii of neutron drops with N = 8 and 20 neutrons in a harmonic oscillator potential with an oscillator
parameter ~ω = 10 MeV using AFDMC. The same cutoff is used in the NN and 3N interactions. We give the results at different
orders in the chiral expansion, and at N2LO, for NN forces only, plus only the LR c1 and c3 parts of VC , and including also
the SR and IR parts of VC . The bands are given by the cutoff variation R0 = R3N = 1.0− 1.2 fm. At LO with the softer cutoff
and N = 20, the system collapses. We compare our results with the calculations of Ref. [40], using coupled-cluster theory at
the ΛCCSD level, where the band is given by two different SRG evolution scales (for one initial NN+3N Hamiltonian).

at low orders, our calculations do not converge and a col-
lapse occurs (for the interactions not listed in the table).
This is due to the higher densities inside the larger neu-
tron drops which are also tabulated for the N2LO+VC
Hamiltonian at r = 0.125 fm in Table I. These show
that the different particle numbers probe a broad range
of central densities from low densities for N = 8 to twice
nuclear saturation density for N = 70, connecting the
neutron drop results with our neutron matter calcula-
tions. The higher the (central) density, the larger the
effect of the 3N forces, leading to a collapse for high den-
sities.

Furthermore, for all N at N2LO the relative contribu-
tion of VC is always larger for the R0 = 1.2 fm potential
than for the 1.0 fm one. For N = 70 we find VC to con-
tribute 3.7% for 1.2 fm versus 2.7% for 1.0 fm and for
N = 8 0.69% versus 0.60%. This result is the opposite
of what Fig. 6 shows for homogeneous matter: there the
softer NN potential leads to a smaller 3N contribution.
This is due to the higher central densities of the neu-
tron drops for the softer potentials, leading to larger 3N
contributions.

In Fig. 8, we also compare our results at N2LO with
the calculations of Ref. [40] using coupled-cluster theory
at the ΛCCSD level. The latter results are based on an
SRG-evolved chiral Hamiltonian starting from the N3LO
NN potential of Ref. [41] with a cutoff of 500 MeV and
local N2LO 3N forces, regulated in momentum space with

the same cutoff value, including also the VD and VE parts.
The band is given by two different SRG evolution scales
(for this initial NN+3N Hamiltonian). We find very good
agreement between the two approaches after inclusion of
N2LO 3N forces, whose contribution is small.

VI. SUMMARY AND OUTLOOK

We have presented local chiral 3N forces at N2LO
that are consistent with the local NN interactions of
Refs. [23, 24]. We have investigated the 3N two-pion-
exchange contributions to neutron matter both at the
HF level and in AFDMC calculations, including a de-
tailed study of the regulator dependence. Our results
show that present local regulators lead to less repulsion
from 3N forces compared to using the usual nonlocal reg-
ulators. This is already present at the HF level.

In neutron matter, the dependence on the 3N cutoff
over the range R3N = 1.0 − 1.2 fm is small compared
to the NN cutoff variation, but for lower 3N cutoffs the
system starts to collapse. We have also studied the influ-
ence of different local 3N regulators and found that the
general picture remains the same. Our findings lead to
the conclusion that local versus nonlocal regulators have
to be extensively studied. It will be crucial to develop a
method of assessing the quality of local regulators to find
improved versions for these regulators.
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TABLE I. Energies (in MeV) and radii (in fm) of neutron
drops with N = 8, 20, 40, and 70 neutrons in a harmonic os-
cillator potential with an oscillator parameter ~ω = 10 MeV.
The same cutoff is used in the NN and 3N interactions. We
give the results at different orders in the chiral expansion, and
at N2LO, for NN forces only, plus only the LR c1 and c3 parts
of VC , and including also the SR and IR parts of VC . For the
latter, we also give the central densities (at r = 0.125 fm in
fm−3). In systems with N > 20 a collapse occurs at low orders
(for the interactions not listed in the table).

N Hamiltonian E rms radius nc

8 LO(1.0) 132.95(2) 2.571(1)

8 NLO(1.0) 133.07(3) 2.633(1)

8 N2LO(1.0) NN-only 134.53(2) 2.656(1)

8 N2LO(1.0)+VC,LR 135.31(2) 2.673(1)

8 N2LO(1.0)+VC 135.34(1) 2.677(1) 0.07(1)

8 LO(1.2) 123.08(5) 2.365(1)

8 NLO(1.2) 132.82(2) 2.607(1)

8 N2LO(1.2) NN-only 133.53(1) 2.616(1)

8 N2LO(1.2)+VC,LR 134.40(1) 2.638(1)

8 N2LO(1.2)+VC 134.45(1) 2.637(1) 0.08(1)

20 LO(1.0) 432.29(7) 2.966(1)

20 NLO(1.0) 427.90(9) 3.062(1)

20 N2LO(1.0) NN-only 434.04(8) 3.089(1)

20 N2LO(1.0)+VC,LR 440.04(14) 3.137(1)

20 N2LO(1.0)+VC 439.90(7) 3.138(2) 0.15(1)

20 NLO(1.2) 420.92(4) 2.987(1)

20 N2LO(1.2) NN-only 423.38(3) 2.989(1)

20 N2LO(1.2)+VC,LR 430.45(6) 3.041(1)

20 N2LO(1.2)+VC 430.05(5) 3.036(1) 0.18(1)

40 NLO(1.0) 1053.10(36) 3.459(1)

40 N2LO(1.0) NN-only 1068.31(13) 3.481(1)

40 N2LO(1.0)+VC,LR 1091.97(23) 3.557(1)

40 N2LO(1.0)+VC 1090.28(14) 3.556(1) 0.16(1)

40 NLO(1.2) 1015.09(15) 3.318(1)

40 N2LO(1.2) NN-only 1015.35(17) 3.293(1)

40 N2LO(1.2)+VC,LR 1045.77(12) 3.385(1)

40 N2LO(1.2)+VC 1042.31(16) 3.377(1) 0.20(1)

70 N2LO(1.0) NN-only 2230.26(26) 3.877(1)

70 N2LO(1.0)+VC,LR 2296.42(64) 3.987(1)

70 N2LO(1.0)+VC 2290.60(25) 3.991(1) 0.25(2)

70 N2LO(1.2) NN-only 2062.93(59) 3.593(1)

70 N2LO(1.2)+VC,LR 2155.56(48) 3.730(2)

70 N2LO(1.2)+VC 2139.78(54) 3.711(2) 0.31(2)

We have studied the neutron-matter equation of state
for local chiral NN and 3N interactions and found smaller
energies compared to other calculations, mainly due to
less repulsion from 3N forces. We also simulated neu-
tron drops in an external harmonic oscillator potential
for neutron number N = 8, 20, 40 and 70 and investi-
gated their energies and radii for different chiral orders.

Our results show a very good agreement with previous
coupled-cluster calculations using chiral potentials [40]
(also with local 3N forces).

Work on the determination of the two 3N couplings
cD and cE for the local 3N forces is in preparation [32].
The inclusion of the full N2LO 3N forces will enable novel
many-body calculations of nuclei and nuclear matter with
QMC methods based on chiral EFT interactions.
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Appendix A: Coordinate-space expressions

In momentum space, the N2LO 3N interactions are
given by [4, 5]

VC =
1

2

(
gA
2fπ

)2 ∑
π(ijk)

σi · qi σk · qk
(q2i +m2

π)(q2k +m2
π)
Fαβijk τ

α
i τ

β
k ,

(A1)

VD = − gA
8f2π

cD
f2πΛχ

∑
π(ijk)

σk · qk
q2k +m2

π

σi · qk τ i · τ k , (A2)

VE =
cE

2f4πΛχ

∑
π(ijk)

τ i · τ k , (A3)

where qi = p′i − pi is the momentum transfer of parti-

cle i (all other quantities are defined in Sec. II) and Fαβijk
includes the different contributions from the ci’s

Fαβijk = δαβ
[
−4c1m

2
π

f2π
+

2c3
f2π

qi · qk
]

+
∑
γ

c4
f2π
εαβγ τγj σj · (qi × qk) . (A4)

In neutron matter, the 3N contributions simplify because
the isospin structure can be evaluated explicitly, with all
τ i · τ j = 1 and the c4 part vanishes [6].

We Fourier transform the 3N interactions with respect
to the momentum transfers of particle i and k, which
yields the coordinate-space expression V ijk as a function
of rij and rkj . Because the 3N interactions include a
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sum over all permutations, taking a different choice for
the momentum transfers would lead to the same result.
However, this will not be the case when a regulator in
momentum space is included before Fourier transform-
ing. For the VE contribution this gives

V ijkE =

∫
d3qi

(2π)3
d3qk
(2π)3

eiqi·rij eiqk·rkj VE ,

=
cE

2f4πΛχ

∑
π(ijk)

τ i · τ k δ(rij)δ(rkj) . (A5)

For the Fourier transformation of the VD contribution
one has

V ijkD =

∫
d3qi

(2π)3
d3qk
(2π)3

eiqi·rij eiqk·rkj VD ,

= − cDgA
8f4πΛχ

∑
π(ijk)

τ i · τ k
∫

d3qi
(2π)3

eiqi·rij

×
∫

d3qk
(2π)3

σk · qk σi · qk
q2k +m2

π

eiqk·rkj . (A6)

The second integral gives an expression similar to one-
pion exchange:∫

d3qk
(2π)3

σk · qk σi · qk
q2k +m2

π

eiqk·rkj

=− m2
π

12π
Xik(rkj) +

1

3
σi · σk δ(rkj) , (A7)

with Xik(r) defined in Eq. (6). As a result, in addition
to the one-pion-exchange–contact part, the Fourier trans-

formation also leads to a contact–contact part in V ijkD :

V ijkD =
cDgA

24f4πΛχ

∑
π(ijk)

τ i · τ k
[
m2
π

4π
δ(rij)Xik(rkj)

− σi · σk δ(rij)δ(rkj)
]
. (A8)

For the c1 part of VC we have

V ijkC,c1
= −c1m

2
πg

2
A

2f4π

∑
π(ijk)

τ i · τ k
∫

d3qi
(2π)3

σi · qi
q2i +m2

π

eiqi·rij

×
∫

d3qk
(2π)3

σk · qk
q2k +m2

π

eiqk·rkj . (A9)

The integrals are readily evaluated using∫
d3qi

(2π)3
σi · qi
q2i +m2

π

eiqi·rij

=− i σαi ∂α
e−mπrij

4πrij
= i

mπ

4π
σαi r̂

α
ij U(rij)Y (rij) . (A10)

This leads to

V ijkC,c1
=

c1m
4
πg

2
A

2f4π(4π)2

∑
π(ijk)

τ i · τ k σi · r̂ij σk · r̂kj

× U(rij)Y (rij)U(rkj)Y (rkj) . (A11)

Next, the Fourier transformation of the c3 part of VC
gives

V ijkC,c3
=
c3g

2
A

4f4π

∑
π(ijk)

τ i · τ k
∫

d3qi
(2π)3

σi · qi
q2i +m2

π

qαi e
iqi·rij

×
∫

d3qk
(2π)3

σk · qk
q2k +m2

π

qαk e
iqk·rkj . (A12)

Similar to the Fourier transformation for one-pion ex-
change in Eq. (A7) one gets∫

d3qi
(2π)3

σi · qi
q2i +m2

π

qαi e
iqi·rij

= −m
2
π

4π
σβi

[(
r̂αij r̂

β
ij −

1

3
δαβ
)
T (rij)Y (rij)

+
1

3
δαβ Y (rij)−

1

3

4π

m2
π

δαβ δ(rij)

]
. (A13)

Combining this leads to

V ijkC,c3
=
c3g

2
A

36f4π

∑
π(ijk)

τ i · τ k (A14)

×
[
m4
π

(4π)2
Xij(rij)Xkj(rkj)−

m2
π

4π
Xik(rij)δ(rkj)

− m2
π

4π
Xik(rkj)δ(rij) + σi · σkδ(rij) δ(rkj)

]
.

Finally, for the c4 part of VC we obtain

V ijkC,c4
=
c4g

2
A

72f4π

∑
π(ijk)

τ i · (τ k × τ j)

×
[

m4
π

2i(4π)2
[Xij(rij), Xkj(rkj)]

− m2
π

4π
σi · (σk × σj)(1− T (rij))Y (rij)δ(rkj)

− m2
π

4π
σi · (σk × σj) (1− T (rkj))Y (rkj)δ(rij)

[
− 3m2

π

4π
σi · r̂ij r̂ij · (σk × σj)T (rij)Y (rij)δ(rkj)

− 3m2
π

4π
σk · r̂kj r̂kj · (σj × σi)T (rkj)Y (rkj)δ(rij)

+ σi · (σk × σj)δ(rij)δ(rkj)

]
. (A15)
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